
System-on-Chip	Design	Supervision	Answer	(Set	2)	

Wei	Song	19/04/2016	

This	answer	provides	a	summary	of	key	points	in	each	question.	It	is	the	understanding	of	the	supervisor,	
which	does	not	necessarily	always	correct	and	does	not	represent	the	view	of	lecturers.	It	 is	expected	to	
expand	the	key	points	into	detailed	description	when	similar	questions	are	asked	in	exams.		

SP	4.	RTL,	simulation,	and	hazards	
Q1:	Convert	the	following	behavioural	RTL	into	an	equivalent	one	using	only	non-blocking	assignments.	

always	@(posedge	clk)	begin	
				foo	=	bar	+	22;	
				if	(foo	>	17)	
								foo	=	17;	
				foo_final	=	foo;	
				foo	=	0;	
end	

always	@(posedge	clk)	begin	
				foo	<=	0;	
				foo_final	<=	(bar	+	22	>	17)	?	17	:	bar	+	22;	
end	

Q2:	Give	a	fragment	of	RTL	that	implements	a	counter	that	wraps	after	7	clock	ticks.	

	 reg	[3:0]	count;	
	 always	@(posedge	clk)	count	<=	count	==	6	?	0	:	count	+	1;	

Q3:	 Implement	 a	 16-bit	multiplier	 that	 uses	 only	 8-bit	multipliers	 and	 adders.	 The	 finished	multiplier	
should	be	fully	pipelined,	producing	a	result	in	every	cycle	with	a	2	cycles	delay	and	using	the	minimal	
number	 of	 8-bit	 multipliers.	 (You	 can	 use	 *	 and	 +	 to	 represent	 an	 8-bit	 multiplier	 and	 an	 adder	
respectively)	

	 module	multiplier		(input	clk,	input	[15:0]	A,	B,	output	[31:0]	C);	
	 				reg	[15:0]	AhBh,	AlBh,	AhBl,	AlBl;	
	 				always	@(posedge	clk)	begin	
	 								AhBh	<=	A[15:8]	*	B[15:8];	
	 								AhBl	<=	A[15:8]	*	B[7:0];	
	 								AlBh	<=	A[7:0]	*	B[15:8];	
	 								AlBl	<=	A[7:0]	*	B[7:0];	
	 				end	
	 				assign	C	=	(AhBh	<<	16)	+	(AhBl	<<	8)	+	(AlBh	<<	8)	+	AlBl;	
	 endmodule	

Q4:	[optional]	Implement	a	FIFO	with	a	depth	of	8.	The	width	of	data	is	16-bit,	and	the	FIFO	has	full	and	
empty	signals.	

module	fifo	#(parameter	W=16,	L=8)	
			(
				input	clk,	rst,	write,	read	
				input	[W-1:0]	din,	
				output	full,	
				output	[W-1:0]	dout,	
				output	reg	empty	
);	
	
			localparam	PW	=	$clog2(L);	
		
			reg	[PW-1:0]	wp,	rp;	
			reg	[W-1:0]		data	[L-1:0];	
	
			function	[PW-1:0]	incr	(input	[PW-1:0]	p);	
						return	p	==	L-1	?	0	:	p	+	1;	
			endfunction	
	
			always	@(posedge	clk	or	posedge	rst)	
					if(rst)	wp	<=	0;	
					else	if(write	&&	!full)	begin	
								wp	<=	incr(wp);	
								data[wp]	<=	din;	
					end	
	
			always	@(posedge	clk	or	posedge	rst)	
					if(rst)	rp	<=	0;	
					else	if(read	&&	!empty)	
							rp	<=	incr(rp);	
	
			always	@(posedge	clk	or	posedge	rst)	
					if(rst)	empty	<=	1'b1;	
					else	if(write)	empty	<=	1'b0;	
					else	if(read	&&	wp	==	incr(rp))	
							empty	<=	1'b1;	
	
			assign	full	=	wp	==	rp	&&	!empty;	
			assign	dout	=	data[rp];	
endmodule	//	fifo	

SP	5.	Assertion	based	design	
Q5:	What	 is	the	difference	between	a	safety	and	 liveness	assertion	over	the	behavior	of	system?	How	
can	 safety	 and	 liveness	 assertions	 be	 used	 in	 dynamic	 validation?	 Give	 a	 short	 segment	 of	 RTL	 that	
contains	an	 imperative	assertion	that	holds	and	give	also	a	pair	of	valid	safety	and	 liveness	assertions	
that	holds.	

A	safety	property	 is	one	that	always	holds	while	a	 liveness	property	 is	something	that	can	be	eventually	
achieved	 in	 the	 future,	 regardless	 of	 the	 current	 system	 state.	 Dynamic	 validation	 is	 a	 simulation.	 In	 a	
simulation,	 safety	 assertions	 can	 be	 checked	 whether	 it	 is	 ever	 violated	 in	 the	 simulation.	 Liveness	
assertion	cannot	be	fully	verified	during	simulation.	However,	a	simulation	may	report	at	the	end	whether	
the	liveness	condition	has	been	reached.	

For	the	counter	in	Q2,	a	liveness	property	is	count	==	6,	a	safety	property	is	count	!=	7.	

Q6:	What	is	the	difference	between	black	box	testing	and	white	box	testing?	Can	assertions	be	used	for	
black	box	testing?	

Black	box	testing	is	where	the	implementation	details	of	the	design	under	test	are	hidden	and	assertions	
must	be	made	on	 the	ports.	White	box	 testing	allows	 the	 internal	 states	of	 the	design	under	 test	 to	be	
monitored	 and	 asserted.	 Assertion	 can	 be	 sued	 for	 black	 box	 testing	 but	 can	 only	 be	 used	 for	 the	 port	
signals.	

Q7:	What	is	“assertion	based	design”?	What	is	the	meaning	of	coverage?	Explain	how	certain	assertions	
can	be	reused	at	different	layers	of	modeling	abstraction.	

Assertion-based	design	is	a	methodology	where	assertions	are	written	during	and	in	advance	of	coding	and	
tested	at	the	earliest	possible	time.	Coverage	refers	to	the	fraction	of	the	source	code	that	was	executed	
and	 tested	 in	 a	 test	 run.	 Correlation	 patterns	 between	 if	 statements	 or	 system	 states	 can	 also	 be	
considered.	The	state	transition	of	global	state	machines,	bus	protocols	and	packet	formats	are	normally	
shared	from	high-level	behavioural	models	down	to	the	detailed	RTL	implementations.	The	assertions	used	
to	check	the	correctness	of	these	shared	behaviour	can	be	thus	reused	throughput	the	design	hierarchy.	

Q8:	What	is	a	combinational	equivalence	problem	and	what	is	a	sequential	equivalence	problem?	Why	
might	 sequential	 equivalence	 be	 violated?	 And	 why	 might	 we	 see	 false	 negatives	 in	 a	 sequential	
equivalence	checker?	

A	 combinational	 equivalence	 problem	 is	 to	 check	 whether	 two	 implementations	 of	 stateless	 logic	 are	
functional	 equivalent	 after	 considering	 don’t	 care	 states.	 A	 sequential	 equivalence	 problem	 is	 to	 check	
whether	 two	 implementations	 with	 internal	 states	 (sequential	 logic)	 are	 functional	 equivalent.	 For	
sequential	logic,	besides	considering	don’t	care	states,	the	checker	may	also	ignore	the	difference	of	delay	
in	the	transition	of	states.	

Sequential	equivalence	check	may	fail	 for	many	reasons.	EDA	tools	can	causes	errors	either	by	 improper	
use	of	a	tool	or	some	bugs	in	a	tool.	The	implementation	from	high-level	to	low-level	models	may	not	be	
fully	automated.	Manual	implementation	also	leads	to	human	errors.	

There	are	two	types	of	false	errors.	Detailed	implementations	may	utilize	some	optimization,	which	is	not	
observable	 in	 high-level	 modules,	 such	 as	 removing	 some	 impractical	 states	 or	 function	 simplification.	
Checkers	should	be	informed	of	such	optimization.	The	other	type	of	false	errors	is	due	to	the	transitional	
states	introduced	in	detailed	implementation,	such	as	the	transitional	states	needed	when	implementing	a	
coherent	cache	using	directory	based	protocols.	These	transitional	states	are	not	observable	in	behavioral	
models	and	might	be	ruled	out	by	checkers	as	invalid	states;	however	they	are	actually	valid	in	a	detailed	
implementation.	Similarly,	checkers	need	to	be	relaxed	to	cope	with	such	transitional	states.	

