
A Low Latency Wormhole Router for Asynchronous On-chip Networks

Wei Song and Doug Edwards
School of Computer Science, University of Manchester

Manchester, M13 9PL UK
{songw, doug}@cs.man.ac.uk

Abstract—Asynchronous on-chip networks are power efficient
and tolerant to process variation but they are slower than syn-
chronous on-chip networks. A low latency asynchronous worm-
hole router is proposed using sliced sub-channels and the look-
ahead pipeline. Channel slicing removes the C-element tree in the
completion detection circuit and converts a channel into multiple
independent sub-channels reducing the cycle period. The look-
ahead pipeline uses the early evaluation protocol to reduce cycle
period. Using the lookahead pipeline on the pipeline stages with
the maximal cycle period improves the overall throughput. The
router is a pure standard cell design implemented by a 0.13 µm
technology. The cycle period of the router at the typical corner is
1.7 ns, providing 2.35GByte/sec throughput per port.

I. INTRODUCTION

Network-on-chip [1] is the state-of-the-art on-chip com-
munication fabric for current multi-processor SoC systems.
The on-chip network could be a synchronous network where
routers are driven by a global clock, or an asynchronous net-
work where routers are self-timed circuits connected by asyn-
chronous pipelines. Thanks to mature EDA tools and the tim-
ing assumptions allowed by the global clock, synchronous net-
works are fast and area efficient but the clock tree is power
consuming [2]. By contrast, the clock-less asynchronous net-
works are comparatively slow but power efficient. In addition,
they are tolerant to process variation and could divide the whole
chip into several isolated clock domains, which unifies the net-
work interface and shortens the overall design time.

Although asynchronous networks tend to be slow, their ad-
vantages are crucial to nanoscale SoC systems. In this paper,
a low latency asynchronous router is designed using two novel
techniques: channel slicing and the lookahead pipeline [3].

Channel slicing: The state-of-the-art quasi delay-insensitive
(QDI) pipelines in routers are built by synchronizing multiple
bit-level pipelines (sub-channels) [4, 5, 6, 7, 8]. The C-element
tree in the completion detection circuit (synchronization cir-
cuit) increases the cycle period and reduces throughput. Instead
of synchronizing sub-channels, we propose to use sub-channels
in parallel. Since the C-element tree is removed, sub-channels
run faster than the synchronized channel. Extra controllers are
added to resynchronize sub-channels during special intervals,
such as the route decision procedure.

Lookahead pipeline: The lookahead pipeline is an improved
dual-rail pipeline using an early evaluation protocol, proposed
by Montek [3]. It is not QDI but the timing assumptions are sat-
isfiable and it could be used to reduce the period of the critical

cycle (pipeline stages with the maximal cycle period).
In this paper, the router is implemented using a 0.13 µm stan-

dard cell library and the cycle period is 1.7 ns, providing 2.35
GByte/sec throughput per port.

The remainder of this paper is organized as follows: sec-
tion II describes the general architecture of the on-chip net-
work. Section III explains how channel slicing and the look-
ahead pipeline can improve speed. Section IV demonstrates
the detailed implementation of the router. Section V shows the
simulation results of the implementation, analyzes the effect of
the two techniques used, illustrates the impact of pipeline data
width on area and speed, and compares our router with other
published asynchronous router designs. Finally the paper is
concluded in section VI.

II. NETWORK ARCHITECTURE

Fig. 1(a) shows a globally asynchronous and locally syn-
chronous (GALS) [2] network. A network node (Fig. 1(b))
comprises a processing element (PE), a network interface (NI)
and a router (RT). The processing element could be a local
system controlled by a processor or a hardware IP running a
specific function. Serving as a slave device to the process-
ing element, the network interface provides a duplex channel
for the processing element to communicate with the chip level
asynchronous network. To ease the network communication,
the network interface splits the frames generated by the local
processing element into a sequence of flits of fixed length be-
fore sending them to routers. It also regroups the received flits
into frames before delivering them to the local processing el-
ement. In a GALS network, the network interface also serves
as a synchronous/asynchronous adaptor to ensure the faultless
cross timing domain data transmission [9, 10, 11]. Similar to
the routers used in macro networks, routers in on-chip networks
are distributed route deciders and message delivers but with
tighter area budget and higher throughput requirement. They
are fully asynchronous circuits in the proposed GALS network.

This paper concentrates on the wormhole flow control
method and the hardware implementation of asynchronous
routers; therefore, all other design aspects are set to broadly
accepted configurations. A mesh topology is used due to its
easy mapping on a 2-D layout. Frames are routed by the XY
dimension order routing algorithm. Nodes in the network are
identified by a (x, y) address shown in Fig. 1(a). Network in-
terfaces have enough buffer space to guarantee that a flit is con-
sumed by a network interface in finite time. The network is as-
sumed to be error-free so that no deadlock or livelock occurs.



(a) (b)

Fig. 1. (a) The GALS network architecture and (b) a network node

The data width of all ports is set to 32-bit to meet the through-
put requirement for a normal multi-processor SoC application.
A flit is also 32 bits and is transmitted in one cycle. A frame
comprises a head flit, several data flits and a tail flit. The head
flit contains a 1 byte of address, denoting the target node, and
3 bytes of data. The maximal size of a network is 16x16.

III. WAY TO IMPROVE THE SPEED

A. Channel Slicing

Many handshake protocols could be used to build asyn-
chronous circuits but only some of them are suitable for asyn-
chronous router designs. The 4-phase bundled-data protocol
has been used in MANGO [12], QNoC [13] and ASPIN [8].
The 4-phase dual-rail protocol has been used in ASPIN [8] and
the 4-phase 1-of-4 protocol has been used in CHAIN [4], QoS
[5] and ANoC [6]. Finally, m-of-n protocols have been used in
SpiNNaker [7].

The 4-phase 1-of-4 protocol is preferred. Bundled-data pro-
tocols work under cautious timing constraints and the matched
delay lines are vulnerable to process variation [14, 12]. M-of-n
protocols transmit more data bits in one cycle than the 1-of-4
protocol but they need extra decoders and encoders [15]. Be-
cause the address in the head flit is analyzed by every router on
the path, a decoder is added on each input port to translate the
head flit, which introduces area overhead. The 4-phase 1-of-4
protocol is QDI, comparably area efficient than m-of-n proto-
cols and more power efficient than the dual-rail protocol.

In all QDI routers, a wide channel is built by synchroniz-
ing multiple bit-level sub-channels [4, 5, 6, 7, 8], such as the
32-bit 1-of-4 channel shown in Fig. 2(a). The synchronized
channel behaves similar to the pipeline formed by flip-flops in
synchronous circuits. Techniques used in synchronous routers,
such as the virtual channel, could be easily adopted. However,
the completion detection (CD) circuit is a 16-input C-element
tree, shown in Fig. 2(b). Assuming that all 2-input gates have
the same latency and the C-element is a two level combina-
tional logic, this completion detection circuit has 8 levels of
logic. As the forward path of a basic 1-of-4 pipeline only has
4 levels of logic, the C-element tree accounts for 66% of the
cycle period.

Synchronization is necessary for timing division multiple ac-
cess (TDMA) technologies, such as the virtual channel flow

(a) (b)

(c)

Fig. 2. (a) A 32-bit 1-of-4 pipeline, (b) the completion detection circuit and
(c) the channel sliced pipeline

control, but not for wormhole routers. According to the worm-
hole flow control method, the route is decided and reserved by
the head flit and data flits simply follow the head flit. Since
no frames could prevent data flits from following the head flit,
no synchronization is needed. We propose to slice the syn-
chronized channel into sub-channels, illustrated in Fig. 2(c), to
allow independent data transmission on sub-channels and re-
move the time consuming C-element tree. Extra controllers are
added to ensure that the head flit is successfully analyzed.

B. Lookahead Pipeline

Similar to synchronous circuits where throughput is con-
strained by the maximal latency between any two adjacent reg-
isters, the throughput of asynchronous circuits is constrained
by the maximal cycle period of any two adjacent pipeline
stages. The loop path of the two adjacent pipeline stages with
the maximal cycle period is called the ‘critical cycle’ of the
circuit.

Fig. 3 shows a part of the data path in a wormhole network.
It is easy to observe that two loops could be the critical cycle:
the loop around the long interconnects between routers and the
loop that traverses the crossbar. A simple solution for the long
interconnect between routers is to insert more pipeline stages
in it. Many papers have concentrated on this long wire effect
[16, 17, 18] and, thus, it is beyond the scope of this paper. The
loop traversing the crossbar is the critical cycle.

The internal pipeline stages of routers are not necessar-
ily strictly QDI. Utilizing some easily satisfiable timing con-
straints (see section IV-B), the cycle period of the critical cycle
could be significantly reduced. We propose to use the look-
ahead pipeline [3] on the critical cycle to improve the overall
throughput.

A QDI pipeline and a lookahead pipeline are shown in Fig. 4.
Unlike the QDI pipeline, the ack line to stage N , in the look-
ahead pipeline, comes from the subsequent stage N +1 and the
successor N +2. Stage N could receive a new data D+1 after
D has been captured by stage N + 2 instead of waiting D to
be released by stage N + 1 in the QDI pipeline. As reported,
the dual-rail lookahead pipeline could reduce 27% cycle period



Fig. 3. The data path of wormhole networks

(a)

(b)

Fig. 4. (a) A QDI pipeline and (b) a Lookahead pipeline

from the dual-rail QDI pipeline [3].

IV. ROUTER DESIGN

In the previous section, we have proposed to remove the syn-
chronization in pipelines and use the lookahead pipeline style
on the critical cycle. In this section, a wormhole router is im-
plemented according to the proposed ideas.

A. Router Structure and Data Flow

Fig. 5 shows the internal structure of the proposed router.
A router has five input and five output ports for four adjacent
routers and the local network interface. A buffer with two
pipeline stages is added on each input port and output port. In-
put buffers and output buffers are connected by a crossbar con-
figured by the arbiter on each output port. Route decisions are
made on each input buffer and routes are reserved by obtaining
a grant from the corresponding arbiter on the output port. Since
sub-channels run independently, they have their own ack wires.
An end-of-frame (EOF) wire is also added to each sub-channel
to identify the tail flit. As a result, one sub-channel has five
data wires and one ack wire, the same as Chain [4]. A 32-bit
channel has 16 sub-channels. Every port contains 80 data wires
and 16 ack wires.

The basic wormhole data flow is slightly changed due to the
removed synchronization. Fig. 6 shows the modified data flow.
A flit is sliced into 16 parts and each of them is transmitted on
a sub-channel. The head flit is firstly blocked in the first stage
of the input buffer. Then the control logic analyzes the address

Fig. 5. Router structure

Fig. 6. The modified wormhole data flow

in the head flit and makes a request to one of the arbiters. Af-
ter the request is granted, a path is reserved in the crossbar and
the frame is delivered by independent sub-channels. The cross-
bar is reset by the input buffer once all parts of the tail flit are
delivered.

The head flit is blocked in the first stage of the input buffer
instead of the last stage as in ASPIN [8] for two reasons: firstly,
it reduces the fan-out of the second stage which is on the critical
cycle; secondly the route decision procedure and the crossbar
reset proceed in parallel.

Since the lookahead pipeline is utilized on the critical cycle,
a two stage output buffer is added on each output port. As de-
scribed in section III-B, the ack line of a lookahead pipeline
stage is generated from the subsequent two pipeline stages;
therefore, the ack line of the critical cycle is generated inter-
nally by the output buffer and the unknown latency on the paths
between routers has no effect on the timing of the critical cy-
cle. If the speed requirement is already met by using channel
slicing alone, the output buffer could be removed to reduce the
router latency.



(a)

(b)

Fig. 7. (a) The data path of a sub-channel and (b) its STG

B. The Data Path of a Sub-channel

Fig. 7 illustrates the data path of a single sub-channel and
its signal transition graph (STG). rt_err and acken are two sig-
nals driven by the extra controller added on each sub-channel
(section IV-C). acken, the active low signal enabling the data
path, is set low after a route request is initiated and it is driven
to high to stall the data path when the tail flit is detected on
ic_d. rt_err indicates incorrect route requests and is set high
when a faulty frame is going to be dropped. gnt is the grant
result from arbiters (section IV-D), which enables the MUXes
and DEMUXes in the crossbar. Because the values of acken,
rt_err and gnt are preserved during the whole data session, they
are omitted in the STG.

A modified lookahead pipeline [3] is used to generate ib_pa.
oc_a is the equivalent ack line generated by the lookahead
pipeline. It is set after the ack signal ob_pa from the first
stage in the output buffer and reset by ob_a from the successor
stage. The pipeline stages of the original lookahead pipeline
are dynamic logic, which are directly precharged by ack lines.
However, the dynamic logic cannot be implemented by stan-
dard cells. Pipeline stages implemented by C-elements, used
in this paper, reset after the release of the input data. If the
data are not reset early enough and the new ack arrives too fast,
the data path would be blocked. Therefore, a C2N element is
added after ic_a to ensure ib_pa only drops when the data on
ic_d is released (defer the new ack).

The STG of the lookahead pipeline is not speed-
independent. If the transition from ob_d+ to oc_a+ is slow
enough, oc_a could be reset even before it is firmly high. The
length of the positive pulse on oc_a is ensured by timing con-
straints instead of STG. The dotted arrow from ob_pa- to oc_a-

illustrates the timing assumptions present.
The critical cycle is highlighted by the dark bold line. With-

out using the lookahead pipeline, the critical cycle of normal
the QDI pipeline traverses the crossbar four times (the grey
bold line) because ic_d+ only occurs after the data on ob_d is
released. Since the lookahead pipeline allows data to be cap-
tured in parallel with the reset of the next stage, the critical
cycle traverses the crossbar twice. The cycle period is reduced.

Two timing constraints must be satisfied for the correct data
path operation.

Ack setup time: data on ic_d is cleared by ib_pa+. Thus,
the positive pulse on ic_a must remain long enough to make it
captured by the C2N gate. This constraint includes two timing
relations:

tic d+→ic da+ < tic d+→ic a+ (1)

tob d+→ic a− − tob d+→ic a+ > tC2N setup (2)

Equation (1) ensures that the C2N element is ready to cap-
ture the ack pulse on ic_a before its arrival. As the transition
from ic_d+ to ic_a+ traverses the crossbar, it is always satis-
fied. Equation (2) requires the length of the pulse on ic_a is
long enough to stabilize the feedback loop in the C2N element.
It could be easily met by constraining the minimal delay of the
transition from ob_d+ to op_d+ and the throughput is not af-
fected because this transition is outside the critical cycle.

Data override: The new data should be securely captured
after the previous data is cleared. In the proposed router, ob_d
is the only pipeline stage not ensured by STG. To avoid the data
override on ob_d,

tic d−→oc d+ − tic d−→oc d− > tC2 setup (3)

This constraint is already satisfied by hardware. Both transi-
tions in (3) share the path from ic_d to ob_d. Suppose the pos-
itive and negative transitions on this path are around the same
speed, the left side of Equation (3) is the length of the negative
pulse on ic_d. Since the minimal length of this pulse is half
of the period of the fastest 1-of-4 pipeline, it is normally larger
than the setup time of a C-element.

C. Channel Control

Although sub-channels run in parallel during the data ses-
sion, they stall after the tail flit to keep the next head flit in the
first pipeline stage in the input buffer. An input buffer has one
route decision controller and several sub-channel controllers,
one for each sub-channel. For an incoming frame, the route
decision controller enables the route decision procedure. Once
a route request is initiated, sub-channel controllers enable their
data paths.

Fig. 8 demonstrates the internal structure of the route deci-
sion controller and its STG. The route decision procedure is
always enabled through rt_en+ after a frame is transmitted. A
route decision could be a possible route request (rt_dec+) or a
faulty request (rt_err+). The frame generating a faulty request
will be dropped. After the route request is made, the route
decision procedure is disabled until the frame is transmitted,
denoted by ch_fin+ on all sub-channels.



(a) (b)

Fig. 8. (a) A route decision controller and (b) its STG

(a) (b)

Fig. 9. (a) A sub-channel controller and (b) its STG

Fig. 9 shows a sub-channel controller and its STG. A data
session begins after a route request is made. A faulty frame
is dropped by connecting the ack line generated from ic_d di-
rectly to itself, enabled by rt_err in Fig. 7(a). Note that the ack
line connected back is generated from data bits but not the EOF
bit to guarantee that the EOF bit is always detected by the sub-
channel controller. When the tail flit arrives, it is dropped by
acken+ and then the sub-channel stalls until the next data ses-
sion. For normal frames, the ack line acki from output buffers
is used. As the output of the C2N element added on ic_a in
Fig. 7(a), acki only drops when the data on ic_d is released.

D. Routing and Arbitration

As an example, Fig. 10 shows the route decision circuit in
the south input buffer and the connected arbiter on the east
port. Enabled by rt_en, the 8-bit address (16-bit in 1-of-4 code)
blocked in the first pipeline stage enters comparators after the
second pipeline stage is cleared (ib_a is low). The route request
is captured by C2P elements enabled by ch_fin_a-. One-hot
coded, the route request drives rt_dec or rt_err to ‘1’, which
then disables the route decision procedure and starts the data
session. C2P elements hold the value during the whole data
session. The south input buffer could not be connected with
the south output buffer, therefore, the corresponding route re-
quest is connected to rt_err.

Valid route requests are sent to arbiters. Since a maximum
of four input buffer could request to one output port concur-
rently, the multi-way MUTEX arbiter [19], shown in Fig. 10,
is faster and smaller than other arbiter styles [20, 21, 19]. The
successful request is granted by one of the four gnt outputs.

Fig. 10. The routing decision circuit and the arbiter

V. PERFORMANCE

A. Physical Implementation

The router has been implemented using the Faraday 0.13
µm standard cell library based on the UMC 0.13 µm tech-
nology. Route decision controllers and sub-channel controllers
are speed independent circuits generated from their STGs us-
ing Petrify [22] and other parts are manually written in Verilog
HDL.

The area after synthesis is around 14.3K gates (0.057 mm2).
The final router is placed and routed on a 0.3x0.3 mm block
using 5 metal layers. The speed simulation is back-annotated
with the RC extraction from the layout and run under the typ-
ical corner (25 °C, 1.2 V). The cycle period for data flits is
1.7 ns, providing maximal 2.35 GByte/s throughput on a sin-
gle port. The average latency of a data flit is also 1.7 ns. For
the head flit, the routing decision and the arbitration procedure
consume about 0.8 ns without contention.

B. Effect of Channel Slicing and the Lookahead Pipeline

Channel slicing and the lookahead pipeline are the two ma-
jor contributions of this paper. Removing the C-element tree
in the completion detection circuit in Fig. 2(a), channel slic-
ing (ChSlice) splits a synchronized asynchronous channel into
multiple independent sub-channels, which reduces the cycle
period. However, the increased wire count and extra sub-
channel controllers increase area. It is important to evaluate
the area overhead of ChSlice against its speed benefit. The
lookahead (LH) pipeline reduces cycle period through the early
evaluation protocol. Although all constraints required by LH
are satisfiable, they would make the data path vulnerable to the
extreme process variation. It is interesting to evaluate the per-
formance of a router only with ChSlice.

To answer these questions, a router without ChSlice or LH
(the router using QDI synchronized channels) and a router only
with ChSlice are implemented. Table I shows the area after
synthesis and Table II illustrates the speed performance after
RC extraction.

ChSlice significantly increases the area of input buffers and
crossbars but output buffers. ChSlice increases the wire count
of data paths but also removes the C-element tree. The C-
element tree in the router without ChSlice or LH utilizes 15
C-elements. ChSlice adds 16 C-elements for EOF bits and in-
creases the fan-in of the OR gate in the completion detection



TABLE I
AREA OVERHEAD OF CHSLICE AND LH

Block ChSlice & LH ChSlice No ChSlice/LH
Input Buffers 6.2K 5.8K 4.3K

Output Buffers 4.5K 4.5K 4.4K
Crossbar 3.3K 3.2K 2.4K

Total 14.5K 13.9K 11.3K

TABLE II
SPEED IMPROVEMENT OF CHSLICE AND LH

ChSlice & LH ChSlice No ChSlice/LH
Period 1.7 ns 2.2 ns 2.9 ns

Latency 1.7 ns 2.1 ns 2.8 ns
Route Overhead 0.8 ns 0.8 ns 0.8 ns

circuit from four to five. Because the removed C-element tree
compensates the area of the extra C-elements introduced by
ChSlice, ChSlice only adds one extra C-element to each out-
put buffer and increases the fan-in of OR gates, which explains
the slightly changed area of the output buffers. The area of the
crossbar increases because it is linear to the wire count. The
area of the input buffers grows due to the extra sub-channel
controllers. The LH technique only increases the area of the
input buffers significantly. Shown in Fig. 7(a), the added C2N
element sites on the critical cycle. They are severely optimized
with larger driven strength and buffer insertion during synthe-
sis. As a result, ChSlice introduces 23.0% area overhead and
the LH pipeline causes further 5.3% overhead.

ChSlice and LH reduce the cycle period by 24.1% and 17.2%
respectively, as shown in Table II. ChSlice and LH reduce
41.4% cycle period (70.6% improvement in peak throughput)
with 28.3% area overhead, compared with the router without
them.

C. Compare with Other Asynchronous Routers

Table III compares the performance of asynchronous routers
published in recent years.

The bundled-data protocol has been used by MANGO, AS-
PIN and QNoC. Instead of detecting the implicit request from
data, the bundled-data pipeline stages use matched delay lines
to defer the exclusive requst until the arrival of data. This non-
detection structure makes bundled-data pipelines fast and most
high speed asynchronous FIFOs are built by them [23, 24, 25],
including the custom designed FIFOs in the ASPIN router [8].
However, the matched delay lines intensively rely on the ac-
curate timing estimation, which is unreliable in the presence
of process variation. As a result, although our router is slower
than MANGO and ASPIN, it is immune to process variation.

Several designs have utilized special cell libraries. ANoC
has used the augmented cell library from TIMA [26] for C-
elements and MUTEXes. ASPIN has also used a set of special
designed asynchronous cells for the SXLIB cell library [27].
Our router is a pure standard cell implementation; therefore, it
could be easily adapted to other technologies or shipped out in
the form of a soft IP. On the other hand, the speed could be
further improved by using those special cell libraries.

(a)

(b)

Fig. 11. (a) Area and (b) cycle period under different data width

D. Effect of Data Width

An extra and important advantage of ChSlice is that the cy-
cle period does not increase with the width of data paths. For
normal QDI pipelines, increasing the data width means more
sub-channels are synchronized by the C-element tree leading
to a larger speed penalty. The bundled-data router in QNoC
also reported similar effect (0.2% per bit degradation [13]).

However, for the routers using ChSlice, sub-channels run in-
dependently during the data session. Increasing the number of
sub-channels has little impact on the cycle period of a single
sub-channel. Several routers with different data widths have
been implemented and Fig. 11 shows the results after synthe-
sis. Although the area increases linearly with the data width,
the cycle period remains around 1.7 ns.

VI. CONCLUSION

In this paper, a low latency asynchronous router has been im-
plemented. The router utilizes two novel techniques: channel
slicing and the lookahead pipeline.

Channel slicing removes the C-element tree in the comple-
tion detection circuit of QDI pipelines. This removal reduces
the cycle period and make sub-channels run in parallel during
the data session. The router implementation shows that channel
slicing reduces the cycle period by 24.1% for a 32-bit worm-
hole router with 23.0% area overhead. Due to the paralleliza-
tion of sub-channels, the router does not suffer the degraded
cycle period as reported by QNoC [13].

The lookahead pipeline is a fast pipeline style allowing early
acknowledge generation, proposed by Montek [3]. For a worm-
hole router, the peak throughput is determined by the critical
cycle. We propose to use the lookahead pipeline on the critical
cycle to increase throughput. Implementation results show that
it reduces the cycle period by 17.2% with 5.3% area overhead.



TABLE III
ASYNCHRONOUS ROUTER COMPARISON

Router Period Latency Tech Library & Layout Protocol
MANGO [12] 1.26 ns unknown 0.12 µm unknown bundled-data

ANoC [6] 4 ns 2 ns 0.13 µm augmented cell lib 1-of-4
QNoC [13] 4.8 ns 10 ns 0.18 µm standard cell lib bundled-data
ASPIN [8] 0.88 ns 1.53 ns 90 nm partial customized dual rail & bundled-data
Our Router 1.7 ns 1.7 ns 0.13 µm standard cell lib 1-of-4 & Lookahead

The final router using both channel slicing and the lookahead
pipeline has been implemented on a 0.3x0.3 mm block using
the Faraday 0.13 µm standard cell technology. The synthesis
result is around 14.5K gates. Simulations are back-annotated
with RC extraction and run at the typical corner. The cycle
period is around 1.7 ns providing 2.35 GByte/sec throughput
on each port.

Since channel slicing and the lookahead pipeline can reduce
the cycle period of asynchronous pipelines, they could be used
in the design of network interfaces. However, channel slicing
removes the synchronization between sub-cahnnels which hin-
ders the use of any timing division multiple access techniques,
such as the virtual channel flow control. The spatial division
multiplex techniques [28] could be adopted to provide similar
functions.

ACKNOWLEDGEMENTS

The authors would like to thank the financial support from
EPSRC under grant EP/E06065X/1.

REFERENCES

[1] W. J. Dally and B. Towles, “Route packets, not wires: on-chip intercon-
nection networks,” in Proc. of DAC, 2001.

[2] A. Hemani, T. Meincke, S. Kumar, A. Postula, T. Olsson, P. Nilsson,
J. Oberg, P. Ellervee, and D. Lundqvist, “Lowering power consump-
tion in clock by using globally asynchronous locally synchronous design
style,” in Proc. of DAC, 1999, pp. 873–878.

[3] M. Singh and S. M. Nowick, “The design of high-performance dynamic
asynchronous pipelines: lookahead style,” IEEE Transactions on VLSI
Systems, vol. 15, no. 11, pp. 1256–1269, November 2007.

[4] J. Bainbridge and S. Furber, “Chain: a delay-insensitive chip area inter-
connect,” IEEE Micro, vol. 22, pp. 16–23, 2002.

[5] T. Felicijan and S. B. Furber, “An asynchronous on-chip network router
with quality-of-service (QoS) support,” in Proc. of SOCC, Sept. 2004,
pp. 274–277.

[6] E. Beigné, F. Clermidy, P. Vivet, A. Clouard, and M. Renaudin, “An asyn-
chronous NOC architecture providing low latency service and its multi-
level design framework,” in Proc. of ASYNC, March 2005, pp. 54–63.

[7] L. A. Plana, S. B. Furber, S. Temple, M. Khan, Y. Shi, J. Wu, and
S. Yang, “A globally asynchronous, locally synchronous infrastructure
for a massively-parallel multiprocessor,” IEEE Design and Test of Com-
puters, vol. 24, no. 5, pp. 454–463, 2007.

[8] A. Sheibanyrad, “Asynchronous implementation of a distributed
network-on-chip,” Ph.D. dissertation, University of Pierre et Marie Curie,
2008.

[9] T. Bjerregaard, S. Mahadevan, R. G. Olsen, and J. Sparsø, “An OCP
compliant network adapter for GALS-based SoC design using the
mango network-on-chip,” in Proceedings of International Symposium on
System-on-Chip, 2005, pp. 171–174.

[10] A. Sheibanyrad and A. Greiner, “Two efficient synchronous asyn-
chronous converters well-suited for networks-on-chip in GALS architec-
tures,” Integration, the VLSI Journal, vol. 41, no. 1, pp. 17–26, 2008.

[11] Y. Thonnart, E. Beigné, and P. Vivet, “Design and implementation of a
GALS adapter for ANoC based architectures,” in Proc. of ASYNC, May
2009, pp. 13–22.

[12] T. Bjerregaard and J. Sparsø, “A router architecture for connection-
oriented service guarantees in the MANGO clockless network-on-chip,”
in Proc. of DATE, 2005, pp. 1226–1231.

[13] R. Dobkin, R. Ginosar, and A. Kolodny, “QNoC asynchronous router,”
Integration, the VLSI Journal, vol. 42, no. 2, pp. 103–115, 2009.

[14] B. Liu, “Robust differential asynchronous nanoelectronic circuits,” in
Proc. of ISQED, March 2009, pp. 97–102.

[15] J. Bainbridge, W. Toms, D. Edwards, and S. Furber, “Delay-insensitive,
point-to-point interconnect using m-of-n codes,” in Proc. of ASYNC, May
2003, pp. 132–140.

[16] S. Hollis and S. W. Moore, “RasP: an area-efficient, on-chip network,” in
Proc. of ICCD, October 2006, pp. 63–69.

[17] R. R. Dobkin, Y. Perelman, T. Liran, R. Ginosar, and A. Kolodny, “High
rate wave-pipelined asynchronous on-chip bit-serial data link,” in Proc.
of ASYNC, 2007, pp. 3–14.

[18] C. D’Alessandro, A. Mokhov, A. Bystrov, and A. Yakovlev, “De-
lay/phase regeneration circuits,” in Proc. of ASYNC, 2007, pp. 105–116.

[19] D. J. Kinniment, Synchronization and Arbitration in Digital Systems.
John Wiley & Sons Inc., 2007.

[20] K. S. Low and A. Yakovlev, “Token ring arbiters: An exercise in asyn-
chronous logic design with Petri nets,” Newcastle University, Tech. Rep.,
1995.

[21] M. B. Josephs and J. T. Yantchev, “CMOS design of the tree arbiter ele-
ment,” IEEE Transactions on VLSI, vol. 4, no. 4, pp. 472–476, Dec 1996.

[22] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev, “Petrify: a tool for manipulating concurrent specifications
and synthesis of asynchronous controllers,” IEICE Transactions on In-
formation and Systems, vol. E80-D, no. 3, pp. 315–325, 1997.

[23] M. Singh and S. M. Nowick, “MOUSETRAP: ultra-high-speed
transition-signaling asynchronous pipelines,” in Proc. of ICCD, 2001, pp.
9–17.

[24] I. Sutherland and S. Fairbanks, “GasP: A minimal FIFO control,” in Proc.
of ASYNC, 2001, pp. 46–53.

[25] P. Wielage, E. J. Marinissen, M. Altheimer, and C. Wouters, “Design
and DfT of a high-speed area-efficient embedded asynchronous FIFO,”
in Proc. of DATE, 2007, pp. 853–858.

[26] P. Maurine, J. Rigaud, F. Bouesse, G. Sicard, and M. Renaudin, “Static
implementation of QDI asynchronous primitives,” in Proc. of PATMOS,
2003, pp. 181–191.

[27] A. Greiner and F. Pcheux, “ALLIANCE: A complete set of CAD tools
for teaching VLSI design,” in Proc. of the 3rd Eurochip Workshop on
VLSI Design Training, 1992, pp. 230–237.

[28] A. Leroy, D. Milojevic, D. Verkest, F. Robert, and F. Catthoor, “Con-
cepts and implementation of spatial division multiplexing for guaran-
teed throughput in networks-on-chip,” IEEE Transactions on Computers,
vol. 57, no. 9, pp. 1182–1195, September 2008.


