Microprocessors and Microsystems 38 (2014) 826-842

Contents lists available at ScienceDirect

EMBEDDED
HARDWARE
DESIGN

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Protecting QDI interconnects from transient faults using
delay-insensitive redundant check codes

@ CrossMark

Guangda Zhang **, Wei Song*?, Jim Garside ?, Javier Navaridas ¢, Zhiying Wang "

2School of Computer Science, University of Manchester, Manchester M13 9PL, UK
b School of Computer, National University of Defense Technology, Changsha 410073, China

ARTICLE INFO ABSTRACT

Article history:
Available online 18 April 2014

Asynchronous circuit design is a promising technology for large-scale multi-core systems. As a family of
asynchronous circuits, Quasi-delay-insensitive (QDI) circuits have been widely used to build chip-level
long interconnects due to their tolerance to delay variations. However, QDI interconnects are vulnerable
to faults. Traditional fault-tolerant techniques for synchronous circuits cannot be easily used to protect
QDI interconnects. This paper focuses on protecting QDI interconnects from transient faults. The first con-
tribution of this paper is a fault-tolerant delay-insensitive redundant check code named DIRC. Using DIRC
in 4-phase 1-of-n QDI pipelines, all 1-bit and some multi-bit transient faults are tolerated. The DIRC and
basic pipeline stages are mutually exchangeable. Arbitrary basic stages can be replaced by DIRC ones to
strengthen fault-tolerance. This feature permits designers to use DIRC flexibly according to the practical
design requirement. The second contribution is a redundant technique protecting the acknowledge wires
(RPA). Experimental results indicate that DIRC pipelines have moderate area and speed overheads. Com-
pared with unprotected basic pipelines, the average speed decrease of DIRC pipelines is less than 50%,
with the 128-bit 1-of-2 DIRC pipeline only 28% slower. In severe environments with multi-bit transient

Keywords:

Asynchronous circuits
Quasi-delay-insensitive (QDI) interconnects
Fault tolerance

Transient fault

1-of-n

Error-correcting code

faults, the fault-tolerance capability of DIRC pipelines increases thousands-fold.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

The advancing semiconductor manufacturing technology con-
tinuously increases the number of transistors and wires integrated
in a single chip, bringing a multi-core or many-core era. However,
the reduced transistor dimensions, the increase of clock frequency
and the decrease of critical charge intensify the frailty of electronic
devices to environmental variations, which consequently acceler-
ates the occurrence of transient faults [1,2]. The vulnerability of
circuits to faults is aggravated [2]. For these reasons, fault-toler-
ance becomes an essential design objective for critical digital sys-
tems, especially those in highly specialized fields such as
aerospace, military and medical equipment.

Coming along with the multi-core era, it is increasingly difficult
to distribute a high-speed clock signal over a very-large-scale inte-
gration circuit with acceptable clock skews, which is a challenge
for traditional synchronous designs. Asynchronous circuits provide
a fundamental solution to problems caused by clocks [3] due to
their clockless nature. They also present potential advantages in

* Corresponding author.
E-mail addresses: zhangga@cs.man.ac.uk, zhanggd.nudt@gmail.com (G. Zhang).

http://dx.doi.org/10.1016/j.micpro.2014.04.002
0141-9331/© 2014 The Authors. Published by Elsevier B.V.

power consumption, modularity, composability and robustness,
which has attracted many researches in recent years [3,4].

Networks-on-chip (NoCs) [5] are the state-of-the-art infrastruc-
tures for scalable and efficient on-chip communications [4]. Imple-
menting a NoC using asynchronous circuit has the potential of
simplifying timing closure, reducing power and resolving chip-
level synchronization issues. Consequently, asynchronous NoCs
are thought to be better candidates than their synchronous coun-
terparts for current and future multi-core systems [4,6-8].

As an important issue in the design of asynchronous NoCs, the
large number of long wires, which are exposed to environmental
noises and faults, may lead to delay variations and glitches [9].
Quasi-delay-insensitive (QDI) circuits [3] are a family of asynchro-
nous circuits that tolerate all delay variations but they are vulner-
able to glitches. Occasionally, an erroneous transition may be
accepted as a valid signal, producing a fault in QDI circuits.

This paper proposes a new coding scheme that significantly
improves the tolerance of 4-phase 1-of-n QDI interconnects to
transient faults, namely the delay-insensitive redundant check
(DIRC) code [10]. The DIRC coding scheme tolerates all 1-bit tran-
sient faults and some multi-bit transient faults. Furthermore, it can
be easily adopted in all existing 1-of-n QDI pipelines to provide

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2014.04.002&domain=pdf
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.micpro.2014.04.002
http://creativecommons.org/licenses/by/3.0/
mailto:zhangga@cs.man.ac.uk
mailto:zhanggd.nudt@gmail.com
http://dx.doi.org/10.1016/j.micpro.2014.04.002
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro

G. Zhang et al./ Microprocessors and Microsystems 38 (2014) 826-842 827

fault-tolerance. Since the DIRC code is systematic, it allows the
DIRC stages to be placed arbitrarily in an unprotected QDI pipeline,
thus some certain pipeline segments can be protected. According
to the practical fault-tolerance requirement, the DIRC pipeline
using different construction patterns can provide enough fault-tol-
erance for the communication infrastructure with a moderate and
reasonable hardware overhead, making DIRC especially attractive
to large-scale communication-centered fabrics such as NoCs and
buses.

Another fault-tolerant technique, RPA (redundant protection of
acknowledge wires), is proposed to protect the acknowledge wires
from 1-bit transient faults. It has extremely low area overhead and
can be used independently of DIRC.

The QDI pipeline using DIRC and RPA provides both timing-
robustness and fault-tolerance. A 128-bit DIRC 1-of-2 pipeline is
only 28% slower than an unprotected basic pipeline, while the
fault-tolerance capability increases thousands-fold.

This paper is organized as follows: Section 2 introduces some
necessary background of asynchronous circuits and the impact of
transient faults on QDI interconnects. Section 3 presents related
works. Section 4 describes the DIRC coding scheme and Section 5
demonstrates the hardware implementation of the DIRC pipeline.
Section 6 evaluates the hardware overhead of DIRC pipelines and
studies different DIRC construction patterns. Section 7 reveals
detailed experimental results of DIRC pipelines. Finally this paper
is concluded in Section 8.

2. QDI pipelines and the impact of transient faults
2.1. Asynchronous protocols and 4-phase QDI pipelines

Asynchronous communication is controlled by handshake pro-
tocols, including 4-phase and 2-phase ones [3]. 4-phase protocols
are level-triggered protocols which require a reset (or return-to-
zero) phase (Fig. 1a). 2-phase protocols are edge-triggered where
each transition of the acknowledge signal starts a new data trans-
mission (Fig. 1b). In a 4-phase pipeline, valid data are separated by
spacers while in a 2-phase pipeline, data symbols are transmitted
consecutively. In general, 4-phase protocols are more widely used
than 2-phase ones for their implementation simplicity.

QDI circuits assume that both the delays of gates and wires are
arbitrary, positive and bounded. No delay assumption other than
the isochronic-forks [3] is used. As a result, QDI circuits are robust

1st handshake 2nd handshake

1 1
phase i set | reset i set |
ack A A
(a) 4-phase

, 1st handshake , 2nd handshake,
phase! ' '
1

set | set i set

data < \\; Data >< \\\ Data >< \I/Data

S~ / ~

ack N
(b) 2-phase

Fig. 1. Handshake protocols.

to delay variations. For these requirements, QDI circuits use delay-
insensitive (DI) codes (or unordered codes [11-13]) to encode data,
whose arrival can be detected using a completion detector (CD).
The 1-of-n code is one of the most utilized DI codes due to its sim-
plicity [4,6-8]. As the two extensively used 1-of-n codes, 1-of-2
and 1-of-4 codes are presented in Fig. 2. This paper focuses on
improving the fault-tolerance of 4-phase QDI interconnects using
1-of-n codes.

Fig. 3 shows an unprotected 4-phase 1-of-n QDI pipeline, which
contains S parallel sub-pipelines. Each sub-pipeline contains n data
wires transmitting one 1-of-n code. To latch incoming data, each
pipeline stage is divided into S slices, each of which contains n C-
elements acting as asynchronous latches. Acting as a sub-CD, an
OR-gate notifies the arrival of a 1-of-n code. To synchronize the
data transmission of all sub-pipelines, the CDs of all slices are con-
nected to a multi-input C-element producing a common acknowl-
edge signal (ack), whose positive transition denotes a full data
word is latched. The inverse of this common acknowledge signal
(iack) is then used to drive the previous stage. The OR-gates and
the multi-input C-element are usually regarded as the CD of a pipe-
line stage. On long interconnects, buffers are often inserted to
increase signal strength.

2.2. Impact of transient faults on QDI pipelines

Transient faults, including positive (‘0’ — ‘1’ — ‘0’) and negative
(‘1" > ‘0’ - ‘1’) ones, can be provoked by noise [14], electromag-
netic interference, electrostatic discharge [2] or radiation [15]. A
transient fault usually lasts for a short period and causes an error
when it is captured by a memory component (such as a C-ele-
ment). The typical phenomenon of a transient fault is a bit-flip, also
known as a glitch.

This paper concentrates on protecting the long wires between
two pipeline stages from 1-bit transient faults (Fig. 3). Multi-bit
faults rarely occur although they result in more severe damage
than 1-bit faults.

In the presence of transient faults, QDI pipelines behave differ-
ently from synchronous ones due to their clockless nature. A fun-
damental difference between QDI and synchronous circuits is the
timing reference of data words. In synchronous circuits, the clock
signal acts as a timing reference controlling the data transmission.
Each bit of a data word typically has a constant latency require-
ment which can be agreed between the transmitter and the recei-
ver. Faults are therefore only able to corrupt the value of some data
words. QDI circuits have no such timing reference. Data-validity is
implicitly encoded within the data word, which controls its own
transmission. As a result, the corrupted data words caused by
faults can disorder the data transmission. In other words, faults
on QDI pipelines may produce fake data-validity or remove the
correct data-validity, resulting in erroneous data insertions or data
removals. Conventional fault-tolerant techniques used in synchro-
nous circuits cannot be easily adopted in QDI pipelines.

A fault model is built to analyse the impact of 1-bit transient
fault. Fig. 4 shows two adjacent pipeline slices. The fault may occur
on any of the n data wires. To identify the position of a fault, the

1-of-4 codes Binary

1-of-2 codes Binary 0000 Spacer
00 Spacer 0001 00
01 0 0010 01
10 1 0100 10
1000 11

(a) 1-of-2codes
(b) 1-of-4codes

Fig. 2. 1-of-n codes.

828 G. Zhang et al./ Microprocessors and Microsystems 38 (2014) 826-842
Stage;.1 fault Stage; Stagei+
data_ingo / ____________
HO 1+ >>HE) / (- o
data_ing .1 : e }_ ; Slice ata_oulo
—110,) H 0
O e DO S
data_in latch t]‘“ sub-CD i Qj data_out
------------ / S /
data_iny i E i E i data_outy
Sliceq + Slice, « Sliceq
SR SR SR
data_inss I | / A / T data_outs+
Slices.q « Slices. « Slices
: a . o . >
iacki [hassasasasas Sy iackiq] "mmmmmmmmonc == jackjp [tmmmmmmmn o Sy
ATTYTATTE AT
acki //
| | ackM

ack;

Fig. 3. A 4-phase 1-of-n QDI asynchronous pipeline.

Stageis—ictim wire _jfaut ~Stage,
— C Sl O "data_outy
o 10—
: data_in sata in : data_out
_INn-1 . !
@ >{> —LJI_C\ da}g’_ outy
v iackf D
“acki4 o
= ack = acki+

Fig. 4. Fault happens on a sub-pipeline for one 1-of-n code.

wire that should carry the correct ‘1’ is defined as the “active” wire
while the others are “inactive” wires (Fig. 5). The wire affected by a
fault is denoted as the “victim” wire (Fig. 4).

Not every transient fault causes an error. Some transient faults
are masked automatically during their propagation by intrinsic
masking factors of the circuit [15]. For the asynchronous latch built
from C-elements (Fig. 6), when iack is low, positive faults at the
input are masked. When iack is high, negative faults are masked.
However, if the transition of a fault is the same as the level of iack,
the fault may be latched, resulting in a transient error. The key
issue of fault-tolerant QDI pipelines is to prevent faults from being
incorrectly latched. To analyse all the fault occasions of a sub-pipe-
line stage, the proposed fault model divides one handshake period
into two intervals (iack+ and iack—).

2.2.1. Fault with a positive iack

When iack is high, the pipeline is susceptible to positive faults.
Both active and inactive wires can be the victim, leading to an inva-
lid 1-of-n code insertion or 2-of-n code insertion.

1. Invalid 1-of-n code insertion: A positive fault on an inactive
wire may be latched and outputted before the arrival of the
next valid code, producing an invalid 1-of-n code insertion
and an early drop of iack. As shown in Fig. 7a, if the valid
code comes so late that a full reset phase of the invalid code

a handshake period
1 set 1 reset '

data_ino_/—\— active wire

data_in,.1 } inactive wires

ack / \

Fig. 5. Active and inactive wires.

in / out="0" in / out="1"
iack="0" iack="1"

(a) Masked positive fault (b) Masked negative fault

Fig. 6. Faults masked by C-elements.

has finished, the invalid code is inserted into the code
sequence. Otherwise, if the valid code overlaps with the
reset phase (iack—) caused by the invalid code (Fig. 7b), it
may be erased as the previous stage is mistakenly reset
by the wrong iack.

A positive fault on the active wire may also lead to cases of
Fig. 7a and b when the fault makes iack go low earlier than
the arrival of the valid data. The difference is the inserted 1-
of-n code by the fault is valid. Therefore, the situation of
Fig. 7b will not make errors while the situation of Fig. 7a
will output one valid code twice, which can be taken as
an invalid spacer insertion.

Invalid 2-of-n code insertion: As shown in Fig. 7c, a positive
fault on one of the inactive wires is latched and outputted,
causing an overlap period between the invalid ‘1’ (fault)
and the valid ‘1’ (original), resulting in an invalid 2-of-n
code at the output.

2.2.2. Fault with a negative iack
When iack is low, all positive faults are masked and the pipeline
is only vulnerable to negative faults happening on the active wire.

1. Early spacer (not errors): A negative fault happening on the
active wire may cause an early spacer (Fig. 8a), which is tol-
erated by QDI pipelines.

Invalid 1-of-n code insertion: A negative fault may lead to a
premature reset phase. If iack already goes high when the
transient fault elapses, as shown in Fig. 8b, the original
valid code will be outputted twice, leading to an invalid
code insertion.

2.2.3. Deadlocks caused by transient faults

Invalid code insertions may cause deadlocks when considering
a full pipeline with multiple sub-pipelines. As an example, Fig. 9a
depicts the correct operation of two adjacent pipeline stages
(Stage;_; and Stage;), each of which contains two 1-of-n slices. dy

G. Zhang et al./ Microprocessors and Microsystems 38 (2014) 826-842 829

%/ positive fault

data_in

iack

data_out —< 0\ 1-of-n >

(a) Invalid 1-of-n code insertion (valid code is outputted later)

% positive fault

Ry —

iack

data_out

(b) Invalid 1-of-n code insertion (valid code is erased)

positive fault//
sats (0 YRt
)
iack ,/
\
b, LSS
data_out { 1-of-n ><¢ 20

(c¢) Invalid 2-of-n code insertion

Fig. 7. Transient faults happen when iack is high.

/ negative fault
data_in 4< 1-of-n 1-of-n >7
\

iack

1-of-n

data_out

%

(a) Early spacer

/{ negative fault
data_in4< 1-of-n >—< 1-of-n >7
\

iack

data_out

(b) Invalid 1-of-n code insertion

Fig. 8. Transient faults happen when iack is low.

and d; are two 1-of-n codes. A positive fault at the input of Stage;
creates a false 1-of-n code fd; on data_in; which is mistakenly
latched and sets the acknowledge signal ack; high (Fig. 9a). Conse-
quently, the valid d; which arrives late at Stage;_; cannot be latched
due to the high ack;. Stage;., keeps waiting for a low ack; to latch d;
and then the data can be removed from data_in; in the next reset

data_in;4 4< do
ackis \m
data_in; —< do
ack; \m

(a) Correct situation

data_in; —< do >< (do, di)

acki.q

positive fault

/‘)// P S
data_in; 4< f

\

ack; /

(b) Deadlocked situation

do

Fig. 9. Deadlock caused by transient faults on data wires.

phase while Stage; keeps waiting for the removal of data_in;, lead-
ing to a deadlock.

2.2.4. Transient faults on acknowledge wires

Fault-tolerance of acknowledge wires is a serious issue which
has been ignored by many existing fault-tolerant designs. Faulty
acknowledge signals may lead to faulty situations similar to the
above ones. An example is shown in Fig. 10 where data_out;_;
and data_out; are outputs of Stage; ; and Stage; respectively. ack;
is the acknowledge signal of Stage;. Fig. 10a shows the correct sit-
uation of these signals. Fig. 10b shows the faulty situation where a
positive fault happens on ack; indicating that a valid code has been
latched by Stage;, causing Stage;_.; to reset. When the fault disap-
pears, Stage;_; starts a new transmission of “0100”, which may be
latched with the first data word, leading to an invalid 2-of-n code
(*“0101”) insertion.

data_out;1 m 0100
/ (
AN \ N
\ N\
data_out; 0001 0100
e Ve

data_out;4 4<

data_out;

positive fau/lt 7 .

ack; h ///// /

(b) Incorrect situation

Fig. 10. Transient faults on acknowledge wires.

830 G. Zhang et al./ Microprocessors and Microsystems 38 (2014) 826-842

2.3. Summary

In summary, a 1-bit transient fault on QDI pipelines may cause
an invalid 1-of-n code insertion or an invalid 2-of-n code insertion,
which may even lead to a deadlock, resulting in a failure of the
pipeline. Acknowledge signals are equally critical to the handshake
process. Faults on acknowledge wires also cause various errors.
This paper tries to use separate methods to protect both data wires
and acknowledge wires from transient faults.

3. Background and related work

Fault-tolerance can be achieved by redundancy, including spa-
tial, temporal and information redundancy. These fault-tolerant
techniques can be classified into two categories: code redundancy
and circuit redundancy techniques. Code redundancy uses error-
detecting codes or error-correcting codes to detect or correct
errors. The others belong to circuit redundancy using special hard-
ware designs to achieve fault-tolerance.

3.1. Systematic codes

Using code redundancy, the original data words are encoded
into systematic or non-systematic codes [13,16]. A non-systematic
code has only one inseparable field so that extra decoders are
required to extract the original data.

A systematic code, on the other hand, comprises of an informa-
tion field and a check field. The information field contains the ori-
ginal data while the check field is a redundant check word used to
correct errors. One of the benefits of using systematic codes is that
the original data words are untouched during their transmission so
that no extra data extraction is needed. This feature allows gener-
ating check words and correcting errors at discontinuous pipeline
stages, the pipeline segment between which is protected. Com-
pared with the pipeline using non-systematic codes where the
check word generation and error-correction operations are usually
executed at adjacent stages (including the data extraction), the
pipeline using systematic codes can be constructed in a more flex-
ible way to protect some specific pipeline segments according to
the practical fault-tolerance requirement. As a result, the area
overhead can be largely reduced (Section 6.2).

3.2. Traditional fault-tolerance methods

Belonging to systematic codes, parity check codes, cyclic redun-
dancy check codes [17] and Hamming codes [18] have been widely
used for fault-tolerance purposes. However, using them along with
DI codes, the generated check word and the original data must be
DI as well, which is a big challenge. Most existing asynchronous
designs [19,20] that use these traditional error-detecting or
error-correcting codes are (partly) bundled-data designs rather
than QDI, which are similar to synchronous circuits.

Triple Modular Redundancy (TMR) is another well-known tech-
nique. Using TMR, all components (usually including the voter
[21]) are tripled, making the circuit more than three times larger.
A synchronization among the three replicas is also required, which
compromises the speed. TMR is expensive and often used in special
fields with an extremely high requirement on fault-tolerance.

3.3. Non-QDI designs

For code redundancy techniques, an unordered systematic code
[22] using parity check codes can correct 1-bit error and detect
completion simultaneously on 4-phase asynchronous links. Using
several fault-tolerant methods [19], a self-timed bundled-data link

is able to tolerate transient and permanent errors but introduces
large area overhead due to the extra de-interleaving and Hamming
decoding processes.

Another unordered systematic code named Zero-Sum [13,23]
provides both 1-bit error correction and 2-bit error detection for
asynchronous links. Its extensions [13] provide more fault-toler-
ance with the price of a larger hardware overhead. A time-out
mechanism is required to constrain the bit arrival intervals.

For circuit redundancy technique, Ogg et al. [24] proposed a
technique utilizing the phase relationships between data symbols
and a redundant reference symbol to achieve transient-fault-
tolerance. An asynchronous interfacing scheme using parity check
codes has been proposed for globally asynchronous locally syn-
chronous (GALS) systems [20]. TMR has been used in a GALS sys-
tem to achieve fault-tolerance [25].

Although these techniques seem promising, none of them can
be easily used in QDI interconnects. This paper focuses on provid-
ing fault-tolerance for QDI interconnects with code redundancy
while keeping the timing-robust nature.

3.4. QDI designs

As for QDI designs, Bainbridge and Salisbury [9] proposed a ser-
ies of fault-tolerant techniques which increase the robustness of
the circuits but not enough for fault-immunity. Jang and Martin
[21] proposed a duplicated double-checking technique which tol-
erates 1-bit faults and some multi-bit faults. The fault-tolerant buf-
fer using this technique is three times larger and runs twice slower
than the normal one. Some circuit redundancy techniques [26,27]
can also be used in QDI circuits, but their duplication is area-
consuming.

In addition, Pontes et al. [28,29] used temporal redundancy to
tolerate transient faults on 1-of-n QDI pipelines. Peng and Manohar
[30] proposed a failure-detection technique for pipelined QDI cir-
cuits which can achieve fail-stop with respect to permanent and
transient errors. Kuang et al. [31] studied the fault-tolerance of
Null convention logic QDI circuits.

4. Delay insensitive redundant check coding scheme
4.1. Arithmetic rules of m-of-n codes

Before presenting the fault-tolerant coding scheme, some arith-
metic rules of m-of-n (1 < m < n) codes are defined.

Let i be an integer less than n (0 < i < n); its 1-of-n code repre-
sentation is an n-bit vector D" (i) where the (i + 1) th bit is high (e.g.
D*(2) = “0100"). The basic arithmetic rule of 1-of-n codes is defined
as (1)-(3).

For two integers a and b,

D"(a) = D"(a mod n) (1)
—D"(a) = D"(—a) = D"(—a mod n) = D"(n — a) (2)
D"(a) +D"(b) = D"((a + b) mod n) (3)

Transient faults may mutate a 1-of-n code into m-of-n (m > 2).
To extend the arithmetic rules of 1-of-n codes to m-of-n codes, a
position set A" = (ag,ay,...,am 1) (1 <m < n) is defined to iden-
tify the positions of the m ‘1's in an m-of-n code. Let
D"(A™) = D"(ap, ay, . ..,an 1) be an m-of-n code. A union operation
is used in (4) to construct an m-of-n code with m 1-of-n codes,
which is denoted by the symbol “(J".

m—1
D"(A™) = D"(dg, 4, ..., am1) = | JD"(@)
i=0

=D"(ap) UD™(a;) U...UD"(ap_1) (4)

G. Zhang et al./ Microprocessors and Microsystems 38 (2014) 826-842 831

The arithmetic rules of m-of-n codes are shown in (5) and (6),
which are unions of multiple 1-of-n operations.

m-—1 m-—1 m-1
-D"A™) = - JD"@a) = | J[-D"(@)) = | JD"(~a) (5)
i=0 i=0 i=0
m-1 m-1 m'—1m-1
D"(A™) +D"(B™) = | JD"(ay) + [JD"(by) = |J D" (@ +by) (6)
i=0 j=0 j=0 i=0

Taking a 1-of-4 code D*(3) and a 2-of-4 code D*(3,2) for exam-
ple, we have:
-D*(3,2) = —[D*(3) uD*(2)] = D*(-3) UD*(-2) = 0010 U 0100
= 0110,

D*(3) + D*(3,2) = [D*(3) + D*(3)] U [D*(3) + D*(2)]
=D*2)uD*(1)=0110.

4.2. DIRC coding scheme

The proposed DIRC coding scheme is based on the arithmetic
rules of m-of-n codes. Its definition is given below:

Definition 4.1 (DIRC Code). Let X = (Xg,X1,...,Xcv—1) (CN > 2) be
a data vector containing CN 1-of-n codes. A delay-insensitive
redundant check word c can be generated from X using a check
word generating process. Each x;, as well as the check word c, is 1-
of-n. Together they comprise a DIRC code word (Xg, X1, ..., XcN_1,C)
containing (CN + 1) 1-of-n codes.

It can be found that the DIRC code is systematic: the informa-
tion field contains the original 1-of-n data while the check field
is a single 1-of-n check word.

4.2.1. Check generating and error correcting processes
The check word generating process f(X) is defined as (7):

c=fX)=> X=X +X1 + -+ X1 7
An arbitrary data word x; in a DIRC code word (Xo, X1, .. ., Xcn-1,C)
can be regenerated using the error correcting process g(X ;) defined
in (8), where X..; = (xo,...,Xj_1,Xj:1,...,XcN-1,C) and X; is the regen-
erated data word of x;.
CN-1 CN-1
X=gXy)=C— > Xi=- (—C+ inﬂ (8)
i=0,ij i=0,ij

In (8), subtraction has been transferred to addition so that both the
check generating and error correcting processes can be imple-
mented using the same addition unit (Section 5). Fig. 11 gives
examples of the DIRC coding scheme for several 1-of-n codes, where
the CN > 2 case can also be inferred.

4.2.2. Error filtering

For any data word x; (0 <i< CN) in a DIRC code (xo,x1,...,
Xcn-1,C), the regenerated data word x] is the same as x; if no faults
occur. Under the assumption of a 1-bit transient fault, either x; or
x; may be altered by a fault but not both. To obtain the error-free
data word, an error filter h(x;, x}) is defined in (9), where “&” denotes
the logical operation of a C-element. The final error-free data is
X' = (XX Xy)-
x| =h(x,x) =X & x; = x; & g(Xx) 9)

A fault on x; is filtered using (9) because x; is calculated from other
fault-free codes. If the fault adds an extra ‘1’ to], the faulty ‘1" will
be filtered since x; is correct. What is important is whether a fault
on X.; will erase the valid ‘1" in x].

Xo X1 [Xo X1 [
01 01 01 0001 0001
10 10 0001 | 0010 0010

10| 01 10 0100 0100
10 01 1000 1000

(a) 1-0f-2 codes 0001 0010
0010 | 0010 0100

Xo X1 c 0100 1000
001 001 1000 0001

001 | 010 010 0001 0100
100 100 0010 1000

001 010 0100 | 9100 0001
010 | 010 100 1000 0010
100 001 0001 1000

001 100 1000 | 0010 0001

100 | 010 001 0100 0010
100 010 1000 0100

(b) 1-0f-3 codes (c) 1-0f-4 codes

Fig. 11. Examples of DIRC coding scheme when CN = 2.

Theorem 4.1. Assume that D" (i), D"(j) and D"(s) (0 < i,j,s < n) are
three 1-of-n codes where D" (i) + D" (j) = D"(s). D"(A™) and D"(S™)
are two m-of-n (1 < m < n) codes, and D"(A™) 4 D"(j) = D"(S™).

IficA",scS™ Otherwise,if i ¢ A",s ¢ S"

Proof. If i = a, € A™ (0 < k < m), Eq. (10) can be inferred from the
arithmetic rules of m-of-n codes.

m-1 m-1
D"(A™) +D"(j) = |JD"(a +j) = D"(a+j)u |J D"(a+J)
t=0 t=0,t#k
m-1
=D"(i+ju |J D"(a+J)
t=0,t#k
m—1
=D"(s)u J D"(a+j) (10)
t=0,t#k

Because the union operation will not erase any ‘1’s in the code
words, it can be inferred that s € S™.
Else ifi ¢ A™ Va, € A™ (0 <t < m), D"(a;) # D"(i).

m-1

D"(A™) +D"(j) = | JD"(ac +j) = D"(S") (11)
t=0

D"(a; +j) = D"(ar) + D"(j) (12)

Since D"(i) + D"(j) = D"(s),D"(s) # D"(a; + j). Therefore, s ¢ S™. O

Theorem (4.1) implies that when faults occur on one of the code
words in X;, the extra ‘1’s brought by faults would add extra ‘1’s to
the result of the m-of-n operations (i.e. x;) but never erase the valid
‘1" in x; which ought to be produced by the original error-free code
words. Therefore, C-elements are able to filter out the wrong bits.

Taking two 1-of-4 data words x, (“0010”) and x; (“1000”) for
example, the check word c is “0001”. Assuming a positive transient
fault converts x, to the faulty “1010”, the regenerated x; and x; are
“0010” and “1010” respectively. For x}, the first ‘1’ from left is gen-
erated from the invalid ‘1’ in the faulty x, which can be filtered by
C-elements. Using (9), we get xj and x] as follows:

Xg =X & x5 = 0010, x| =x; & x; = 1000

which are recovered error-free data words. If the check word is
faulty while the two incoming data words are error-free, both
regenerated data words will be erroneous. The errors can also be
filtered by the C-elements.

Considering the impact of faults happening on data wires
(Section 2.2), the 2-of-n code insertion (Fig. 7c) makes one of the
operands of (9) a 2-of-n code. The faulty ‘1’ will be filtered out
by the C-element. The invalid 1-of-n code insertion has two cases.

832 G. Zhang et al./ Microprocessors and Microsystems 38 (2014) 826-842

One case is both the valid and the invalid 1-of-n code words are
outputted. The invalid ‘1’ will be filtered using (9). The other case
is that the valid code is outputted twice, which can be taken as
an invalid spacer insertion. The spacer will not be latched since
the other operand of (9) is valid and contains ‘1". As a result, the
valid code is outputted only once. The deadlock which is the result
of the invalid code insertion is also avoided. It can be concluded
that, all 1-bit transient faults on 4-phase QDI pipelines can be
tolerated using the DIRC to 1-of-n codes.

The proposed DIRC coding scheme can also tolerate some multi-
bit transient faults. If multi-bit unidirectional transient faults hap-
pen in a single word while the other words of this DIRC code are
fault-free, the faulty word can be corrected. (Unidirectional faults
are either positive or negative faults, but not both, in a code word

[11].)

4.3. Code evaluation

Table 1 summarizes the difference between the DIRC and sev-
eral existing error-correction codes. Since a large number of exist-
ing asynchronous designs [4,6-8] use 1-of-n codes to encode data,
the hardware support for 1-of-n implementation is also important.
The DIRC code is the only one which is unordered, systematic and
can be implemented using QDI circuits.

Coding efficiency can be measured by the code rate [32], as
depicted in (13) where n is the code length or the number of occu-
pied wires, and M is the number of binary codes it can represent. M
equals to n for 1-of-n codes. Both code rates of the 1-of-2 and 1-of-
4 codes are 0.50.

R log,M
n

(13)

Applying the proposed DIRC, one extra check word is added for
every CN 1-of-n data words. The code rate of the DIRC (Rpirc) can be
expressed as (14), which decreases 1/(CN + 1) compared with the
code rate of the original 1-of-n code.

CN log,n

RDIRC = m (14)

It can be inferred from (14) that the code rate of the DIRC code
increases with CN. In the worst-case of CN = 2, the code rates of
1-of-2 and 1-of-4 codes are both 0.33, which is 33.3% less than their
original code rates. When CN =5, the code rate decreases only
16.7%. The code rates of most existing code redundancy techniques
decrease further when applied to 1-of-n codes. For example, the
code rate decreases by 42.9% when using the Hamming (7,4) code
[18] to the 1-of-4 code. Applying the TRDIC code [28] which
changes 1-of-n codes to 2-of-(n + 1) codes to obtain fault-tolerance,
the code rate decreases by 33.3% for 1-of-2 codes and 20.0% for 1-of-
4 codes respectively.

Table 1
Comparison of different error-correcting codes.

5. Hardware implementation of DIRC pipeline stages

Fig. 12 presents the implementation of a DIRC pipeline stage
transmitting one DIRC code (xo,x1,¢) (CN = 2). It includes 1-of-n
adders, error filters, CDs and an acknowledge generator (AckGen).

5.1. Implementation of 1-of-n adders and error filters

The check word generating and error correcting processes can
be implemented using QDI circuits. The key components are 1-
of-n adders. In Fig. 12, the upper two adders are used to regenerate
data words while the bottom one is used to generate the check
word. If no fault happens, operands of the adder are 1-of-n codes.
When faults convert 1-of-n codes to erroneous m-of-n codes. The
adder works under the m-of-n arithmetic rules.

The mathematical representation of the 1-of-n adder is depicted
in (15):

si=U{(q; & by)|i = (j + k)mod n,i,j, k € [0,n)} (15)
where A (a,_1Gy_2...0g), B (by_1bn_2...bg) and S (s,_1S,_2...So) are

all m-of-n codes, and the subscript denotes the bit index. S is the
sum of A and B.

Proof. Because S = A + B, it can be inferred from (6) that:

si=10<i<n) < 3Jj,ke0,n) st
and by = 1. Therefore, we have (15). O

(+kmod n=ia =1

Fig. 13 shows the hardware implementation of a 1-of-2 adder
and a 1-of-4 adder. Only C-elements and OR-gates are employed
to ensure the adder is QDI. Fig. 14 shows structures of 1-of-n
adders when the adder has multiple operands (corresponding to
different CN).

During the error correcting process, the negating operation of
an m-of-n code is required in (8). According to (2) and (5), the
negation of a 1-of-n code is merely a bit-reshuffle which is
depicted in (16) where inv_A is the negated A (both A and inv A
are m-of-n codes).

invAi = A(n—i)mod ns Vl S [07 Tl) (16)

The error filters described by (9) are combined with pipeline latches
to improve area and speed performance. The resulting 3-input C-ele-
ments latch structure for data words is depicted in Fig. 12. The asyn-
chronous latch for check words is built from 2-input C-elements.

5.2. Generation of check words

In the hardware implementation shown in Fig. 12, the check
word is generated from the incoming data words rather than the
recovered data words (the implementation using recovered data
to generate the check word is shown in Fig. 15). Consequently,
the check word generating process and the error correcting process
run in parallel which reduces the forward delay. However, the
newly generated check word would be erroneous when the incom-
ing data words are wrong. Since the wrong data would be

Codes Unordered Systematic 1-of-n Implementation QDI Implementation
Hamming [18] No Yes No No

Blaum and Bruck [12] Yes Yes No Unprovided

Cheng and Ho [22] Yes Yes No Unprovided
Zero-Sum [23,13] Yes Yes No No

TRDIC [28,29] Yes No Yes Yes

DIRC Yes Yes Yes Yes

G. Zhang et al./ Microprocessors and Microsystems 38 (2014) 826-842 833

One DIRC code (xo, X1, C) /
X Error Filter
— """ s X f Xo"
—= 1-of-n 3 I
] >
U X1 '{E adder — ;: Ed
] 5 H-{H 1-of-n g X1" = ~_ Error Filter
1 o — C {3 adder L= EIE
n = \Jed4
9] Q N
5 —{: 1-of-n 3
«Q L_{=| adder =
o / 3 ack td2
] | [
— _ — } {AckGen
acke ack; ack,
—
DIRC stage

Fig. 12. Implementation of a DIRC pipeline stage transmitting one DIRC code (CN = 2).

T T T corrected and not propagated to the next stage, the check word

i would not be an issue as long as no fault occurs on the corrected
| | | | | | | | i data again. Under the assumption of a 1-bit transient fault, execut-
OO OO i ing the error-correction and check word generation processes in
I
I
I
I
I

parallel is acceptable since the possibility of faults occurring on
wires of adjacent stages is extremely low in practice.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, i 5.3. Redundant protection of acknowledge wires (RPA)
(a) 1-of-2 adder

A new redundant technique named RPA is proposed to protect
! acknowledge wires from transient faults. As shown in Fig. 16a,
three C-elements are used to build an acknowledge generator
(AckGen) which outputs three acknowledge signals
(acko,acky, ack,). The three inputs of AckGen are cdy, cd; and cd,,

asbpazbqasbzagb; azbgaibiagbh,aszb; asbg aghiasb,azbs agbgasbiazbzabs

coming directly from the completion detection circuit. The original
CD of a pipeline stage (Fig. 16b) can be easily divided into three
sub-CDs by cutting off the bottom one or two C-elements when
(b) 1-0of-4 adder the number of 1-of-n slices of a pipeline stage is at least three
(Fig. 16¢). The generation of acknowledge signals is presented in
(17) where “&” denotes the logical operation of a C-element.
Finally, at the input side of the previous stage, an inverted 3-input
C-element is used to generate the iack to asynchronous latches
(Fig. 12).

acky = cdy & cd,
ack; = cdy & cd,
ack, = cd, & cd,
iack = —(acko & ack; & acks)

Fig. 13. Implementation of 1-of-n adders.

(17)

It can be found that the iack flips only when cdo, cd; and cd, are
all set high or all reset low. Any one of the three acknowledge sig-
nals relies on two sub-CDs and any one sub-CD decides two
(b) 3 operands acknowledge signals, which ensures that a 1-bit transient fault
on acknowledge wires will be masked. Only one extra C-element
is added to the original CD (Fig. 16). The area overhead brought

(a) 2 operands

A_\ by RPA is negligible compared with the large number of data
+ latches. This technique can be implemented independently of
DIRC.
B_|
L S
Error Filter
c X xfrorhier /
2 e 15| x o
{H 1-of-n [X'[15 %
+ X1 Ii{g adder [L= o
: = " »
D_/ L 1-ofn O x'H&H X 33
c (= adder :} =1 | Y 1-of-n |c' Q
L iack dd
(¢) 4 operands aaden

Fig. 14. Construction of 1-of-n adder trees with multiple operands. Fig. 15. The pipeline stage using the recovered data to generate the check word.

834 G. Zhang et al./ Microprocessors and Microsystems 38 (2014) 826-842

acky acky acks

(a) AckGen
AckGen |
[| [
ack ackg acks acks

(b) Original CD (c) Cut-off CD

Fig. 16. Implementation of the acknowledge generator (AckGen).

6. Case study: DIRC pipelines with different construction
patterns

DIRC and RPA can be used in basic QDI pipelines (Fig. 3) to pro-
vide fault-tolerance with little modification. Fig. 17 presents a DIRC
pipeline with three stages. An original pipeline stage with S (S > 2)
1-of-n slices is divided into GN (GN > 1) groups, each of which
contains CN (CN = S/GN) slices. Applying DIRC, each group has an
extra 1-of-n check word, resulting in a DIRC stage with
GN(CN + 1) slices.

In a DIRC pipeline, the complete DIRC stages (Fig. 12) are placed
between a pair of incomplete DIRC stages, which are sDIRC and
rDIRC ones (Fig. 18). The sDIRC stage only generates check words
while the rDIRC stage only corrects errors. Their sizes are smaller
than the size of a complete one.

This section studies the DIRC pipelines with different construc-
tion patterns. Latency and area models are built to evaluate the
hardware overhead of different DIRC pipelines.

DIRC Stage;.1

DIRC Stage;

Xo Xo gz Xo 3
=Y
1S |
X X115] X
=
— >
_{§ 1-of-n E}__ 5 C |
— e adder 15 —
| jiack | T
(a) sDIRC stage (sender)
Xo Xo Err(LHIter
| B ' S Xoll
{(H 1ofn [x0'[g
-{E adder [[— |
X1 — X1 —
= e X
_'{: 1-of-n || Xq g
C {E adder [B
— iack

(b) rDIRC stage (receiver)

Fig. 18. Incomplete DIRC stages.

6.1. Latency analysis

The saturation throughput of a QDI pipeline is determined by
the equivalent period of two adjacent pipeline stages which form
a loop (Fig. 4). A latency model is built to evaluate the loop latency
and speed overhead of DIRC pipelines.

To make the model simple, it is assumed that cell delays for
positive and negative transitions are the same while the wire delay
is zero. The loop latency T can be expressed as (18), where ¢, tep
and tcmp are the propagation latency of an asynchronous latch,
the CD and other combinational circuits respectively. The equiva-
lent period can be approximated to 2T.

T =2t + tep + tcomp (18)

Assume a basic pipeline stage (denoted by a subscript of B) con-
tains S slices. In our implementation (Fig. 3), the asynchronous
latch is built from 2-input C-elements whose propagation latency
is t. CD is a tree constructed by n-input OR-gates and 2-input
C-elements. Its delay tcpp is determined by the propagation latency

DIRC Stagem

ackio ackis acki,

Fig. 17. A DIRC QDI pipeline.

G. Zhang et al./ Microprocessors and Microsystems 38 (2014) 826-842 835

of an n-input OR-gate (tor) and the tree depth ([log,S]). The loop
latency of a basic pipeline T can be estimated using (19) (the delay
of the inverter used to invert the ack signal at the input of the latch
is ignored).

tepg = tog + [10g,St2 teompp =0 (19)

tip=1to

For a DIRC pipeline using both DIRC and RPA, 1-of-n adders are
added to the data path. The asynchronous latch for data words uses
3-input C-elements instead of 2-input ones. The redundant check
words increase the tree depth of the CD (the new depth is
[log,(S + GN)] ~ [log,S] + 1). Using RPA does not change the tree
depth but only induces a delay of a 3-input C-element at the input
side. Therefore, the loop latency of a DIRC pipeline Tpjrc can be esti-
mated using (20):

tL‘DIRC = tc3 tCamb.DIRC = tadder (20)
teppire = tor + ([10g,S] + 1)tz + te3

where t.3 and tqq, are the propagation latency of a 3-input C-ele-
ment and 1-of-n adders respectively. t; and t., depend on the used
cell library and the implementation of C-elements. Their values can
be close. According to the implementation of 1-of-n adders (Sec-
tion 5.1), tyq4er can be estimated as (21).

Ladder = [IOgZCN] (tCZ + tOR) (21)

Therefore, the loop latency of a DIRC pipeline can be expressed
as (22).

TDIRC = TB + 3tc3 — e + Ladder (22)

It can be concluded that, using DIRC plus RPA, tggg.: is the only var-
iable determining the pipeline speed overhead while the other
items in (22) are constants. The propagation latency of the adder
is proportional to [log,CN]. Usually CN < S (since a large CN
induces a large area overhead, which will be discussed in the next
section), so that t,q < T. In this case, the loop latency of a DIRC
pipeline is generally less than 2T;. In other words, the period of a
DIRC pipeline is less than twice as longer as the unprotected basic
pipeline.

6.2. Construction of different DIRC pipelines

As a systematic code, the DIRC keeps the original data words so
that the internal pipeline stages or combinational circuits between
two DIRC stages can obtain the original data directly. This feature
makes it possible to construct DIRC pipelines using different pat-
terns, providing designers with flexible choices. Since different
DIRC pipelines may have quite different area overhead, area mod-
els are built in this section to analyse the area overhead of DIRC
pipelines. (The equivalent period of a DIRC pipeline is determined
by the maximum loop and has a slight change with different pat-
terns, so that only area overhead is studied.)

6.2.1. Area analysis

An area model for a single pipeline stage is first built to analyse
the area of different pipeline stages, including the basic, the DIRC,
the sDIRC and the rDIRC stages. Since the RPA technique protecting
acknowledge wires causes little overhead compared with the DIRC
and can be used independently, this area model evaluates only the
area overhead brought by the DIRC.

The area of a single pipeline stage A can be expressed as (23),
where A, is the area of the asynchronous latch, A is the area of
the CD and Ac,mp is the area of other combinational circuits. Wire
area is assumed to be zero.

A=A +Acw + Acomp (23)

For a basic pipeline stage with S 1-of-n slices, the asynchronous
latch is built from 2-input C-elements and its area A; 3 can be esti-
mated as (24) where A, is the area of a 2-input C-element. The
area of the CD (Fig. 16b) can be approximated to A shown in
(25) where Ao is the area of an n-input OR-gate. For the basic pipe-
line, Acomp.g = 0. The area of a basic pipeline stage Az can be esti-
mated as (26) (the area of the inverter used to invert the ack
signal is small and ignored).

AL.B =S-n- ACZ (24)
Acpp=S-Ar+(5—1)-Aa~S: (Aor +Ax) (25)
Ap=Aip+Ams (26)

Applying DIRC, the slices are divided into GN groups, each of
which contains CN data words (CN = S/GN) and one check word.
As a result, each DIRC stage contains (S + GN) slices. As described
in Section 5.1, 3-input C-elements are used to latch data and 2-
input C-elements are used to latch check words in DIRC stages.
The latch area A; pjrc can be estimated as (27) where A is the area
of a 3-input C-element. The CD of a DIRC stage needs to detect
(S+ GN) slices. Its area Acp pirc can be estimated as (28).

AL,DIRC =Sn ~Ac3 +GN-n ~A52 = (AC3/Ac2 + 1/CN) ‘AL‘B (27)

ACD,DIRC = (S+ GN) -Aor + (S+ GN — 1) A
~ (1+1/CN)-Awp (28)

A complete DIRC stage has (S+ GN) 1-of-n adders where S
adders are used to regenerate data words and GN adders are used
to generate check words (Fig. 12). The area of a single 1-of-n adder
unit A, increases with n and can be estimated as (29). When CN > 2,
each adder becomes an adder tree containing (CN — 1) 1-of-n adder
units (Fig. 14). It is assumed that the area of adders regenerating
data words and generating check words is Agagera (i.€. Acomb.rpirc)
and Aadder.f (le AComb.sDIRC) respeCtiveIY- Aadder.dv and Aadder,c can be
expressed as (30) while their sum is Agager (i.€. Acomp.pirc)-

Aa = le 'ACZ +n 'AOR (29}
AComb.rDlRC = Aadder,d =S (CN -]) Aq
ACumb‘sDIRC = Audder.c =S (] - 1/CN) : Aa (30)

AComb‘DIRC = Aadder =S- (CN - 1/CN) . Aa

Assuming As = oA, and Aogr = pAe; (usually o ~ 2 and B < 1),
(30) can be rewritten into (31). The area of a complete DIRC stage
Apirc is depicted in (32).

Aadder,d = (CN - 1)(Tl + ﬂ) -ALp

Adddere =(1—-1/CN)(n+) ALg 31

Agdder =(CN—1/CN)(n+f)-ALg

Apre=(0t+1/CN)-ALg+(14+1/CN)-Acpg+ (CN—1/CN)(n+f)-ALgp
(32)

Comparing (32) with (26), it can be found that most of the area
overhead of a DIRC stage comes from 1-of-n adders. According to
(29), the area of a single 1-of-n adder unit A, increases with n?.
As a result, when applying the DIRC, 1-of-4 pipelines have larger
area overhead than 1-of-2 pipelines with the same data width.
For a 1-of-n DIRC pipeline stage with a fixed data width, Agyger
increases approximately linearly with CN while the area overhead
brought by the latch and CD decreases slightly (Eq. (32)). As a result,
the area of a DIRC stage increases with CN.

The area of the incomplete DIRC stages, sDIRC and rDIRC, can
also be estimated as (33).

{ASDIRC =(1+1/CN)-Aig+(14+1/CN)-App+(1—-1/CN)(n+ p)-Arg
Arpire = 0ALg +Acpp + (CN—1)(n+) -Arp
(33)

836
19 -
17
<ﬁﬂ
S, 154
x
S,D 13 / /
® 111
(4]
ey
£ o] / —m— DIRC (1-0-2)
3 —A— sDIRC (1-0f-2)
s 1 —e— IDIRC (1-0f-2)
[0
< 57 |~ DIRC (1-oi-4)
3] —%— sDIRC (1-0f-4)
—x—rDIRC (1-0f-4)
11 . . .

CN

Fig. 19. Area overhead estimation of a single pipeline stage.

According to the Faraday UMC 0.13 pm standard cell library
used in our implementation, it can be assumed that:

a2, f~05 (34)

Fig. 19 presents the area overhead estimation of different DIRC
pipeline stages with different configurations. The baseline is the
area of basic pipeline stages. The Y-axis uses the ratio of the area
of DIRC (or sDIRC, rDIRC) stages to the area of the basic pipeline
stages to measure the area overhead. Taking the 1-of-2 DIRC pipe-
line for example, when CN = 2, Apjrc/Ag is approximately 4.2; when
CN =5, the ratio rises to 8.6.

It can be found that, 1-of-4 pipeline stages have a steep gradient
compared with 1-of-2 ones. The area overhead of all pipeline
stages increases with CN while the complete DIRC stages have
the largest area overhead. The sDIRC stage has the lowest gradient
among the three kinds of DIRC stages. For an sDIRC stage with a
fixed data width, the area of adders Agqer . increases with CN while
the ratio of the area of the latch and the CD to their original area in
a basic pipeline is (1 + 1/CN), which decreases with CN (Eq. (33)).
As a result, the ratio Asprc/Ap increases slightly with a rising CN
(the ratio increases from 2.21 to 2.34 for 1-of-2 pipelines and from
3.14 to 3.82 for 1-of-4 pipelines).

6.2.2. DIRC pipelines using different construction patterns

In Fig. 17, all pipeline stages are complete DIRC ones, which is a
full-protection pattern (pattern O in Fig. 20a). This pattern makes
the pipeline robust enough to tolerate all 1-bit transient faults
between any two adjacent pipeline stages but incurs a large area
overhead. Since the DIRC is systematic, this allows DIRC pipeline
stages to be placed discontinuously to reduce the area overhead.
This section builds area models for whole pipelines to evaluate
the area overhead of different DIRC pipelines.

In a design, some parts may be critical or more susceptible to
faults than other parts. In this case, DIRC stages can be used only
in these parts to protect the communication. As Fig. 20 shows, DIRC
stages can be placed using an arbitrary or specific pattern to pro-
vide protection, including the full protection, the protection in
alternate stages, the point-to-point protection and the protection
in critical stages. The protected pipeline segment starts from the
sDIRC stage and ends with the rDIRC stage. Between the sDIRC
and rDIRC stages, extra long wires are introduced for the redun-
dant check words.

The area of a pipeline can be estimated as the total area of all
pipeline stages and long wires. For the purpose of simplicity, it is
assumed that all long wires between two adjacent stages have
the same area (short internal wires are unconsidered). A,, is the
area of S-n wires between two continuous basic stages. Applying
the DIRC, the wire number becomes S-n- (1 + 1/CN). As a result,

G. Zhang et al./ Microprocessors and Microsystems 38 (2014) 826-842

X
0, Xo
sDIRC ~— DIRC DIRC DIRC rDIRC
1 X1
(a) Pattern O: full protection
X O N
0, Xg
sDIRC -C Basic DIRC Basic rDIRC
X1 X1
—
— —

(b) Pattern 1: protection in alternate stages

X 'a A 'a Y 'a DY
0, Xo
sDIRC -C Basic Basic Basic rDIRC
X1 X1
—

(c) Pattern 2: point-to-point protection

Xo Xo
Basic Basic sDIRC -© rDIRC Basic
X4 X1
—
(d) Pattern 3: protection in critical stages
Fig. 20. Different placement of DIRC stages.
45 1 3_DIRC Pattem0
—@— DIRC Pattern1
4.0 4 | —&—DIRC Pattern2
— —w— DIRC Pattern3
o
< 35
g
&D 3.0 {
< X
]
S 25
£
2
3 20
©
o
< 154
1.0
(a) 1-of-2 pipelines
11
—&— DIRC Pattern0
10 4 | —®—DIRC Pattern1
—A— DIRC Pattern2
E 9 - | —v—DIRC Pattern3
<
\g 8 -
as 74
<
- 67
3
£ %7
2 4
o
8 31
< 2
1

CN
(b) 1-of-4 pipelines

Fig. 21. Area overhead estimation of different pipelines (A, = 0).

G. Zhang et al./ Microprocessors and Microsystems 38 (2014) 826-842 837

in a protected pipeline segment, the wire area between two contin-
uous stages is (1 + 1/CN) - A, (acknowledge wires are ignored due
to their small number). The original basic pipeline stages between
the sDIRC and rDIRC are expanded due to the check words. The
area of an expanded basic pipeline stage (Ae) can be estimated
as (35). The area of a whole pipeline (AP) is estimated in (36):

Aes = (1+1/CN) - AL+ Acppire = (1 + 1/CN) - Ag (35)
AP~a-Ag+Db- A+ C-Aspirc +d - Apire + € - Arpire +f - Aw (36)
where a,b,c,d, e, f are constants for a specific pipeline.

Taking a 5-stage pipeline for example, the area of a basic pipe-
line APy can be estimated as (37):

APy = 5Ag + 4Aw (37)

If the pipeline is fully protected (using three complete DIRC
stages and two incomplete DIRC stages) as shown in Fig. 20a, the
pipeline area APppcpo can be estimated as (38):

APpirc.po = 3Apire + Aspire + Arpire +4(1 +1/CN) - Ay (38)

Protecting alternate stages (Fig. 20b), three DIRC stages are sep-
arated by two expanded basic stages. The area of this pipeline
APpircp1 is shown in (39)

APpircp1 = 2Aeg + Apire + Aspire + Arpire +4(1 +1/CN) - Ay, (39)

The area of pipelines with a point-to-point protection (APpjc.prz)
and a critical-stage protection (APprcp3) can be estimated as (40)
and (41) respectively.

APpircp2 = 3Aes + Aspire + Arpire +4(1 +1/CN) - Ay, (40)
APpircp3 = 3Ap + Aspire + Arpire + 3Aw + (] + 1/CN) -Aw (41)
5.0+ —m— DIRC (1-0f-2)

a_\m 45 —0— DIRC (1-of-4
gﬁ._g 4.0
% 3.5
T 304
2
S 254
>
S 201 .\.*\“I—.—._._._H
@
o
< 159
1-0 T T T T T T T T T T T
0.0 0.2 04 06 0.8 1.0 1.2 14 1.6 1.8 2.0
k
(@)CN =2

—=— DIRC (1-0f-2)
—e— DIRC (1-of-4

Area Overhead (AP, \AP)
(3.}

e

T T T T T T T T T T T
0.0 0.2 04 0.6 08 1.0 1.2 1.4 1.6 1.8 2.0
k

(c)CN =4

The area overhead of a whole 5-stage pipeline can be divided
into two cases (A, = 0 and A,, > 0) to discuss.

(1) The wire area is assumed to be zero (A, = 0).
Using (35)-(41), an area overhead estimation of the pipe-
lines using different patterns is summarized in Fig. 21. The
area of the basic pipeline is used as the baseline. The Y-axis
represents the area overhead brought by the DIRC, which is
the ratio of the area of DIRC pipelines to the area of the cor-
responding basic pipelines (APpjc/APg). It can be found that,
for all pipelines, the area overhead increases approximately
linearly with CN. The pipeline protecting only critical stages
(pattern 3) brings the least redundant circuit.
It can be concluded that, DIRC pipelines using different con-
struction patterns may have a quite different area overhead.
If the DIRC is only used to protect some specific or critical
pipeline segments, the incurred area overhead can be largely
decreased.

(2) The wire area is non-zero (A, =k - Ag) (k > 0).

In practical pipelines, the data wires between two continuous
stages may be long and occupy a large area due to the large num-
bers of inserted buffers. Assuming that A, = k- Ag (k > 0),k is the
ratio of the area of long wires to the area of the latch in a basic
pipeline stage. Its value is decided by the practical circuit after fab-
rication which can be various. The area overhead of different pipe-
lines is re-estimated using the previous model. Since the pipeline
with a full protection (pattern 0) has the largest area overhead than
other pipelines, the fully-protected DIRC pipeline is first presented
to analyse the effect of k on the worst-case area overhead (Fig. 22).

—8—DIRC (1-0f-2)
—e—DIRC (1-of-4

p.\kﬂ\“*~k*~kﬂ_kq

0.0 0.2 04 06 08 1.0 1.2 14 1.6 1.8 2.0

Area Overhead (AP, \AP_)
N

k
(b)CN =3
1 —m— DIRC (1-0f-2)
“a 10 4 —e— DIRC (1-of-4
o
< o
2
5 84
o
< 74
T 6
i}
£ 5
g
& 41
8 31
< 2
1

N —
00 0.2 04 06 08 10 1.2 14 16 1.8 2.0
k

(d)CN=5

Fig. 22. Area overhead estimation of fully-protected pipelines with different CN (A,, = k - Ag).

838
1.65 - 777 CN=2
_ N (IIIIT] CN=3
<] CN=4
~p 160 1 RS CN=5
2
< 1551 <
£ 1.50 - N
; =§
o =
g 145 §§
< = E\
140 05 10 15 2.0

k

Fig. 23. Area overhead estimation of 1-of-2 pipelines using the point-to-point
protection pattern.

asynchronous link

%

(a) Using DIRC stages at network interfaces

input buffer
router

(b) Using DIRC to protect a specific link

output buffer input buffer output buffer

link router

Fig. 24. DIRC applied to asynchronous NoCs.

G. Zhang et al./ Microprocessors and Microsystems 38 (2014) 826-842

For the fully-protected DIRC pipeline, the number of long wires
between two continuous DIRC stages is S- (1 + 1/CN) - n.

In Fig. 22, the Y-axis still denotes the area ratio APprc/APg. The
1-of-4 pipelines have a larger area overhead than 1-of-2 pipelines.
The area overhead reaches to maximum when k =0 and then
decreases with k. In an extreme condition when wires consume a
significantly larger area than pipeline stages, the ratio will
approach to (1 + 1/CN). A small k denotes that the pipeline stages
are the main contributor of the whole area, which is usually the
practical case. Since the area of complete DIRC stages increases
quickly with CN (Fig. 19), CN = 2 is more acceptable than a large
CN. Although the wire number can be reduced by increasing CN,
the area of the whole pipeline still increases with CN.

If the pipeline is constructed using other patterns, the area
overhead can be further reduced. As an example, Fig. 23 presents
the area overhead of 1-of-2 pipelines using the point-to-point pro-
tection pattern (pattern 2 in Fig. 20c). Since the area overhead of
incomplete DIRC stages is lower than that of a complete DIRC stage
(Fig. 19), increasing CN may not lead to a very large area of pipeline
stages but reduces the wire area a lot. As a result, the pipeline area
can be reduced. Fig. 23 shows cases where a large CN can reduce
the area overhead. This feature provides flexible choices for design-
ers to design a fault-tolerant system with an acceptable overhead
according to the practical requirement.

6.2.3. Using DIRC in asynchronous NoCs

Since the DIRC code is systematic and supports a QDI imple-
mentation, it is especially suitable for large-scale asynchronous
NoCs.

Built from asynchronous routers and links, a 3 x 3 mesh asyn-
chronous NoC is illustrated in Fig. 24a. Network interfaces (NIs)
are used to connect synchronous IP cores to the asynchronous net-
work, implementing the transformation between the synchronous
and asynchronous domain. The large numbers of long asynchro-
nous links connecting routers are susceptible to transient faults.
DIRC stages can be flexibly distributed in the network to protect
the on-chip communication.

As an example, DIRC stages can be placed at the NIs (Fig. 24a),
so that the check word generating and error-correcting operations
are only executed when data passes NIs (which is a point-to-point
protection pattern). A generic asynchronous router can be modeled
as a pipeline where the input/output buffers, crossbar and other
possible components are the pipeline stages. A packet traversing
through multiple routers builds a data path which can be modeled

Data Basic Pipelines DIRC Pipelines DIRC/Basic
Code . GN | Area Delay | Period | Power | Area Delay | Period | Power
width (pmz) (ns) (ns) (mW) (pm’) (ns) (ns) (mW) Area | Period | Delay | Power
4 2 193 0.071 1.34 0.41 960 0.260 2.10 0.76 4.97 1.57 3.67 1.86
8 4 400 0.071 1.80 0.60 1791 0.266 2.65 1.06 4.48 1.47 3.75 1.76
16 8 822 0.075 2.18 1.03 3321 0.279 3.04 1.79 4.04 1.39 3.73 1.74
1of2 32 16 1727 0.075 2.76 1.74 6482 0.278 3.54 2.99 3.75 1.28 3.70 1.71
64 32 3227 0.075 2.97 3.04 12673 | 0.290 3.92 5.34 3.93 1.32 3.86 1.76
128 64 | 6481 0.078 3.32 5.55 24204 | 0.294 4.25 9.28 3.73 1.28 3.80 1.67
4 1 176 0.075 1.19 0.30 1424 0.257 1.93 0.56 8.09 1.63 3.44 1.91
8 2 365 0.075 1.64 0.45 2842 0.266 2.28 0.93 7.79 1.39 3.56 2.07
16 4 738 0.074 1.90 0.76 5535 0.277 2.80 1.39 7.50 1.48 3.73 1.84
fok4 32 8 1357 0.075 2.29 1.17 10958 | 0.278 3.23 2.33 8.08 1.41 3.70 2.00
64 16 | 2745 0.075 2.72 1.99 21711 0.301 3.64 4.28 7.91 1.34 4.01 2.15
128 32 5664 0.079 3.09 3.80 43478 | 0.317 4.37 7.76 7.68 1.41 4.00 2.04

Fig. 25. Experimental results of the basic and DIRC pipelines (CN = 2).

G. Zhang et al./ Microprocessors and Microsystems 38 (2014) 826-842 839

as a long pipeline. DIRC can be used to protect any segments of the
pipeline. Fig. 24b illustrates the situation where a specific link is
protected. DIRC stages can also be placed to protect all or some
critical routers.

7. Experimental results and evaluation
7.1. Hardware evaluation

To evaluate the hardware overhead of the proposed fault-toler-
ant techniques, the DIRC pipelines (DIRC + RPA, Fig. 17) are imple-
mented and synthesized using the UMC 0.13 pm standard cell
library. As a comparison, the unprotected basic pipelines (Fig. 3)
are also implemented. Fig. 25 shows detailed experimental results

4.5x10* [—0—Basic (1-0f-2)
4+ 1 |~ DIRC (1-0f2)
4.0x10" 4 | —¥— Basic (1-of-4)|
3.5x10¢ | ¥~ DIRC (1-0f4)
__ 3.0x10%
“c 2.5x10*
2 4
s 2.0x104~
z 1.5x104 E
1.0x10"
5.0x10°
0.0 |
4 8 16 32 64 128
Data Width (bit)
(a) Area
040 1 ' Fasio (iof2)
] |~e—DIRC (1-0f-2)
035 —¥— Basic (1-of-4)
. W
—~ 0.25 4
[72]
£
< 0.20
«
© J
a 0.15
0.10 -
» » . _
005 —
0.00 1 — i ' ' ' '
4 8 16 32 64 128
Data Width (bit)
(c) Delay
10 - :
—{— Basic (1-0f-2)
9 - |—8—DIRC (1-0f-2)
—¥— Basic (1-of-4),
8 1 |—¥—DIRC (1-of-4)
7 -
g 61
g 4
[e]
o 3
2 -
14
013 ; . ' ' '
4 8 16 32 64 128
Data Width (bit)
(e) Power

for the CN = 2 case, including the area of a pipeline stage, forward
delay, equivalent period and power consumption under different
configurations. The time and power information are obtained from
transmitting millions of data through 10-stage pipelines.

Since the wire area is decided by the practical design and the
DIRC pipeline can be constructed using various patterns, the prac-
tical pipelines may have quite different area. To provide a general
evaluation, only the area of complete DIRC stages is presented to
demonstrate the area overhead brought by the DIRC and RPA.
Fig. 26a compares the area of different pipeline stages, which
increases with the pipeline data-width. DIRC and RPA introduce
some area overhead due to the check generation and error correc-
tion mechanisms. On average, this ratio is around 4.15 for 1-of-2
pipeline stages and 7.84 for 1-of-4 ones (Fig. 26b), which is gener-
ally consistent with the area model proposed in Section 6.2.1.

109 1o pipelines
S 9 1 | —®— 1-of-4 pipelines
E 8 | 0\.\./’\;*
g
S °]
- 51 -\.\.\./.\.
3
£ 4
2 34
o
© 2
<t
< 14
0 T T T T T T
4 8 16 32 64 128
Data Width (bit)
(b) Area overhead
507 —O— Basic (1-0f-2)
45 | |~®—DIRC (1-0f-2)
) —¥— Basic (1-of-4)
4.0 | [(=¥=DIRC (1-0f-4)
—~ 3.5
[2]
S
S 3.0
©
o 2.5
o
2.0 4
1.5
10 T T T T T T
4 8 16 32 64 128
Data Width (bit)
(d) Period
307 o2 pipelines
S —o— 1-of-4 pipelines
‘» 2.5
©
(+4]
€ 201
=)
g 1.5
13}
£
0>J 1.0
o
2 o051
o
o
0-0 T T T T T

4 8 16 32 64 12'8
Data Width (bit)

(f) Power overhead

Fig. 26. Comparison between the basic and DIRC pipelines (CN = 2).

840 G. Zhang et al./ Microprocessors and Microsystems 38 (2014) 826-842

When the area of long wires is considered, this ratio will decrease.
In practical designs where the pipeline is constructed using differ-
ent patterns, the area overhead can be further reduced.

The forward delay of an asynchronous pipeline stage is the time
needed by the data to traverse the asynchronous latch. Fig. 26¢
shows that the average forward delay increases slightly with data
width due to the increasing area. On average, the forward delay of
DIRC pipelines is 3.75 times the delay of basic pipelines. The fault-
tolerant mechanism of the DIRC pipelines causes an extra delay
(DIRC-Basic) which is only 0.21 ns on average for both 1-of-2 and
1-of-4 pipelines.

The equivalent period is an important factor affecting the max-
imum throughput of the pipeline (Section 6.1). Fig. 26d shows that
the period increases with the data width of a pipeline. Since the CD
tree is one level shallower in 1-of-4 pipelines than that of 1-of-2
pipelines, 1-of-4 pipelines have relatively shorter periods with
the same data width. In most cases, the equivalent period of the
DIRC pipeline is less than 1.5 times of the basic pipeline (Fig. 25).
The period of the 128-bit wide 1-of-2 DIRC pipeline is only 1.28
times as long as that of the basic pipeline. Compared with the
fault-tolerant design proposed by Jang and Martin [21] whose per-
iod is about twice slower than the basic one, the speed of DIRC
pipelines is moderate and competitive.

The power consumption of pipelines also increases with the
data width (Fig. 26e). The redundant circuit brought by DIRC and
RPA causes more transition activities. On average, the power of
1-of-2 DIRC pipelines are 1.75 times greater than basic pipelines,
while for 1-of-4 pipelines the ratio is about 2 (Fig. 26f).

To evaluate the effect of CN on the hardware overhead of DIRC
pipeline stages, 60-bit wide 1-of-2 pipeline stages are imple-
mented and synthesized. Fig. 27 compares the basic and the DIRC
pipeline stages with different CN. It can be found that, the area of a

3.5x10% -
3.0x10* -
2.5x10" -
2.0x10% -

1.5x10* -

Area (um?)

1.0x10* -

5.0x10° -

0.0 -
Basic CN=2 CN=3 CN=4 CN=5

(a) Area

6.0
5.5

5.0

Period (ns)

Basic CN=2 CN=3 CN=4
(c) Period

4.5
4.0
3.5
3.0
2.0
CN=5

Xo —/’ | wrapper |
— g_b
X4 ' |
Sender . FG _>§ DIRC §_> Receiver
D : FG
L__J e
@ Write [Lr Read

[[IT— Message queue ™

Fig. 28. Test environment for DIRC pipelines.

pipeline stage increases approximately linearly with CN. The for-
ward delay increases with CN since a larger CN means a deeper
adder tree inserted to the data path. For the CN =3 and CN =4
cases, the adder trees have the same depth (both are 2-level) but
the CN = 3 case requires more slices for the check words than
the CN =4 case, leading to a wider latch and a deeper CD tree.
As a result, the speed of the DIRC stage with CN = 3 is a bit slower
than the stage with CN = 4 (Fig. 27b and c). The power consump-
tion also increases with CN due to the increased transition
activities.

7.2. Evaluation of transient fault tolerance

To evaluate the fault-tolerance of the whole scheme
(DIRC + RPA), a SystemC test environment is built (Fig. 28). It
includes a sender, a receiver, a DIRC pipeline stage, fault-genera-
tors (FGs) and a stage wrapper. The DIRC pipeline stage is a synthe-
sized gate-level netlist while other parts are SystemC models. The
sender works as an sDIRC stage, producing random data and corre-
sponding check words to the DIRC stage while the receiver works

0.8

0.6

0.4
02] l
0oL I
CN=4

Delay (ns)

Basic CN=2 CN=3 CN=5
(b) Delay

10+

94

84

Power (mW)
i

7
6
44
3
2
14
0-

Basic CN=2 CN=3 CN=4 CN=5
(d) Power

Fig. 27. Comparison between the basic and DIRC pipelines with different CN.

G. Zhang et al./ Microprocessors and Microsystems 38 (2014) 826-842 841

as an rDIRC stage. A fault-generator generates random faults on all
wires including data wires (between the sender and the DIRC
stage) and acknowledge wires (between the DIRC stage and the
receiver). The stage wrapper checks the correctness of the output
data and produces statistics. A shared message queue is used to
store the error-free data being transmitted.

In this test environment, faults happen on any wires at any
time, which mimics a real environment where not only 1-bit faults
but also multi-bit faults may happen. Assuming that the occur-
rence of faults on a single wire is a Poisson process, the intervals
between adjacent faults are randomized using an exponential dis-
tribution. Faults on different wires are inserted independently. The
mean interval between faults is set to 1 pus while the duration of
faults is randomized using a uniform distribution between 10 ps
and 2 ns. These create a more comprehensive and severe fault
environment than most in existing literature [21,24,28]. Data are
transmitted continuously using the maximum injection rate. In
total one million data packets were transmitted during the
simulation.

The transient-fault-tolerance capability is evaluated by the
mean time between failures (MTBF). Fig. 29a illustrates the MTBFs
of different pipelines with CN = 2. Since the increasing number of
wires lead to higher occurrence of faults, the MTBFs of all pipelines
decrease with data width. When the data width is 4-bit, the MTBFs
of the DIRC 1-of-2 and 1-of-4 pipelines are 2520 and 1748 times
longer than the basic 1-of-2 and 1-of-4 pipelines respectively.
When the data width rises to 128-bit, the ratio becomes 1117 for

10 —{+— 1-0f-2 Basic
—e— 1-0f-2 DIRC
10° —#— 1-0f-4 Basic
—v—1-0f-4 DIRC
10°
m
£ 4
o 10
m
S
10°
102
101 T T T T T T
4 8 16 32 64 128
Data Width (bit)
(a)CN=2
10°
10*
m
=
w 10
m
'_
=
10°
10'
Basi ¢ CN=2 CN=3 CN=4 CN=5
(b) Different CN

Fig. 29. Comparison of MTBF between the basic and DIRC pipelines.

1-of-2 pipelines and 1012 for 1-of-4 pipelines. For the basic 1-of-
4 pipeline with a data width of 128 bits, 174647 out of 730498
transient faults result in errors during simulation period, while
only 222 out of 1420558 transient faults lead to errors when using
DIRC and RPA (Note that this test uses a multi-bit fault environ-
ment so that DIRC pipelines can make errors, while 1-bit transient
faults will be fully tolerated). The resulting MTBF for the basic
pipeline is 16 ns while it is prolonged to 16561 ns for the DIRC
pipeline.

For DIRC pipelines using different CNs, Fig. 29b compares their
MTBFs with the MTBF of a 60-bit wide 1-of-2 basic pipeline. It
can be found that, under such a severe environment with multi-
bit faults, the MTBFs of all DIRC pipelines are more than 1000 times
longer than the basic pipeline. For the basic pipeline, 57067 out of
334679 faults result in errors while for the DIRC pipeline with
CN =5, only 62 out of 553143 faults result in errors. Most faults
are filtered. A more severe multi-bit fault environment may largely
reduce the MTBF of DIRC pipelines but this rarely happen. This also
demonstrates the thousands-fold increment of fault-tolerance
capability achieved by a DIRC pipeline.

8. Conclusions

This paper proposes a new unordered systematic fault-tolerant
code, DIRC, providing the on-chip communication both timing-
robustness and fault-tolerance. Using 1-of-n check words gener-
ated from multiple data words, the 4-phase QDI pipelines can
tolerate all 1-bit and some multi-bit transient faults. Thanks to
its simple structure, the DIRC stage can be easily used to replace
all or arbitrary stages in existing 1-of-n QDI pipelines. Since DIRC
is systematic, the DIRC pipelines can be constructed using different
patterns to satisfy the practical fault-tolerance requirement with a
reasonable hardware overhead. This feature makes DIRC especially
suitable for large-scale communication-centric designs. A new
redundant technique named RPA is also proposed to protect
acknowledge wires from transient faults and can be used indepen-
dently but causes little hardware overhead.

Latency and area models are built to evaluate the hardware
overhead of different DIRC pipelines, providing designers a guid-
ance to design a fault-tolerant system with an acceptable hardware
overhead. Several DIRC and basic pipelines are implemented using
the UMC 0.13 pm standard cell library. Detailed experimental
results show that the DIRC pipelines achieve thousands-fold
improvement on the fault-tolerance capability even in a severe
simulation environment. The hardware overhead of DIRC pipelines
(using DIRC plus RPA) is moderate and can be further reduced
using different construction patterns. In most cases, the DIRC pipe-
line is less than 1.5 times slower than the basic one, while the
fault-tolerance is measured to be more than 1000 times stronger.
Furthermore, the DIRC coding scheme can be extended to m-of-n
QDI interconnects [32] which is the future work.

Acknowledgement

The authors would like to thank the various grants from the
National Natural Science Foundation of China (61272144), the
China Scholarship Council, and the Engineering and Physical Sci-
ences Research Council (EP/1038306/1).

References

[1] R. Baumann, Soft errors in advanced semiconductor devices-part I: the three
radiation sources, IEEE Trans. Dev. Mater. Rel. 1 (1) (2001) 17-22.

[2] C. Constantinescu, Trends and challenges in VLSI circuit reliability, IEEE Micro
23 (4) (2003) 14-19.

[3] J. Sparse, S.B. Furber, Principles of Asynchronous Circuit Design: A Systems
Perspective, Kluwer Academic Publishers, 2001.

http://refhub.elsevier.com/S0141-9331(14)00050-7/h0105
http://refhub.elsevier.com/S0141-9331(14)00050-7/h0105
http://refhub.elsevier.com/S0141-9331(14)00050-7/h0110
http://refhub.elsevier.com/S0141-9331(14)00050-7/h0110
http://refhub.elsevier.com/S0141-9331(14)00050-7/h0115
http://refhub.elsevier.com/S0141-9331(14)00050-7/h0115
http://refhub.elsevier.com/S0141-9331(14)00050-7/h0115

842 G. Zhang et al./ Microprocessors and Microsystems 38 (2014) 826-842

[4] Y. Thonnart, P. Vivet, F. Clermidy, A fully-asynchronous low-power framework
for GALS NoC integration, in: Proceedings of Design, Automation Test in Europe
Conference Exhibition (DATE), 2010, pp. 33-38.

[5] WJ. Dally, B. Towles, Route packets, not wires: on-chip interconnection
networks, in: Proceedings of Design Automation Conference (DAC), 2001, pp.
684-689.

[6] F. Feliciian, S. Furber, An asynchronous on-chip network router with quality-
of-service (QoS) support, in: Proceedings of IEEE International SOC Conference,
2004, pp. 274-277.

[7] T. Bjerregaard, J. Sparse, Implementation of guaranteed services in the MANGO
clockless network-on-chip, IEE Proc. Comput. Digital Tech. 153 (4) (2006) 217-
229.

[8] J. Pontes, M. Moreira, F. Moraes, N. Calazans, Hermes-A - an asynchronous NoC
router with distributed routing, in: Proceedings of International Workshop on
Power and Timing Modeling, Optimization and Simulation (PATMOS), 2010,
pp. 150-159.

[9] WJ. Bainbridge, S.J. Salisbury, Glitch sensitivity and defense of quasi delay-
insensitive network-on-chip links, in: Proceedings of IEEE International
Symposium on Asynchronous Circuits and Systems (ASYNC), 2009, pp. 35-44.

[10] G. Zhang, W. Song,].D. Garside, J. Navaridas, Z. Wang, Transient fault tolerant
QDI interconnects using redundant check code, in: Proceedings of Euromicro
Conference on Digital System Design (DSD), 2013, pp. 3-10.

[11] B. Bose, On unordered codes, IEEE Trans. Comput. 40 (2) (1991) 125-131.

[12] M. Blaum,]. Bruck, Unordered error-correcting codes and their applications,
in: Proceedings of International Symposium on Fault-Tolerant Computing
(FTCS), 1992, pp. 486-493.

[13] M. Agyekum, S. Nowick, Error-correcting unordered codes and hardware
support for robust asynchronous global communication, IEEE Trans. Comput.-
Aided Des. Integr. Circ. Syst. 31 (1) (2012) 75-88.

[14] K.L. Shepard, V. Narayanan, Noise in deep submicron digital design, in:
Proceedings of IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 1996, pp. 524-531.

[15] T. Karnik, P. Hazucha, Characterization of soft errors caused by single event
upsets in CMOS processes, IEEE Trans. Dependable Secure Comput. 1 (2)
(2004) 128-143.

[16] N.K. Jha, Separable codes for detecting unidirectional errors, IEEE Trans.
Comput.-Aided Des. Integr. Circ. Syst. 8 (5) (1989) 571-574.

[17] W. Peterson, D. Brown, Cyclic codes for error detection, in: Proceedings of the
IRE, vol. 49, 1961, pp. 228-235.

[18] R.W. Hamming, Error detecting and error correcting codes, Bell Syst. Tech. J. 29
(2) (1950) 147-160.

[19] T. Lehtonen, P. Liljeberg,]. Plosila, Online reconfigurable self-timed links for
fault tolerant NoC, VLSI Des. 2007 (2007) 1-13.

[20] J. Lechner, M. Lampacher, T. Polzer, A robust asynchronous interfacing scheme
with four-phase dual-rail coding, in: Proceedings of International Conference
on Application of Concurrency to System Design (ACSD), 2012, pp. 122-131.

[21] W. Jang, AJ. Martin, SEU-tolerant QDI circuits, in: Proceedings of IEEE
International Symposium on Asynchronous Circuits and Systems (ASYNC),
2005, pp. 156-165.

[22] F.-C. Cheng, S.-L. Ho, Efficient systematic error-correcting codes for semi-
delay-insensitive data transmission, in: Proceedings of International
Conference on Computer Design (ICCD), 2001, pp. 24-29.

[23] M.Y. Agyekum, S.M. Nowick, An error-correcting unordered code and
hardware support for robust asynchronous global communication, in:
Proceedings of Design, Automation Test in Europe Conference Exhibition
(DATE), 2010, pp. 765-770.

[24] S. Ogg, B. Al-Hashimi, A. Yakovlev, Asynchronous transient resilient links for
NoC, in: Proceedings of IEEE/ACM/IFIP international conference on Hardware/
Software codesign and system synthesis (CODES+ISSS), 2008, pp. 209-214.

[25] J. Lechner, V. Veeravalli, Modular redundancy in a GALS system using
asynchronous recovery links, in: Proceedings of IEEE International
Symposium on Asynchronous Circuits and Systems (ASYNC), 2013, pp. 23-30.

[26] Y. Monnet, M. Renaudin, R. Leveugle, Designing resistant circuits against
malicious faults injection using asynchronous logic, IEEE Trans. Comput. 55 (9)
(2006) 1104-1115.

[27] S. Almukhaizim, F. Shi, E. Love, Y. Makris, Soft-error tolerance and mitigation in
asynchronous burst-mode circuits, IEEE Trans. VLSI Syst. 17 (7) (2009) 869-882.

[28] J. Pontes, N. Calazans, P. Vivet, Adding temporal redundancy to delay
insensitive codes to mitigate single event effects, in: Proceedings of IEEE
International Symposium on Asynchronous Circuits and Systems (ASYNC),
2012, pp. 142-149.

[29] J. Pontes, Soft Error Mitigation in Asynchronous Networks on Chip, Ph.D.
thesis, The Pontifical Catholic University of Rio Grande do Sul (PUCRS), 2012.

[30] S. Peng, R. Manohar, Efficient failure detection in pipelined asynchronous
circuits, in: Proceedings of IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems (DFT), 2005, pp. 484-493.

[31] W. Kuang, E. Xiao, C. Ibarra, P. Zhao, Design asynchronous circuits for soft error
tolerance, in: Proceedings of IEEE International Conference on Integrated
Circuit Design and Technology (ICICDT), 2007, pp. 1-5.

[32] W.J. Bainbridge, W.B. Toms, D.A. Edwards, S.B. Furber, Delay-insensitive, point-
to-point interconnect using m-of-n codes, in: Proceedings of IEEE International
Symposium on Asynchronous Circuits and Systems (ASYNC), 2003, pp. 132-140.

Guangda Zhang received his B.S. degree in Computer
Science and Technology from the National University of
Defense Technology, China in 2010. He is currently
pursuing his Ph.D. in Computer Science at the University
of Manchester, UK. His current research interest mainly
lies in fault-tolerant asynchronous circuits and asyn-
chronous Networks-on-chip.

Wei Song received his B.S. and M.S. degrees in Electrical
Engineering from Beijing University of Technology,
China in 2005 and 2008 respectively. He received his
Ph.D. in Computer Science at the University of Man-
chester, UK in 2012. His current research interests
include high-speed asynchronous circuits, on-chip
interconnection networks, systems-on-a-chip and
dynamic reconfigurable logics.

Jim Garside gained his Ph.D. in Computer Science from
the University of Manchester in 1987 for work in signal
processing architecture. Post-doctoral work on parallel
processing systems based on Inmos Transputers was
followed by a spell in industry writing air traffic control
software. Returning to academia gave an opportunity
for integrated circuit design work, dominated by design
and construction work on asynchronous microproces-
sors in the 1990s. More recently he has been involved
with dynamic hardware compilation, GALS intercon-
nection and the development of the hardware and
software of the SpiNNaker neural network simulator.

Dr. Javier Navaridas is a Lecturer in Computer Archi-
tecture with the University of Manchester. He obtained
his Ph.D. in Computer Engineering in 2009 from the
University of the Basque Country which was rewarded
with an Extraordinary Doctorate Award (Top 5%). He
joined the University of Manchester with a prestigious
Newton Fellowship in 2010. His research interests
include interconnection networks for parallel and dis-
tributed systems, networks on chip for SoCs and Mul-
tiprocessors and characterization of applications
behaviour. He has developed and maintained various
simulation tools for different processes and systems.

Zhiying Wang received the Ph.D. degree in Computer
Science and Technology from the National University of
Defense Technology, China in 1989. He is currently a
professor in the same university. He has contributed 10
invited chapters to book volumes, published 140 papers
in archival journals and refereed conference proceed-
ings, and delivered over 30 keynotes. His current
research projects include asynchronous microprocessor
design, nanotechnology circuits and systems based on
optoelectronic technology, and virtual computer sys-
tem. His main research fields include computer archi-
tecture, asynchronous circuit, computer security, VLSI
design, reliable architecture and multi-core memory system.

http://refhub.elsevier.com/S0141-9331(14)00050-7/h0120
http://refhub.elsevier.com/S0141-9331(14)00050-7/h0120
http://refhub.elsevier.com/S0141-9331(14)00050-7/h0120
http://refhub.elsevier.com/S0141-9331(14)00050-7/h0125
http://refhub.elsevier.com/S0141-9331(14)00050-7/h0130
http://refhub.elsevier.com/S0141-9331(14)00050-7/h0130
http://refhub.elsevier.com/S0141-9331(14)00050-7/h0130
http://refhub.elsevier.com/S0141-9331(14)00050-7/h0135
http://refhub.elsevier.com/S0141-9331(14)00050-7/h0135
http://refhub.elsevier.com/S0141-9331(14)00050-7/h0135
http://refhub.elsevier.com/S0141-9331(14)00050-7/h0140
http://refhub.elsevier.com/S0141-9331(14)00050-7/h0140
http://refhub.elsevier.com/S0141-9331(14)00050-7/h0145
http://refhub.elsevier.com/S0141-9331(14)00050-7/h0145
http://refhub.elsevier.com/S0141-9331(14)00050-7/h0150
http://refhub.elsevier.com/S0141-9331(14)00050-7/h0150
http://refhub.elsevier.com/S0141-9331(14)00050-7/h0155
http://refhub.elsevier.com/S0141-9331(14)00050-7/h0155
http://refhub.elsevier.com/S0141-9331(14)00050-7/h0155
http://refhub.elsevier.com/S0141-9331(14)00050-7/h0160
http://refhub.elsevier.com/S0141-9331(14)00050-7/h0160

	Protecting QDI interconnects from transient faults using delay-insensitive redundant check codes
	1 Introduction
	2 QDI pipelines and the impact of transient faults
	2.1 Asynchronous protocols and 4-phase QDI pipelines
	2.2 Impact of transient faults on QDI pipelines
	2.2.1 Fault with a positive iack
	2.2.2 Fault with a negative iack
	2.2.3 Deadlocks caused by transient faults
	2.2.4 Transient faults on acknowledge wires

	2.3 Summary

	3 Background and related work
	3.1 Systematic codes
	3.2 Traditional fault-tolerance methods
	3.3 Non-QDI designs
	3.4 QDI designs

	4 Delay insensitive redundant check coding scheme
	4.1 Arithmetic rules of m-of-n codes
	4.2 DIRC coding scheme
	4.2.1 Check generating and error correcting processes
	4.2.2 Error filtering

	4.3 Code evaluation

	5 Hardware implementation of DIRC pipeline stages
	5.1 Implementation of 1-of-n adders and error filters
	5.2 Generation of check words
	5.3 Redundant protection of acknowledge wires (RPA)

	6 Case study: DIRC pipelines with different construction patterns
	6.1 Latency analysis
	6.2 Construction of different DIRC pipelines
	6.2.1 Area analysis
	6.2.2 DIRC pipelines using different construction patterns
	6.2.3 Using DIRC in asynchronous NoCs

	7 Experimental results and evaluation
	7.1 Hardware evaluation
	7.2 Evaluation of transient fault tolerance

	8 Conclusions
	Acknowledgement
	References

