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Handling Physical-Layer Deadlock Caused by
Permanent Faults in Quasi-Delay-Insensitive

Networks-on-Chip
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Abstract— Networks-on-Chip (NoCs) are promising fabrics to
provide scalable and efficient on-chip communication for large-
scale many-core systems. In place of the well-studied synchronous
NoCs, the event-driven asynchronous ones have emerged as
promising replacement thanks to their strong timing robustness
especially when implemented in quasi-delay-insensitive (QDI)
circuits. However, their fault tolerance has rarely been studied.
The QDI NoCs show complicated failure scenarios and behave
differently from synchronous ones. As the scaling semiconduc-
tor technology is expected with the accelerated aging process,
permanent faults become more likely to happen at runtime.
These faults can break the handshake, leading to physical-layer
deadlocks which can spread and paralyze the whole QDI NoC.
This physical-layer deadlock cannot be resolved using conven-
tional fault-tolerant or deadlock management techniques. This
paper systematically studies the impact of permanent faults on
QDI NoCs, and presents novel deadlock detection and recovery
techniques to handle the fault-caused physical-layer deadlock.
The proposed detection technique has been implemented to
protect the NoC data paths that occupy ∼90% of the logic.
Employing the detection and recovery techniques to protect
interrouter links (∼60% of the logic), a permanently faulty link
is precisely located and the network function can be recovered
with graceful performance degradation.

Index Terms— Deadlock, network-on-chip (NoC), permanent
fault, quasi-delay-insensitive (QDI), spatial division multiplex-
ing (SDM).

I. INTRODUCTION

NETWORKS-ON-CHIP (NoCs) are a promising
infrastructure to support on-chip communication of

large-scale multicore systems due to their efficiency and

Manuscript received November 13, 2016; revised March 4, 2017 and
May 31, 2017; accepted July 5, 2017. Date of publication August 15,
2017; date of current version October 23, 2017. This work was supported
in part by the Engineering and Physical Sciences Research Council under
Grant EP/I038306/1 and Grant EP/K015699/1, in part by the European
Commission Horizon 2020 Programme under Grant 671553, in part by the
China Scholarship Council, and in part by the National Natural Science
Foundation of China under Grant 61272144, Grant 61402497, and Grant
61402501. (Corresponding author: Wei Song.)

G. Zhang was with the School of Computer Science, The University of
Manchester, Manchester M13 9PL, U.K. He is now with AMS, Beijing
100091, China (e-mail: zhanggd_nudt@hotmail.com).

W. Song was with the School of Computer Science, The University of
Manchester, Manchester M13 9PL, U.K. He is now with the Computer
Laboratory, University of Cambridge, Cambridge CB3 0FD, U.K. (e-mail:
wei.song@cl.cam.ac.uk).

J. Garside and J. Navaridas are with the School of Computer Sci-
ence, The University of Manchester, Manchester M13 9PL, U.K. (e-mail:
james.garside@manchester.ac.uk; javier.navaridas@manchester.ac.uk).

Z. Wang is with the School of Computer, National University of Defense
Technology, Changsha 410073, China (e-mail: zywang@nudt.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2017.2729081

scalability requirements [1]. Most existing NoCs are built
synchronously using global clocks. Synchronous NoCs
need to distribute the global clock with little skew over long
distances, which may cross multiple timing domains belonging
to different intellectual property (IP) cores. Costly custom
calibration of the huge global clock tree is usually required
in high-performance designs [2]. These become increasingly
difficult and expensive as the network scales. As an alternative,
NoCs can be implemented using asynchronous circuits [3]
controlled by handshake protocols. As a result, problems
inherent to the distribution of the global clock are alleviated
or removed [4], [5]. The asynchronous NoC partitions a
chip into multiple synchronous islands, leading to a globally
asynchronous, locally synchronous (GALS) system [6]. This
naturally enables individual frequency/voltage control and
simplifies the chip-level timing closure [7]. With the absence
of clock, an event-driven and asynchronous NoC could convey
data in a speedy and energy-efficient fashion [5]. The timing
robustness brought by a quasi-delay-insensitive (QDI) [3]
NoC is also attractive.

Fault tolerance has been extensively studied in synchronous
NoCs [8] but rarely in asynchronous NoCs, especially in QDI
ones. Protecting QDI NoCs from faults is more difficult than
protecting synchronous ones. One reason is that it is difficult
to detect a fault and locate its position without using a clock
signal as a timing reference. If the receiver fails to get the
right data bit, this may be caused by a fault or a transmission
delay. The delay can be tolerated in QDI NoCs and the receiver
keeps waiting for the lost bit, which may never come due to
a fault, proposing a challenge. Most existing QDI NoCs lack
fault-tolerance capability [5], [9].

Faults on QDI NoCs can be classified into transient and per-
manent faults [10]. Transient faults last only for a short period
but may be long enough to trigger a transient error of corrupted
data. Such an error can be corrected or filtered using fault-
tolerant codes or duplication-based techniques, preserving the
functionality of the victim component. This has been studied in
our previous work [11], [12]. Permanent faults are damages
caused by the circuit aging process [10]. Although they are
rare, permanent errors caused by observable permanent faults
have serious effect on QDI NoCs. Beside data errors, they
can halt the handshaking process, resulting in physical-layer
deadlocks. These deadlocks are different from network-layer
ones caused by the cyclic dependence of packets [13]. With the
handshake protocol destroyed, the usual deadlock avoidance
methods like turn models and fault-tolerant routings cannot
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work without locating and isolating the faulty component.
Handling runtime permanent faults on QDI NoCs in such a
deadlock state is more difficult than on synchronous NoCs.
In the era of deep submicrometer when reliability becomes one
of the critical challenges for digital systems [14], it is impor-
tant to keep specific, critical or ultraexpensive systems working
even with some performance loss, proposing a demand for
permanent-fault-tolerant QDI NoCs.

This paper handles physical-layer deadlocks caused by
permanent faults on QDI NoCs. Its contribution includes the
following.

1) A generic deadlock detection mechanism is proposed.
It identifies deadlocks caused by faults apart from those
due to cyclic dependence. The defective section is
precisely located.

2) Instead of initiating an expensive system reboot in the
presence of a fault, a Drain&Release technique is pro-
posed to release the fault free but deadlocked resources
while isolating the defective component.

3) Spatial division multiplexing (SDM) [9], [15] is adopted
to divide each interrouter link into independent sublinks.
The network function degrades gracefully by masking
faulty sublinks and allowing succeeding traffic to go
through fault-free ones.

4) For intermittent faults (early symptom of permanent
faults) that are long enough to cause a deadlock,
the recovery mechanism automatically resumes the
isolated pipeline stages once the fault disappears.

II. BACKGROUND

A. Asynchronous Protocols

Current digital systems are dominated by synchronous cir-
cuits, which are governed by one or more global clocks.
In the deep submicrometer era, billions of transistors can be
integrated on a single chip, where multiple IP cores run at their
own clock frequencies, dividing the whole chip into multiple
separate timing domains [4], [5], [16]. Besides, the shrink-
ing semiconductor geometry makes circuits more sensitive
to process and environmental variations, resulting in delay
variations potentially corrupting timing requirements [10].
It becomes increasingly difficult to deliver global clocks across
the whole chip with acceptable clock skew.

Asynchronous circuits [3] use handshake protocols rather
than clocks, removing the issues caused by clocks. The
level-triggered four-phase (return-to-zero) handshake proto-
col is widely used due to its simplicity in implementation.
An illustrative waveform of the four-phase protocol is shown
in Fig. 1(a). A full handshake cycle comprises four transitions:
transmission of data (data+), acknowledge of data (ack+),
transmission of a spacer (data−), and acknowledge of the
spacer (ack−). Here, the spacer is an all-zero word used to
separate two data words. The data bus holds a complete data
word (a solid circle) during the transition of ack+ while it
holds a spacer (an empty circle) during ack−. In between the
complete data word and the spacer, the bus holds incomplete
data (a half full circle). The first two transitions are also called
the set phase while the rest two are called the reset phase.

Fig. 1. Asynchronous protocol and pipeline model. (a) Four-phase 1-of-n
protocol. (b) Pipeline model. (c) C-element.

QDI circuits are a family of timing-robust asynchronous
circuits, which assume that both delays of gates and wires are
positive and arbitrary. No delay assumptions other than the
isochronic-forks [3] are used so that QDI circuits could tolerate
delay variations. In QDI circuits, data are encoded with the
timing information through using DI codes [17], such as the
1-of-n codes applied in this paper. A four-phase QDI pipeline
is shown in Fig. 1(b). It comprises one or more 1-of-n
channels, corresponding to the number of 1-of-n symbols that
can be transmitted in parallel. Each pipeline stage contains
multiple 1-of-n slices, each of which is a latch built from
n C-elements to store a single 1-of-n symbol [3] (a one-hot
formatted number between 0 and n − 1). As the commonly
used basic asynchronous element, a C-element outputs “1”
(or “0”) when both of the inputs are “1”s (or “0”s). Its symbol
and standard-cell implementation are shown in Fig. 1(c).
A completion detection (CD) circuit synchronizes all 1-of-n
channels and produces the ack to the preceding stage. A com-
plete data word on an N-channel stage is composed of N
1-of-n symbols, while a spacer contains N spacer symbols.
During transmission, a stage may hold an incomplete data
word containing less than N 1-of-n symbols. Note that channel
slicing [18] can be used to improve the pipeline performance
where all the N 1-of-n channels are divided into several
groups, each of which runs independently with its own CDs
before the resynchronization point of all groups. This paper
employs the basic pipeline with one CD synchronizing all
1-of-n channels at each stage [3], which helps the proposed
fault detection mechanism afterward.

B. Permanent Faults on Synchronous Versus QDI Circuits

Permanent faults occur with the aging process [19], [20]
and threaten the lifetime of electronics. Some manufacturing
imperfections are so tiny that they are not detected during
the manufacturing test but become evident after a long period
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Fig. 2. Pipeline fault model.

of operation, leading to runtime permanent faults [20]. The
scaling effects with the advancing semiconductor technology
have a sustaining negative impact on long-term chip life-
time [21] and accelerate the aging process. Electronics become
more susceptible to runtime permanent faults. This paper uses
stuck-at faults to model permanent faults, which has been
widely accepted in the semiconductor industry [22]. The state
of a wire is either stuck at “0” or “1,” masking details of
the fault behavior and making it simple to analyze the fault
impact.

Permanent faults on synchronous circuits typically lead to
persistent data errors demonstrating fixed patterns. Assuming
the clock network stays intact, the faulty circuit continuously
produces data errors, which can be used to detect faults with
accumulated history statistics, i.e., error syndromes, which are
usually obtained by using transient-fault-tolerant techniques
like fault-tolerant codes [12], [23], [24]. If the error syndromes
satisfy specific patterns or timeout conditions, the fault is taken
as permanent and the recovery process is invoked; otherwise,
it is transient or intermittent.

Differently, QDI circuits are event-driven and controlled
by handshake protocols. A permanent fault, which locks a
signal at one logical level, not only corrupts data, but breaks
the handshake process, deadlocking the circuit. Most existing
transient-fault-tolerant QDI designs [12], [25] are deadlocked
as well when the handshake is stalled; they cannot easily
extract error syndromes, making most conventional fault-
tolerant techniques fail [23], [24]. In a NoC, this deadlock
occurs in the physical layer, which is different from the
network-layer one due to the packet cyclic dependence [13].
Like all deadlocks, physical-layer deadlocks reserve network
resources and spread, potentially leading to a paralyzed NoC.

III. MODELING FAULT-CAUSED DEADLOCKS

Before analyzing the fault-caused deadlocks on QDI
pipelines, a simple pipeline fault model is built to reduce all
1-bit permanent faults1 into two types of faults: “Data” and
“Ack” faults. The pipeline fault model is shown in Fig. 2.
The interpipeline interconnects or combinational circuits are
considered a part of the receiving pipeline stage. A fault

1The proposed technique does not handle simultaneous multibit faults.
However, if the simultaneous multibit fault causes the same deadlock that
is undifferentiated from the one caused by a 1-bit fault, it is handled as a
1-bit fault. Multiple uncorrelated faults can be handled as individual 1-bit
faults.

Fig. 3. Deadlocked pipelines due to stuck-at faults on the forward data path.
(a) Data stuck-at-0 fault. (b) Data stuck-at-1 fault.

Fig. 4. Deadlocked pipelines due to stuck-at-0 faults on CD or ack wires.

occurring on (1) data interconnects, (2) the C-element or (3)
the immediate output of the C-element, or even (4) the ack
fanouts is considered as a “Data” fault, because it alters the
data word visible to the downstream stages. A fault that occurs
on (5) the CD inputs, (6) the CD, or (7) the ack interconnect to
the preceding stage is considered as an “Ack” fault, because it
does not alter a visible data word but obstructs necessary data
transitions. For all faults shown in Fig. 2, pipeline Stage i is
termed the “faulty” stage. The impact of a permanent fault on
a QDI pipeline can be classified into four classes (this paper
does not support PCHB-implemented QDI circuits [3]).

1) Data Stuck-at-0 [Fig. 3(a)]: The input of a latch can
get stuck at “0” when a Data stuck-at-0 fault strikes on
the forward data path, preventing “1” from propagating
to downstream stages. As a result, all pipeline stages
downstream of the fault are stuck at the set phase with an
incomplete data word and keep waiting for the lost “1.”
Their ack signals are all “0”s awaiting a 1-of-n symbol.

2) Data Stuck-at-1 [Fig. 3(b)]: Due to a stuck-at-1 fault
on the forward data path, the latch of the faulty stage
gets stuck at “1,” preventing all downstream stages from
being reset as they keep holding a 1-of-n symbol with
the invalid “1.” As a result, all their ack signals are “1”s.

3) Ack Stuck-at-0 (Fig. 4): The ack signal to the preceding
Stage i-1 could get stuck at “0” due to a permanent
fault on the backward ack wire or the CD of the current
stage (Stage i). As a result, Stage i-1 may hold either
a complete data word if the faulty ack arrives when it
was in the set phase, or an incomplete data word if
the preceding stage is resetting (the faulty ack stalls the
reset operation). Thus, all pipeline stages downstream
of the faulty stage cannot be fully reset. Their ack
signals are all “1”s. The ack signal back to the prefault
Stage i-1 has two faulty scenarios depending on the fault
position.
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Fig. 5. Deadlocked pipelines due to stuck-at-1 faults on CD or ack wires.

Fig. 6. Fault-free pipeline stall due to contention.

4) Ack stuck-at-1 (Fig. 5): The ack wire to the preceding
stage may get stuck at “1” due to a fault on the backward
path, so that incoming “1”s or 1-of-n symbols to the
prefault stage cannot be latched. All stages downstream
of the faulty stage then hold spacers or incomplete data
words, getting stuck at the set phase with low acks.

For all cases, all prefault pipeline stages are fault free and
would eventually alternately hold complete data words and
spacers according to the four-phase handshake protocol [3].
The following observation presents a key pattern that is shared
by all the above faulty cases.

Observation 1: A permanent fault leads to a physical-layer
deadlock when the faulty wire or gate obstructs the nor-
mal handshake process. With sufficient time, the deadlocked
pipeline always freezes into a steady state, where all stages
downstream of the faulty one have the same ack while the
ack signals of upstream stages are alternately valued.

It should be noticed that some pipeline stages may be stalled
for a long time due to traffic contention, which is common in
NoCs. Fig. 6 shows an example that two packets in separate
pipelines compete for the output, while packet 2 wins the
arbitration and gets outputted but packet 1 is stalled before
the switch, resulting traffic congestion. This fault-free stall due
to contention is different from the aforementioned fault-caused
deadlock. Using the 4-phase 1-of-n protocol, the pipeline with
the stalled packet presents alternately valued ack signals on
upstream stages when data wires are stable and there are no
matched (allocated) downstream stages, while a deadlocked
faulty pipeline holds the same ack value on all downstream
stages. Thus, the fault-free stalled pipeline will not be mistaken
as deadlocked. The presence of consecutive pipelines with
the same ack value is the key in differentiating fault-caused
physical-layer deadlocks from network contention.

IV. GENERAL DEADLOCK DETECTION STRATEGY

A. Baseline QDI NoC Router

Fig. 7(a) shows a mesh NoC built from QDI routers and
links. The whole chip is a GALS system, where the NoC

Fig. 7. Baseline QDI NoC and its router. (a) GALS system. (b) Generic
router structure.

Fig. 8. Flit sequence and router state classification.

forms the asynchronous domain. Four-phase 1-of-4 protocol
is applied to both routers and links [3]. A generic router
with five bidirectional ports is shown in Fig. 7(b). Four of
the ports (south, west, north, and east) communicate with
adjacent routers and the fifth connects to the local processing
element (PE). A central crossbar provides multiple connection
paths from input to output. Pipelined buffers at the input/output
and the crossbar construct the data path through the router.
The major components of the router’s control logic comprise
a routing computation (RC) unit, a buffer controller (BC), and
a switch allocator (SA). Each input buffer has a BC and an
RC unit. The BC unit regulates the incoming flit flow while
the RC unit computes the output direction of each packet
using its head flit. The central crossbar is controlled by the
SA unit, which receives routing requests from all RC units
and accordingly allocates available output ports to requesting
input ports. As Fig. 8 shows, a packet is divided into head,
body, and tail flits. The destination address is stored in the head
followed by a sequence of body flits. A tail flit, indicated by
an end-of-packet (eop) signal, separates consecutive packets.

The baseline QDI NoC employs an XY-dimension-ordered
routing and wormhole switching [1], so that the control logic
deals with only head and tail flits. Once a path through the
network is built, it starts carrying a high-density flit flow
while control logic keeps in a stable state. Considering that
the aging caused permanent faults is believed to be strongly
related to circuit activities [26], control logic is expected to
have a significant longer life time than the data path [27]. This
paper focuses on the fault tolerance of the data path, which
can be abstracted to a QDI pipeline.

B. Deadlock Management Strategies for QDI NoCs

Traditional (nonfaulty) deadlocks occur when a NoC can-
not resolve cyclic dependence, which is normally triggered
by an unrestricted routing algorithm or limited network
resources [28]. The deadlocked network would then suffer
significant performance degradation or even system failure.
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Two strategies can deal with the deadlock: deadlock avoidance
and recovery.

1) Deadlock avoidance has been extensively used to prevent
cyclic dependence, making NoCs deadlock-free in a
fault-free environment. The well-known turn models
prohibiting some turns belong to the simplest avoidance
methods. Virtual channels can be used to avoid dead-
locks by specifying escape channels [1].

2) Deadlock recovery tries to resolve a deadlock if it ever
occurs [29]. Therefore, full adaptive routing can be
used to improve network performance. Differentiating
the real deadlock from congestion is the main challenge.
Considering the fact that deadlock rarely occurs if the
network is below its saturation point, this method is
attractive due to its lower hardware cost compared to
deadlock avoidance.

A permanent fault on a QDI NoC stalls the normal hand-
shake process and locks up the pipeline stage, which then
causes a physical-layer deadlock. Since this type of deadlock
is not caused by cyclic dependence and its occurrence is hardly
predictable, traditional deadlock recovery does not work. This
paper proposes a new deadlock recovery strategy that com-
prises two phases. 1) Deadlock detection, when the fault-
caused deadlock is precisely located and differentiated from
traditional deadlocks or network congestion and 2) deadlock
recovery, when the defective components are bypassed to
resume the deadlocked network.

C. General Detection Strategy for Deadlocked QDI NoCs

The physical-layer deadlock can be easily differentiated
from network-layer deadlock or network congestion by detect-
ing contiguous ack signals (Observation 1) that are unique
to fault-caused physical-layer deadlock. The pipelined data
path in a NoC can be partitioned into link and router pieces,
which are protected separately. A fault on the data path is thus
either a link fault or a router data-path fault. It may corrupt
the routing request, affect the control logic, and cause data
errors. Adding a pair of detection circuits to the ends of each
piece to monitor their activities, we can determine that the
monitored piece is defective if the following conditions are
satisfied.

1) No transition is detected for a long time, implying the
pipeline piece is either idle, or blocked by conges-
tion, or deadlocked.

2) The pipeline piece demonstrates one of the following
fault patterns.

a) Link Fault: The ack signals before the fault at
the output of the prefault router are alternately
valued (the link is not idle). For the input of the
postfault router, all pipeline stages on the reserved
path after the fault have the same ack (ruling out
congestion and network-layer deadlock).

b) Router Data-Path Fault: A path has been built
across the router. The ack signals at the router input
are alternately valued and the granted output has
the same ack.

V. DEADLOCK DETECTION ON QDI NoCs

In this section, protected link pieces are first used to
demonstrate the fault impact on the baseline QDI NoCs
(Section IV-A) and the proposed deadlock detection mech-
anism. Then, the detection of router data-path faults is
discussed. Note that, the control signals eop and ack are
considered as an inseparable part of the data path of a
NoC. They are also protected by the proposed fault-tolerance
mechanism.

A. Impact of Permanently Faulty Links

Faults may happen on any gates or wires. In a NoC,
a fault may affect the body data, the eop indicator, or the
ack signal, leading to six types of faults: stuck-at-1 (s-a-1)
or stuck-at-0 (s-a-0) faults on each of them. When a link fault
strikes, the control logic of the input buffer gets stuck at a
specific state. Identifying this state is important in detecting
the fault. According to wormhole switching, an input buffer
can be deadlocked into three states: Setup, Transmission, and
Release (Fig. 8).

1) Setup: A head flit is arriving and getting blocked in
an input buffer, waiting for being granted an output.
RC samples the address information from the head
flit, generates a routing request, and waits for the
grant.

a) Data s-a-0 fault: The head flit contains the address
information in 1-of-n codes. This fault may corrupt
the “1” of a 1-of-n symbol to “0,” preventing a
complete head flit from arriving.

b) Ack s-a-1 fault: When an ack s-a-1 fault strikes on
the head flit, it prevents the head flit from arriving
at the input buffer.

In both the cases, the head is incomplete so no routing
request is generated. The incoming packet is stalled at
the front of this input buffer.

a) Data s-a-1 or ack s-a-0 faults stall handshake by
preventing the received head flit from being reset.
Since the routing request is successfully generated
and will be granted, the input buffer eventually
enters the Transmission state. The Setup data s-a-
1 or ack s-a-0 fault is equivalent to corresponding
Transmission faults.

b) An eop s-a-0 fault will not manifest since the eop
indicator is low in this state.

c) An eop s-a-1 fault creates a fake tail flit. Depending
on its timing, if the fake tail flit causes a premature
ack before a complete head flit is received, this ack
blocks the remaining head flit. Otherwise, if the
fake tail flit arrives after the head flit, a routing
request is produced and an output would be allo-
cated. The fake tail flit then prematurely pushes the
input buffer into Release state.

2) Transmission: SA has allocated an output to the request-
ing input. The head or body flits are traversing the
router. All data and ack stuck-at faults can deadlock
the reserved packet path into this state.
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Fig. 9. Fault types on QDI NoCs.

a) Data s-a-0/1 fault: A data s-a-0 fault can remove
a 1-of-n symbol in a flit. A data s-a-1 fault may
create a 2-of-n symbol. The fault-free “1” gets
reset later, leaving the faulty “1” traversing the
downstream pipeline stages.

b) Ack s-a-0/1 faults prevent data symbols from being
set or reset.

c) An eop s-a-0 fault prevents the tail flit from
arriving.

d) An eop s-a-1 fault creates a fake tail flit, which
forces the input buffer into Release.

3) Release: At the end of Transmission, the input buffer
enters Release when it receives a high eop. BC releases
the reserved output after the eop is reset. The input buffer
then returns to Setup.

a) Data s-a-0/1 and ack s-a-1 faults have no effect in
this phase, since they cannot prevent the resetting
operation of the eop indicator.

b) Ack s-a-0 and eop s-a-1 faults prevent the eop from
resetting.

c) An eop s-a-0 fault has no effect in Release but
would block future tail flits.

Fig. 9 summarizes the impact of all faults. Note that
a fault may not manifest itself immediately and strike the
postfault router. Such a fault is combined into the state that
it affects. Fig. 10 shows the protected NoC data path divided
into link and router pieces. The rt_ack signal denotes when
an output is allocated by SA and ipeop notifies the arrival of
eop. These signals also indicate the state when the router is
deadlocked: Setup (rt_ack− & eop−), Transmission (rt_ack+
& eop−), and Release (rt_ack+ & eop+). By sampling the
ack signals of two contiguous stages (ipia and ipoa), the eop
indicator (ipeop) and the grant indicator (rt_ack), a pattern
checker at each input can detect and classify a deadlock into
three scenarios.
Case 1: A data s-a-0 or ack s-a-1 fault in the Setup state

prevents the input buffer from receiving a complete

Fig. 10. Protected pipeline pieces with deadlock detection circuits.

Fig. 11. Transition detector.

head flit. Pipeline stages after the fault may hold
spacers or the same incomplete flit, producing low
ack signals (ipia− & ipoa−). No routing request
is generated or granted (rt_ack−). This case is
indicated by (!rt_ack & !ipia & !ipoa).

Case 2: A Setup eop s-a-1 fault happens when the link
is idle. It creates a fake tail flit (ipeop+) which
blocks all incoming packets; therefore, no routing
request is generated (rt_ack−). The fault is denoted
by (!rt_ack & ipeop & !ipoa).

Case 3: All stuck-at faults in Transmission and Release
states can be combined into the same scenario.
A route is allocated (rt_ack+) but a fault strikes
during data transmission. All downstream stages
have the same ack value. This case can be identified
by (rt_ack & ipia==ipoa).

A deadlock caused by cyclic dependence in network
layer or temporary blockage due to congestion is impossible
to trigger any of the above cases. In Section V-B, a timeout
mechanism will be proposed to locate the faulty link piece.

B. Detect Deadlock Caused by a Permanently Faulty Link

A general timeout strategy is proposed to detect the dead-
lock caused by permanently faulty interrouter links in a
QDI NoC. A link starts at the output port of the preceding
router and ends at the input of the succeeding router, including
pipelined input/output buffers and link wires as Fig. 10 shows.
A deadlock detector is added at the start of the link (Stg 1)
and a pattern checker is added at the end of the link (Stg d)
under control of the deadlock detector.

The key component in the deadlock detector is a transition
detector (Fig. 11) monitoring the transition on a certain
signal [30]. The start is an active-high enable signal. During
active detection (start+), a positive transition on the detector
output (act+) denotes that transitions are detected at the
monitored signal (sig). Resetting start withdraws the output
to “0” (act−). If no transition is detected (act−) for a long
time, the link is either idle or blocked. The pattern checker
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Fig. 12. State machine in the deadlock detector for faulty links and routers.

at the end of the link would check the ack sequence using
Observation 1 to determine whether the link is struck by a
permanent fault.

As Fig. 12 shows, the detection process is controlled by
a state machine in the deadlock detector which monitors an
ack signal at the output buffer (opoa). The state transition is
partially triggered by a timeout signal produced by a shared
synchronous counter in each router. The deadlock detector is,
therefore, a sync./async. hybrid circuit with potential metasta-
bility issues. Although it is considered safe to directly sample
the asynchronous signals because sampling happens only when
the link is assumed idle or blocked, synchronizers are added
to further reduce the risk of metastability (Fig. 10) [31]. The
state machine has four states: IDLE, START, ENQUIRY, and
CONFIRM. Excepting the return from ENQUIRY to IDLE,
all state transitions are triggered by timeout.

1) IDLE is the default state after reset.
2) In START state, the transition detector monitors the

transitions on the ack (opoa) of the output buffer. If no
transition is detected and the two contiguous ack signals
at the output match the deadlock pattern defined in
Observation 1 (opia != opoa), the state transits to
ENQUIRY; otherwise, it transits to IDLE as no deadlock
is detected.

3) In ENQUIRY state, the deadlock detector sends an
enquiry signal to the pattern checker in the input
buffer of the succeeding router. This checker samples
three asynchronous signals from the headmost pipeline
stage (Stg d). If the values of these signals match one of
the three deadlock scenarios described in Section V-A
and the transition detector still finds no transition
on opoa for a whole timeout period, the pattern
checker confirms the deadlock and the state transits to
CONFIRM; otherwise, the state transits to IDLE
immediately.

4) State CONFIRM triggers the network recovery pro-
cedure, which isolates the defective pipeline stages
between the transition detector and the pattern checker.
The state is stuck at CONFIRM for permanent faults.

Considering long lasting intermittent faults, a recovery
mechanism is required to resume the usage of the previously
blocked link when the fault disappears. A transition from
CONFIRM to IDLE is added (Fig. 12). The disappearance of
the intermittent fault will bring signal transitions on data, eop,

or ack wires, which further leads to the transition of the ack
signal at the output buffer (opoa) detected by the transition
detector. Consequently, when the next timeout arrives, the state
machine is reset so that the blocked link can be reused.

C. Detect Deadlock Caused by a Permanently Faulty Router

A fault may happen inside a router, making the data path
defective as well. The main component belonging to the data
path in the baseline router is a crossbar connecting inputs to
outputs. Similar to handling link faults, a pair of detection
circuits are added before and after the crossbar to monitor
activities of the input and output buffers. The deadlock detector
is put at the output buffer side as well containing a state
machine, which is very similar to the one for link faults except
for some conditions according to Section IV-C. However, to
detect a router data-path fault rather than a link one, the
deadlock detector at the output buffer needs to interrogate the
corresponding input buffer of the “same” router (the SA has
allocated the output buffer to this input and a path through
the crossbar has been built) in the ENQUIRY state about the
deadlock pattern, instead of enquiring the succeeding router
in detecting a link fault.

As Fig. 12 shows, in START, the deadlock detector checks
if two contiguous ack signals are the same. If no signal
transitions are detected and the two ack signals stay the
same (opia==opoa), the output buffer is downstream of the
fault. The state machine transits to ENQUIRY at the end
of the second timeout period to interrogate the input of
the same router to check if two contiguous ack signals are
complementary as a potential prefault stage. If no transitions
are detected and the two ack signals are different (ipia!=ipoa)
during the third timeout period, a permanent fault is confirmed
to be detected and the state machine transits to CONFIRM.
Note that a fault on the router logic will not exhibit if it is
not on any reserved routes. Only if the fault happens on a
path allocated for a packet (rt_ack+), will the fault exhibit
and affect the NoC. The fault deadlocks the reserved packet
path.

VI. RECOVERY FROM PERMANENTLY FAULTY LINKS

Section V provides means to detect a physical-layer
deadlock in a QDI NoC and locate the faulty stages on
links or intrarouter data-paths. As long as a permanent
(intermittent) fault on the network data path breaks the hand-
shake protocol and causes a physical-layer deadlock in the
QDI NoC, it can be detected using the proposed deadlock
detection technique. This section proposes a recovery scheme
to resume deadlocked NoCs from faulty links. Recovery
from router data-path faults usually requires adaptive routing
support from the routing layer, which is left as the future
work. The recovery from a faulty link contains two processes:
1) deadlock removal: release deadlocked but fault-free network
resources using a Drain&Release technique and 2) faulty link
isolation: by applying the SDM [9], [15], every link is divided
into parallel sublinks. The faulty sublink is disabled to prevent
it from causing further deadlock.
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Fig. 13. Modified input/output buffers for network recovery.

A. Deadlock Removal

A fault affects a NoC by halting an in-flight packet,
which in turn blocks all other packets awaiting the occupied
resources. This deadlock must be resolved to resume the
delivery of packets in waiting. A Drain&Release technique is
proposed to resume the network by dropping the halted packet
from the pipeline segments upstream and downstream to the
fault separately (the resulting packet loss can be managed
through retransmissions or other techniques in the upper data-
link or routing layer [32], which is out of the scope of this
paper).

1) Drain: Draining fault-free flits from the upstream seg-
ment at the output of the prefault router to resume the
deadlocked resources upstream of the fault.

2) Release: Producing a fake tail flit at the postfault router
input to resume the downstream deadlocked resources.

Fig. 13 shows the modified input/output buffers, where
the interrouter link is protected (the central shaded region).
The circuit for deadlock recovery is added at both ends of
the protected link. At the output buffer of the router, a new
stage Stg 0 is added, so that the extra circuit for recovery
can reuse its CD (discussed later) which saves circuit area
and avoids extending the critical path. Stg 0 is not mandatory,
and if added, it can be taken as a part of the router data-
path. At the input buffer of the router, the extra circuit is
carefully placed before Stg d+1 (considered in the router data-
path). Thus, the whole link (Stg 1 to d) is protected while
the intrarouter critical path (the paths across the crossbar) is
mostly unaffected.

1) Drain Operation: According to the four-phase protocol,
complete data symbols and spacers are alternately distributed
along the upstream pipeline. Thus, adding a sink at the start
of the faulty interrouter link (output buffer of the prefault
router) drops the blocked packet remaining in the upstream
pipeline. When the tail flit of the blocked packet is dropped,
all resources in the upstream network resume operation.

As Fig. 13 shows, the sink comprises a CD and a multi-
plexer. During recovery (permConf +), the sink is enabled by
driving the ack to Stg 0 with the added sink CD. The CD can
reuse the one belonging to the preceding pipeline stage (Stg 0).
The Drain operation should not affect the faulty status.
An AND gate is, therefore, added on the data path to block
transitions when draining.

2) Release Operation: According to Section V-A, a router
input may be deadlocked at either Setup, Transmis-
sion, or Release. Correspondingly, the BC of an input
buffer [Fig. 14(a)] would be stuck before transition
rt_ack+, eop+, or eop−, as shown in the signal transition

Fig. 14. BC at the input buffer of a router. (a) Circuit. (b) STG.

Fig. 15. Tail generator added to the BC. (a) Tail generator. (b) Asymmetric
C-element.

graph (STG) [3] shown in Fig. 14(b) [9]. Using extra circuits
to bridge the halted transition in the STG, BC generates a
fake tail flit, which then releases reserved network resources
downstream of the fault.

The transmission of a packet starts with the Setup state.
Initially, a head flit is blocked in the input buffer. According to
its destination address, RC generates a routing request to SA.
When the requested output port is available, SA grants a path
to the requesting RC (rt_ack+). Then, RC latches/disables
the address sampling (rt_en-) and allows the head flit, along
with all following flits, to traverse the crossbar, which starts
the Transmission state. When a tail flit is received (eop+)
and delivered to the output buffer (cia+), a whole packet
is transmitted and the Release state begins to release the
reserved path. BC starts the release process by blocking the
input buffer (acken+) in preparation for the next packet.
Consequently, the front pipeline stage of the input buffer is
reset (eop− and cia−), which then triggers the reset of RC
(rt_rst+) to withdraw the routing request to SA. SA, therefore,
releases the reserved path in the crossbar (rt_ack−). Finally,
BC reactivates RC (rt_rst− and rt_en+) for the address
decoding of the next packet. Router enters Setup again.

1) If a permanent fault strikes the interrouter link and
causes the router to be stuck in the Setup state, no rout-
ing request is generated. Since SA has not allocated a
path, no downstream resource is deadlocked. No further
operation is thus required.

2) Alternatively, if the router is stuck at Transmis-
sion or Release, a path is allocated and all downstream
routers are deadlocked. A fake tail is then generated by
a local tail generator to release all downstream routers.

Fig. 15 shows the tail generator added to the BC, where
an asymmetric C-element with a plus input is used (the plus
input “a” affects only the set operation) [3]. When a fault-
caused deadlock is detected (permConf +), the tail generator



3160 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2017

Fig. 16. SDM router structure [9].

produces a tail flag (eopErr), replacing the original eop wire
connected to the front of the input buffer. This replacement
is safe, since the pipeline has been confirmed deadlocked.
The cia acknowledges that the fake tail flit is accepted by the
output. Then, acken goes high to finish the tail transmission
and release the reserved path.

1) If the input is deadlocked at Transmission (acken-), no tail
flit has yet arrived at the Stg d+1 in Fig. 13. A fake tail flit
needs to be produced. The added AND gate at the input of the
router (Fig. 13) enforces a low ack (cia−). Thus, this allows
the tail generator to produce a high eopErr, which is equivalent
to the eop+ transition in the STG [Fig. 14(b)]. A fake tail flit
is thus generated. This tail flit is withdrawn (eopErr−) when
it is accepted by the output (cia+ and acken+).

2) Otherwise if the input is deadlocked at Release, BC gets
stuck at acken+ [Fig. 14(b)] constantly waiting for the with-
drawal of the tail flit (eop-). The cia is also kept high,
constantly waiting for the withdrawal of the tail flit. When the
permanent fault is confirmed (permConf +), the tail generator
outputs a low eopErr (a fake withdrawal of the tail flit).
Consequently, all downstream routers are sequentially
released.

For all cases, after the Release operation, the input buffer
is eventually halted at the Setup state and keeps waiting for
a new head flit, which will never come for a permanent fault
case. All the other fault-free routers and links downstream of
the faulty link are released and resumed available. The fault-
caused physical-layer deadlock is eliminated.

B. Faulty Link Isolation

For a system with permanent faults, the usual recovery
method is to block the defective component and use redun-
dancy to compensate for its function. When it comes to NoCs,
fault-tolerant adaptive routings [24], [33] could be used to
bypass the defective link. This research uses spatial division
multiplexing (SDM) [9], [15] to implement recovery, which
does not rely on adaptive routing but is compatible with it.

Employing SDM to a generic DW bits wormhole NoC
(Fig. 16), the link between two SDM routers can be
divided into SN sublinks, each of which is DW /SN bits
wide. The crossbar of a P-port SDM router becomes
P·SN×P·SN×(DW /SN) bits wide. An SDM link with SN
sublinks transfers SN packets in parallel, but each requires
a longer latency to reach its destination due to the narrowed
bandwidth. SDM has been used to improve the network overall
performance as it was proved that SDM NoCs have advantages
in energy consumption, area overhead, and flexibility [9], [15].

Since a link is physically divided into multiple sublinks,
a fault affects only one sublink, while leaves other sublinks
in the same link untouched. This inherent redundancy sup-
ports gradual performance degradation from permanent faults.
By reconfiguring the SA [9], [34] to block the defective
sublink and direct packets to the remaining fault-free sublinks,
a fault link retains its function with a reduced aggregated
bandwidth.

As Fig. 16 shows, the availability of each output sublink is
indicated by a high ready while ready− denotes that the sub-
link has been allocated. Thus, a faulty sublink can be isolated
by locking its ready signal to low. To achieve this, the inverter
generating ready is replaced with an asymmetric C-element
whose enquiry pin is controlled by the deadlock detector.
This enquiry signal is driven to high during ENQUIRY and
CONFIRM states (Figs. 10 and 12). Since a fault-caused dead-
lock is confirmed only when the sublink is allocated, ready
becomes low before CONFIRM. The high enquiry, therefore,
prohibits ready to return high during CONFIRM, consequently
avoiding any new packet from being allocated to the sublink
even after the deadlocked resources are drained (busy-). For
a permanent fault, the state is stuck at CONFIRM so that the
faulty sublink is safely isolated.

VII. TECHNICAL ISSUES

In a QDI NoC, a fault can cause a physical-layer deadlock,
which not only blocks the packet that utilizes the faulty link
but also stalls all packets that wait the resources occupied
by the deadlocked packet. Such stall can spread out the
whole network very quickly with heavy traffic, which leads
to significant performance drop. This is much more harmful
than merely causing data errors and packet loss. It is crucial
to detect this type of deadlock and try to recover from it.

To detect faults, deadlock detection circuits and two extra
wires (start and enquiry, Fig. 10) are added to network data
path. To implement the recovery, the deadlock confirmation
signal (permConf ) generated at the output buffer needs to
be transmitted to the input buffer of the postfault router,
leading to three redundant wires added for each sublink.
These circuits are not protected. The occurrence of permanent
faults is strongly related to the activity on individual circuit
segments [26], [35]. Since the extra circuits added for fault
tolerance operate at a far lower frequency than the data
interconnects, they are less prone to permanent faults.

The deadlock detection circuit needs a clock (Tclk) to drive
its state machine. There is no requirement on its skew, jitter,
and frequency but a slow clock is usually preferred for small
detection energy. Designers can use any clock sources, such
as the clock of the local PE or a slow global clock, to keep
the minimal impact on the global clock tree. The timeout
period (Tt ) decides the detection delay (Tdet ). It takes two to
four timeout periods to confirm fault-caused deadlock (2Tt ≤
Tdet ≤ 4Tt ). The lower bound is achieved when the deadlock
forms just before the state machine transits to START. The
upper bound is reached when the deadlock occurs before
IDLE. Considering the timeout period, the following hold.

1) If only a permanent fault or only deadlock detection is
considered, the timeout should be longer than the clock
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period (Tt > Tclk) and the latency of transmitting one flit
through one pipeline stage (usually several nanoseconds,
to allow a stable sample from transition detectors).

2) If the network recovery is implemented and intermittent
faults are considered, the timeout period should be
longer than the transmission latency for the longest
packet (defined by higher layers) traveling through a
single router to ensure that all recovery operations are
finished in one timeout period. Thus, the permanent fault
will not be mistaken into an intermittent one (resetting
the state machine to IDLE directly) during the recovery
process where signal transitions happen. The deadlock
detector can safely transit to the initial state after the
recovery.

This paper divides the data path into link and router pieces
to implement the deadlock detection (Fig. 10). Stage d at
the input buffer of the router is the boundary of the two
protected pieces, where two adjacent ack signals are sampled
to support deadlock detection. Currently, this boundary is not
fully protected. Its protection can be implemented through
overlapping the link and router pieces, or sampling more
ack signals next to the boundary, so as to provide a full
protection of the data path. In addition, this paper presents
the recovery from deadlock caused by a permanently faulty
link. Faulty routers are detected but recovering from deadlock
caused by a faulty router is difficult. One potential solution
is to carefully isolate the faulty router and then use adaptive
routings to detour traffic from it. These are left as future work.
Nevertheless, this is the first QDI NoC that tolerates permanent
faulty links to our best knowledge.

VIII. AREA, ENERGY, AND SPEED EVALUATION

A SystemC/Verilog mixed environment was used to evaluate
the performance of a 4×4 2-D-mesh network. Asynchronous
cells, such as C-elements and Mutex Elements [3], were
built using standard cells. All routers were implemented in
gate-level Verilog and synthesized using the UMC 130-nm
standard cell library. PEs, network interfaces (NIs), and
the interconnection between routers were implemented in
SystemC. The network was injected with random uniform
traffic. Each packet is 64 B long and divided into flits matching
the width of links (or sublinks for SDM). PEs and the
network are connected by NIs, which convert packets into flits
complying with the four-phase 1-of-4 handshake protocol and
reassemble received flits into packets.

Four levels of protection have been evaluated, including
unprotected, protected links with fault detection, protected
data path with fault detection, and protected links with fault
recovery. Table I reveals the performance of the SDM router
and the whole NoC under various levels of protection. The
overhead of adding protection on the baseline of unprotected
design is noted in parentheses. Each link is DW bits wide and
divided into SN sublinks.

The area overhead is small. Detecting faulty interrouter
links in 32-bit SDM routers (DW = 32 and SN = 2)
incurs an area increase of 2%. Adding fault detection for the
intrarouter data path as well would increase the area by 4.8%.

TABLE I

COMPARISON OF NoCs With Incremental Fault Tolerance

TABLE II

AREA OF MAIN COMPONENTS IN PROTECTED SDM ROUTERS

Fig. 17. Throughput and latency of 32-bit NoCs with different injection
loads. (a) Average network latency. (b) Network throughput.

Alternatively supporting recovery from faulty links needs
4.1% extra area. Applying similar protection to 64-bit SDM
routers (DW = 64 and SN=2) leads to area overhead of 1.6%,
4.9%, and 4.8%, respectively, for the three different levels.
Table II gives an overview of the area of main components in
two classes of protected SDM routers (DW = 32 and SN = 2).
The SA is the main control logic, while the input/output
buffers and crossbars belong to the data path. Therefore, it can
be generally estimated that: 1) for the SDM router with fault
detection on the whole data path, about 90% of the router is
protected by the detection circuit and 2) for the router with
fault detection and recovery on links, about 60% of the logic
is protected.

The protection circuit has marginal impact on the speed
performance. Fig. 17 reveals the average packet transmission
latency and the network throughput of 32-bit SDM NoCs
injected with gradually increased load. When the network is
lightly loaded, there is little congestion so that the packet
transmission latency remains low and the network throughput
is proportional to the injection rate. As the injection rate
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Fig. 18. Extra power consumption with various timeout and clock
frequencies. (a) Timeout. (b) Clock.

increases, the network becomes congested. Although the net-
work throughput remains roughly proportional to the injection
rate until the network is saturated, the packet transmission
latency rises dramatically long before saturation. According
to the figures in Table I, adding fault protection to the
32-bit NoCs prolongs the minimal packet transmission
latency (latency in an unloaded network) by no more than
4.5% and reduces the throughput by less than 3.6%. The same
for 64-bit NoCs are 2.5% for latency and 2.4% for throughput,
which are even less noticeable.

The energy performance is evaluated in networks that are
near saturated. The results are presented in the form of energy
per transmitting 1 bit of data through a single router. For
the protected network, the deadlock detection circuit uses a
100-MHz clock to form a 1-µs timeout period (1 MHz).
For the 32-bit SDM routers (DW = 32 and SN = 2),
detecting faulty links consumes 0.7% more energy than
the baseline case. It increases to 1.8% if faulty intrarouter
paths are also detected. Adding recovery from faulty links
incurs 1.3% extra energy. As for the 64-bit SDM routers
(DW = 64 and SN = 4), the similar energy overhead increases
to 1.7%, 1.8%, and 2.2%, respectively, for the cases of
detecting faulty links, detecting data path, and recovering from
faulty links. Nonetheless, the energy overhead of supporting
fault protection remains marginal.

The power consumed by the synchronous deadlock detec-
tion circuit (the timeout counter and the state machine) has
been estimated in a saturated 32-bit NoC. Fig. 18(a) shows the
power of the synchronous circuit driven by a fixed 100-MHz
clock with increasing timeout frequencies, while Fig. 18(b)
reveals the power of different clock frequencies with a fixed
timeout frequency of 1 MHz. The power of the synchronous
circuit is generally linear with both the timeout and the clock
frequency. A slow clock with a long timeout period should
be used for low power consumption, which also reduces the
transitions on the protection circuit.

IX. FAULT TOLERANCE EVALUATION AND COMPARISON

Random 1-bit faults are injected to random locations on
the data path of QDI NoCs, including links, buffers, and
crossbars, to evaluate the fault-tolerance capability. Test results
show that all the faults occurring on the protected region of
NoC data path and causing physical-layer deadlock have been
detected and precisely located. It is also shown that network
function successfully recovers from faulty links using the fault

Fig. 19. Throughput of SDM NoCs with a stuck-at-1 fault. (a) 32-bit SDM
NoC (SN = 2). (b) 64-bit SDM NoC (SN = 4).

Fig. 20. Throughput of SDM NoCs with multiple faults injected. (a) 5 ms.
(b) 1 ms.

recovery design and an isolated link can be reused if the fault
is intermittent.

The dynamic deadlock detection and recovery process are
shown in Fig. 19. The clock frequency is set to 100 MHz.
Faults are injected to a saturated network, where they exert
the maximum damage. To differentiate the detection and
recovery process, the timeout period is set “long enough”
(10 µs), which is far longer than the packet latency through a
router (less than 70 ns). A fault is inserted to the West input
link to router (3,3) at 30 µs, leading to a steep decrease of the
network throughput. For an unprotected network, it eventually
fails to work as the deadlock spreads. As for the protected
network [an SDM NoC using two 16-bit sublinks, SN = 2
in Fig. 19(a)], initially the throughput drops sharply to
550 MB/Node/s at around 44 µs but starts to recover after
the deadlock is detected at around 50 µs. After the recovery
process, the throughput bounces back to 650 MB/Node/s,
which is only 7.2% less than the prefault throughput
of 694 MB/Node/s. Fig. 19(b) shows the same fault on a 64-bit
NoC. The network throughput drops from 1480 MB/Node/s to
1,320 MB/Node/s rapidly and then returns to 1,410 MB/Node/s
after the network is recovered. This clearly demonstrates the
effectiveness of the proposed techniques.

The fault recovery design can tolerate multiple faults until
all sublinks of a link are isolated. A protected 32-bit SDM
NoC (SN=2) is injected with a random fault every 50 µs.
The clock and timeout frequencies are set to 100 and 0.2 MHz,
respectively. Fig. 20(a) shows the network throughput drops
to around zero after the first 20 faults. Zooming in to the
first 1 ms, Fig. 20(b) shows the gradually decreasing through-
put. Although it still hangs around 500 MB/Node/s after eight
faults, it drops quickly when more faults are injected due to
the loss of link connections.
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Fig. 21. Throughputs of 32-bit NoCs with an increasing number of faults.
(a) 4 × 4 mesh. (b) 8 × 8 mesh.

Fig. 21 compares the throughputs of unprotected wormhole
NoCs, unprotected SDM NoCs (SN = 2), and protected SDM
NoCs (SN = 2, with fault detection and recovery on links).
The throughput results are averaged from 50 independent runs
of injecting a fixed number of faults to random interrouter
links. It can be found that, in both the 4 × 4 and 8 × 8
mesh networks, the throughput of unprotected wormhole NoCs
drops dramatically when one fault occurs. When two faults
are inserted, the final throughput is close to (or equal) zero.
Fault-free SDM networks present around 50% throughput
improvement against wormhole. SDM NoCs are also robust,
because each link has multiple independent sublinks and a
single fault can break only one of them. The network remains
working reasonably well with a small number of faults. How-
ever, as the number of faults increases, the resulting physical-
layer deadlocks reserve more network resources and spread.
The network throughput drops significantly and the network is
paralyzed. The unprotected SDM NoCs show an approximate
linear throughput drop with the number of faults. Using the
proposed fault detection and recovery techniques to protect
the interrouter links, the deadlocked network resource caused
by a permanent fault is limited to one unidirectional link,
avoiding the spread of the deadlock. As a result, the protected
SDM NoC shows strong tolerance to permanent link faults.
When there is only one fault, the protected SDM NoCs
achieve 13.2% (4 × 4) or 4.2% (8 × 8) higher throughput
than unprotected NoCs. When the number of faults increases
to 8, the throughput of the protected SDM NoCs is ∼400%
(4 × 4) and ∼50% (8 × 8) higher than unprotected ones.
Comparing with fault-free networks, throughput degrades 45%
(4 × 4) or 28.7% (8 × 8) for the protected SDM NoCs and
89.2% (4 × 4) or 54.4% (8 × 8) for the unprotected SDM
NoCs, while the wormhole NoCs are dead. The proposed
fault detection and recovery techniques improve fault tolerance
significantly.

X. COMPARISON WITH RELATED WORK

Existing research on permanent faults is mostly on syn-
chronous circuits and NoCs [32]. There is rarely any research
on managing permanent faults in QDI NoCs. The man-
agement of permanent faults on synchronous NoCs usually
relies on transient-fault-tolerant techniques, using accumulated
error syndromes to determine fault types. Similar to con-
ventional transient-fault-tolerant techniques for synchronous

circuits, the protection of asynchronous circuits from tran-
sient faults can be achieved by using information redun-
dancy [12], [36]–[41], physical redundancy [25], [42]–[46],
or temporal redundancy techniques [47], [48]. Although these
techniques seem promising, they are not able to easily identify
the fault location, making them difficult to be adopted for
protecting QDI links or QDI NoCs. More seriously, most exist-
ing transient-fault-tolerant techniques cannot avoid or recover
from the physical-layer deadlock caused by permanent faults
in QDI NoCs, as described in Section II-B.

Many existing asynchronous NoCs use bundled-data routers
connected by QDI links, such as four-phase bundled-data
routers with four-phase 1-of-n links [4], [49] or four-phase
bundled-data routers with two-phase 1-of-n links [50]. These
NoCs are not fully QDI, because QDI links are isolated by
bundled-data routers. Only the NoCs using both QDI routers
and QDI links [9], [51]–[53] are fully QDI NoCs, which
tolerate delay variations on both routers and links. This paper
aims to provide fault tolerance to the fully QDI NoCs.

Most of existing QDI NoCs have no or very limited fault-
tolerant capabilities. The ANoC [53] uses a design-for-test
design to detect off-line stuck-at faults, which is unsuitable for
tolerating on-line faults. No recovery mechanism is proposed.
The transient-fault-tolerance of interchip communication was
studied on the SpiNNaker system [30], [54]. A transient-fault-
tolerant phase converter (between two-phase and four-phase)
at the chip interface was designed to reduce transient-fault-
caused deadlocks. However, the design cannot be used to
protect four-phase 1-of-n QDI NoCs from permanent faults.
An SDM router [9] is able to drop packets at the input buffer
when the decoded routing request signal is detected invalid.
The provided fault tolerance is very limited.

Some study has been done for fault-caused deadlock in
asynchronous circuits [25], [53], [55]–[57] but not in the
context of NoCs. Different from this research, Peng [58]
proposed to add appropriate redundant logic at transistor level
to force asynchronous circuits to deadlock in the presence of
faults. Using a timeout mechanism to detect the deadlock and
trigger the reconfiguration of the faulty module, the faulty
circuit function can be resumed. A timeout mechanism using
delay lines has been proposed to detect faults on the level-
encoded 2-phase dual-rail [59] encoded QDI links of a self-
timed NoC [33], [60], whose routers, however, are bundled-
data designs. Since self-timed pipelines are used inside the
router and they do not latch incomplete data, the fault-caused
partial data (which leads to large skew) are isolated in the QDI
interrouter link, making the fault locating possible. In a pure
QDI NoC studied in this paper, this partial data will propagate
to all downstream stages as long as they are ready (Section III),
which will cause multiple deadlocks reported along the dead-
locked packet path if their technique is used, failing to locate
the fault position. Their technique is incompatible with fully
QDI NoCs. In terms of recovery, conventional techniques,
including spare wires replacement [37], splitting transmis-
sion [61], and fault-tolerant routings [24], [33], have been
used to recover the network from permanent faults. Without
relying on these techniques, this paper proposes techniques to
remove the fault-caused deadlock and makes use of SDM to
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recover the network function, which can be used along with
those conventional techniques to implement network recovery
at different layers.

In addition, timeout-based methods have been used to
detect the network-layer deadlock [29]. Theoretically, they
generally detect any deadlocks caused by cyclic depen-
dence or faults. However, the deadlock detection technique
proposed in this paper not only detects the deadlock, more
importantly, it locates the faulty pipeline stages, allowing for
accurate isolation and network recovery. Resolving network-
layer deadlocks is out of the scope of this paper.

Our previous work has explored the impact of permanent
faults on link wires and implemented the online detection of
deadlock due to permanently faulty links [27], [62]. Recovery
of the network function has also been studied [62]. As an
extension, this paper details the fault model considering a
complete generic asynchronous pipeline (including latches and
completion detectors). All possible deadlock scenarios due to
different faults on the pipelined interrouter links and router
data paths are discussed. A general fault detection strategy is
proposed. Compared with previous work, this paper originally
explores the detection of permanent faults on router logic,
so that permanent faults occurring on data paths of NoCs can
be detected. Detailed experiments are implemented to evaluate
both the performance and the fault-tolerance capability of QDI
NoCs using different protection strategies.

To the best of our knowledge, this is the first research
providing a thorough analysis on the impact of permanent
faults exerting on the data paths of QDI NoCs and a solution
to accurately locate the faulty pipeline stages. This paper has
also partially resolved the issue by recovering faulty NoCs
from faulty link paths, which provides a promising foundation
for future fully fault-tolerant QDI NoCs.

XI. CONCLUSION

Caused by the aging process, a permanent fault striking
on a QDI circuit can break the handshake protocol and then
trigger a physical-layer deadlock. This deadlock is different
from network-layer ones provoked by cyclically dependent
packets. Conventional deadlock management techniques
are incapable of correctly detecting and resolving these
fault-caused deadlocks. This paper studied the impact of
faults on QDI NoC data paths. A new detection technique can
precisely locate the faulty link and router logic on the data
path triggering the deadlock. Utilizing SDM, a fine-grained
recovery strategy was proposed to resume a deadlocked
network from a permanent fault. In the recovery process,
faulty links are precisely isolated to achieve a graceful
performance degradation with ∼60% of the logic being
protected. Detailed experimental results are given.
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