
Channel Slicing: a Way to Build Fast Routers
for Asynchronous NoCs

Wei Song and Doug Edwards
School of Computer Science, University of Manchester, Manchester, M13 9PL UK

{songw,doug}@cs.man.ac.uk

Abstract—Asynchronous on-chip networks are power effi-
cient and tolerant to process variation but they are slower
than synchronous on-chip networks. One reason for the
low speed is the way that asynchronous routers use to
build wide channels. To meet the bandwidth requirement,
current routers broaden their channels by synchronizing
multiple sub-channels. The C-element tree in the completion
detection circuit increases the cycle period. A low latency
asynchronous wormhole router is proposed using sliced sub-
channels. Channel slicing removes the C-element tree in
the completion detection circuit and convert a channel into
multiple independent sub-channels reducing the cycle period.
The router is implemented by a 0.13 µm technology. The
cycle period of the router at the typical corner is 2.2 ns,
providing 1.82 GByte/sec throughput per port.

I. INTRODUCTION

Network-on-chip (NoC) [1] provides a scalable on-chip
communication architecture for current multi-processor
system-on-chip (MPSoC) systems. The on-chip network
could be a synchronous network where routers are driven
by a global clock, or an asynchronous network where
routers are self-timed circuits connected by asynchronous
pipelines. Thanks to mature EDA tools and the timing
assumptions allowed by the global clock, synchronous
networks are fast and area efficient but the clock tree is
power consuming [2]. By contrast, the clockless asyn-
chronous networks are comparatively slow but power
efficient. In addition, they are tolerant to process variation
and could divide the whole chip into several isolated clock
domains, which unifies the network interface and shortens
the overall design time.

In this paper, a low latency asynchronous router is
designed using sliced channels. The state-of-the-art quasi
delay-insensitive (QDI) pipelines in routers are built by
synchronizing multiple bit-level pipelines (sub-channels)
[3], [4], [5], [6], [7]. The C-element tree in the completion
detection circuit (synchronization circuit) increases the
cycle period and reduces throughput. Instead of synchro-
nizing sub-channels, we propose to use sub-channels in
parallel. Since the C-element tree is removed, sub-channels
run faster than the synchronized channel. Extra controllers
are added to resynchronize sub-channels during special
intervals, such as the route decision procedure.

The proposed router is implemented using a 0.13 µm
standard cell library and the cycle period is 2.2 ns,
providing 1.82 GByte/sec throughput per port.

The remainder of this paper is organized as follows:
section II describes the general architecture of the on-
chip network. Section III explains how channel slicing can

improve speed. Section IV demonstrates the detailed im-
plementation of the router. Section V shows the simulation
results of the implementation and analyzes the impact of
pipeline data width on area and speed. Finally the paper
is concluded in section VI.

II. NETWORK ARCHITECTURE

A network node in a globally asynchronous and locally
synchronous (GALS) network comprises a processor el-
ement, a network interface and a router. The processor
element could be a local system controlled by a processor
or a hardware IP running a specific function. Serving
as a slave device to the processor element, the network
interface provides a duplex channel for the processor
element to communicate with the chip level asynchronous
network. To ease the network communication, the network
interface splits the frames generated by the local processor
element into flits of fixed length before sending them
to routers. It also regroups received flits into frames
before delivering them to the local processor element.
In a GALS network, the network interface also serves
as a synchronous/asynchronous adaptor to ensure the
faultless cross timing domain data transmission. Similar
to the routers used in macro networks, routers in on-
chip networks are distributed route deciders and message
delivers but with tighter area budget and higher throughput
requirement. They are fully asynchronous circuits in the
proposed GALS network.

This paper concentrates on the wormhole flow control
method and the hardware implementation of asynchronous
routers; therefore, all other design aspects are set to
broadly accepted configurations. A mesh topology is used
due to its easy mapping on a 2-D layout. Frames are routed
by the XY dimension order routing algorithm. Nodes in
the network are identified by a (x, y) address. Network
interfaces have enough buffer space to guarantee that a
flit is consumed by a network interface in finite time. The
network is assumed to be error-free so that no deadlock
or livelock occurs. The data width of all ports is set to
32-bit to meet the throughput requirement for a normal
multi-processor SoC application. A flit is also 32 bits and
is transmitted in one cycle. A frame comprises a head flit,
several data flits and a tail flit. The head flit contains a 1
byte address, denoting the target node, and 3 bytes data.
The maximal size of a network is 16x16.



(a) (b)

(c)

Fig. 1. (a) A 32-bit 1-of-4 pipeline, (b) the completion detection circuit
and (c) the channel sliced pipeline

III. CHANNEL SLICING

Many handshake protocols could be used to build asyn-
chronous circuits but only some of them are suitable for
asynchronous router designs. The 4-phase bundled-data
protocol has been used in MANGO [8], QNoC [9] and
ASPIN [7]. The 4-phase dual-rail protocol has been used
in ASPIN [7] and the 4-phase 1-of-4 protocol has been
used in CHAIN [3], QoS [4] and ANoC [5]. Finally, m-
of-n protocols have been used in SpiNNaker [6].

The 4-phase 1-of-4 protocol is preferred. Bundled-data
protocols work under cautious timing constraints and the
matched delay lines are vulnerable to process variation
[8]. M-of-n protocols transmit more data bits in one cycle
than the 1-of-4 protocol but they need extra decoders
and encoders [10]. Because the address in the head flit
is analyzed by every router on the path, a decoder is
added on each input port to translate the head flit, which
introduces area overhead. The 4-phase 1-of-4 protocol is
QDI, comparably area efficient than m-of-n protocols and
more power efficient than the dual-rail protocol.

In all QDI routers [3], [4], [5], [6], [7], a wide channel
is built by synchronizing multiple bit-level sub-channels,
such as the 32-bit 1-of-4 channel shown in Figure 1(a).
The synchronized channel behaves similar to the pipeline
formed by flip-flops in synchronous circuits. Techniques
used in synchronous routers, such as the virtual channel,
could be easily adopted. However, the completion detec-
tion (CD) circuit is a 16-input C-element tree, shown in
Figure 1(b). Assuming that all 2-input gates have the same
latency and the C-element is a two level combinational
logic, this completion detection circuit has 8 levels of
logic. As the forward path of a basic 1-of-4 pipeline
only has 4 levels of logic, the completion detection circuit
accounts for 66% of the cycle period.

Synchronization is necessary for timing division multi-
ple access (TDMA) technologies, such as the virtual chan-
nel flow control, but not for wormhole routers. According

Fig. 2. Router structure

to the wormhole flow control method, a route is decided
and reserved by the head flit and data flits simply follow
the head flit. Since no frames could prevent data flits
from following the head flit, no synchronization is needed.
We propose to slice the synchronized channel into sub-
channels, illustrated in Figure 1(c), to allow independent
data transmission on sub-channels. Extra controllers are
added to ensure that the head flit is successfully analyzed.

IV. ROUTER DESIGN

A. Router Structure and Data Flow

Figure 2 shows the internal structure of the proposed
router. A router has five input and five output ports for
four adjacent routers and the local network interface. A
buffer with two pipeline stages is added on each input
port and output port. Input buffers and output buffers
are connected by a crossbar configured by the arbiter
on each output port. Route decisions are made on each
input buffer and a route is reserved by obtaining a grant
from the corresponding arbiter on the output port. Since
sub-channels run independently, they have their own ack
wires. An end-of-frame (EOF) wire is also added to each
sub-channel to identify the tail flit. As a result, one sub-
channel has five data wires and one ack wire, the same as
Chain [3]. A 32-bit channel has 16 sub-channels. Every
port contains 80 data wires and 16 ack wires.

The basic wormhole data flow is slightly changed due to
the removed synchronization. Figure 3 shows the modified
data flow. A flit is sliced into 16 parts and each of them
is transmitted on a sub-channel. The head flit is firstly
blocked in the first stage of the input buffer. Then the
control logic analyzes the address in the head flit and
makes a request to one of the arbiters. After the request is
granted, a path is reserved in the crossbar and the frame
is delivered by independent sub-channels. The crossbar is
reset by the input buffer once all parts of the tail flit are
delivered.

The head flit is blocked in the first stage of the input
buffer instead of the last stage as in ASPIN [7] for two
reasons: firstly, it reduces the fan-out of the second stage
which is on the critical cycle; secondly the route decision
procedure and the crossbar reset proceed in parallel.

B. The Data Path of a Sub-channel

Figure 4 illustrates the data path of a single sub-channel.
rt_err and acken are two signals driven by the extra



Fig. 3. The modified wormhole data flow

Fig. 4. The data path of a sub-channel

controller added on each sub-channel. acken, the active
low signal enabling the data path, is set low after a route
request is initiated and it is driven to high to stall the data
path when the tail flit is detected on ic_d. rt_err indicates
incorrect route requests and is set high when a faulty frame
is going to be dropped. gnt is the grant result from arbiters
(section IV-C), which enables the MUXes and DEMUXes
in the crossbar.

Although sub-channels run in parallel during the data
session, they stall after the tail flit to keep the next head
flit in the first pipeline stage in the input buffer. An
input buffer has one route decision controller and several
sub-channel controllers, one for each sub-channel. For an
incoming frame, the route decision controller enables the
route decision procedure. Once a route request is initiated,
sub-channel controllers enable their data paths.

Figure 5 demonstrates the internal structure of the
route decision controller and its STG. The route decision
procedure is always enabled through rt_en+ after a frame
is transmitted. A route decision could be a possible route
request (rt_dec+) or a faulty request (rt_err+). The frame
generating a faulty request will be dropped. After the route
request is made, the route decision procedure is disabled
until the frame is transmitted, denoted by ch_fin+ on all
sub-channels.

Figure 6 shows a sub-channel controller and its STG. A
data session begins after a route request is made. A faulty
frame is dropped by connecting the ack line generated
from ic_d directly to itself, enabled by rt_err in Figure 4.
Note that the ack line connected back is generated from
data bits but not the EOF bit to guarantee that the EOF
bit is always detected by the sub-channel controller. When
the tail flit arrives, it is dropped by acken+ and then the
sub-channel stalls until the next data session. For normal
frames, the ack line ic_a from output buffers is used and

(a) (b)

Fig. 5. (a) A route decision controller and (b) its STG

(a) (b)

Fig. 6. (a) A sub-channel controller and (b) its STG

data are forwarded to the requested output port.

C. Routing and Arbitration

As an example, Figure 7 shows the route decision circuit
in the south input buffer and the connected arbiter on
the east port. Enabled by rt_en, the 8-bit address (16-bit
in 1-of-4 code) blocked in the first pipeline stage enters
comparators after the second pipeline stage is cleared (ib_a
is low). The route request is captured by the C2P elements
enabled by ch_fin_a-. One-hot coded, the route request
drives rt_dec or rt_err to ‘1’, which then disables the
route decision procedure and starts the data session. C2P
elements hold the value during the whole data session. The
south input buffer could not be connected with the south
output buffer, therefore, the corresponding route request is
connected to rt_err.

Valid route requests are sent to arbiters. Since only four
input buffer could request to one output port concurrently,
the multi-way MUTEX arbiter [11], shown in Figure 7, is
faster and smaller than other arbiter styles [12], [13], [11].
The successful request is granted by one of the four gnt
outputs.

Fig. 7. The routing decision circuit and the arbiter



V. PERFORMANCE

A. Physical Implementation

The router has been implemented using the Faraday
0.13 µm standard cell library based on the UMC 0.13 µm
technology. Route decision controllers and sub-channel
controllers are speed independent circuits generated from
their STGs using Petrify [14] and other parts are manually
written in Verilog HDL.

The area after synthesis is around 12.6K gates (0.050
mm2). The final router is placed and routed on a 0.3x0.3
mm block using 5 metal layers. The speed simulation is
back-annotated with the RC extraction from the layout
and run under the typical corner (25 °C, 1.2 V). The
cycle period for data flits is 2.2 ns, providing maximal
1.82 GByte/s throughput on a single port. The average
latency of a data flit is 2.1 ns. For the head flit, the routing
decision and the arbitration procedures consume about 0.8
ns without contention.

B. Effect of Data Width

An extra and important advantage of channel slicing
is that the cycle period does not increase with the width
of data paths. For normal QDI pipelines, increasing the
data width means more sub-channels are synchronized by
the C-element tree leading to a larger speed penalty. The
bundled-data router in QNoC also reported similar effect
(0.2% per bit degradation [9]). However, for the routers
using channel slicing, sub-channels run independently
during the data session. Increasing the number of sub-
channels has little impact on the cycle period of a single
sub-channel.

Both the routers using synchronized channels (the tra-
ditional way) and the routers using sliced channels have
been implemented with different data widths. Figure 8
shows the results after synthesis. For both routers, the area
increases linearly with the data width. The channel sliced
routers are slightly larger than the traditional routers due
to the extra sub-channel controllers and the increased wire
count. However, the channel sliced routers are significantly
faster. The cycle period of the channel sliced routers re-
mains around 2.2 ns but the cycle period of the traditional
routers increases along with the data width (around 2.8 ns
for the 32-bit case).

VI. CONCLUSION

In this paper, a low latency asynchronous router has
been implemented using channel slicing. Channel slicing
removes the C-element tree in the completion detection
circuit of QDI pipelines. This removal reduces the cycle
period and make sub-channels run in parallel during the
data session. The final router has been implemented on a
0.3x0.3 mm block using the Faraday 0.13 µm standard cell
technology. The synthesis result is around 12.6K gates.
Simulations are back-annotated with RC extraction and
run at the typical corner. The cycle period is around 2.2
ns providing 1.82 GByte/sec throughput on each port.

(a)

(b)

Fig. 8. (a) Area and (b) cycle period under different data width

REFERENCES

[1] W. J. Dally and B. Towles, “Route packets, not wires: on-chip
interconnection networks,” in Proc. of DAC, 2001.

[2] A. Hemani, T. Meincke, S. Kumar, A. Postula, T. Olsson, P. Nils-
son, J. Oberg, P. Ellervee, and D. Lundqvist, “Lowering power
consumption in clock by using globally asynchronouslocally syn-
chronous design style,” in Proc. of DAC, 1999, pp. 873–878.

[3] J. Bainbridge and S. Furber, “Chain: a delay-insensitive chip area
interconnect,” IEEE Micro, vol. 22, pp. 16–23, 2002.

[4] T. Felicijan and S. B. Furber, “An asynchronous on-chip network
router with quality-of-service (qos) support,” in Proc. of SOCC,
Sept. 2004, pp. 274–277.

[5] E. Beigne, F. Clermidy, P. Vivet, A. Clouard, and M. Renaudin,
“An asynchronous NOC architecture providing low latency service
and its multi-level design framework,” in Proc. of ASYNC, March
2005, pp. 54–63.

[6] L. A. Plana, S. B. Furber, S. Temple, M. Khan, Y. Shi, J. Wu, and
S. Yang, “A globally asynchronous, locally synchronous infrastruc-
ture for a massively-parallel multiprocessor,” IEEE Design and Test
of Computers, vol. 24, no. 5, pp. 454–463, 2007.

[7] A. Sheibanyrad, “Asynchronous implementation of a distributed
network-on-chip,” Ph.D. dissertation, University of Pierre et Marie
Curie, 2008.

[8] T. Bjerregaard and J. Sparsø, “A router architecture for connection-
oriented service guarantees in the MANGO clockless network-on-
chip,” in Proc. of DATE, 2005, pp. 1226–1231.

[9] R. Dobkin, R. Ginosar, and A. Kolodny, “QNoC asynchronous
router,” Integration, the VLSI Journal, vol. 42, no. 2, pp. 103–115,
2009.

[10] J. Bainbridge, W. Toms, D. Edwards, and S. Furber, “Delay-
insensitive, point-to-point interconnect using m-of-n codes,” in
Proc. of ASYNC, May 2003, pp. 132–140.

[11] D. J. Kinniment, Synchronization and Arbitration in Digital Sys-
tems. John Wiley & Sons Inc., 2007.

[12] K. S. Low and A. Yakovlev, “Token ring arbiters: An exercise in
asynchronous logic design with Petri nets,” Newcastle University,
Tech. Rep., 1995.

[13] M. B. Josephs and J. T. Yantchev, “CMOS design of the tree arbiter
element,” IEEE Transactions on VLSI, vol. 4, no. 4, pp. 472–476,
Dec 1996.

[14] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev, “Petrify: a tool for manipulating concurrent specifica-
tions and synthesis of asynchronous controllers,” IEICE Transac-
tions on Information and Systems, vol. E80-D, no. 3, pp. 315–325,
1997.


