
Automatic Controller Detection for

Large Scale RTL Designs

Wei Song and Jim Garside

School of Computer Science, the University of Manchester

Manchester M13 9PL United Kingdom

Email: {songw, jdg}@cs.man.ac.uk

Abstract—Automatic detection of the finite state machines

(FSMs) in a register transfer level (RTL) design is a widely

utilised technique in logical synthesis for optimised FSM im-

plementation and in hardware verification for the fast coverage

of the control circuit. It is believed that FSM detection can

also be used to explore the potential system partitions. Chosen

an optimal partition, a large scale synchronous RTL system

can be automatically converted into energy efficient globally

asynchronous and locally synchronous (GALS) systems. A new

FSM detection algorithm is presented providing a full coverage of

all FSM-like controllers. It uses several criteria to detect FSMs

on a register level abstracted graph generated from the RTL

design. It is the first FSM detection algorithm that provides full

FSM detection in the granularity level of signals without any

restrictions on coding styles.

I. INTRODUCTION

Register transfer level (RTL) hardware description lan-

guages (HDLs) [1] and logical synthesis techniques [2] have

been the driving strength of the continuous development in

synchronous very large scale integrated circuits (VLSIs) for

several decades. In VLSI designs described in RTL, finite state

machines (FSMs) are an important type of building blocks.

They control the sequences of certain otherwise parallel op-

erations and enforce the communication protocols between

parallel modules.

The automatic detection and recognition of FSMs is an old

topic that has been researched since the broad adoption of

automatic logical synthesis. In the process of logical synthesis,

the detected FSMs are analysed for their state space and output

loads [2]. According to the state transition pattern and the

load for each state, different encoding schemes can be used

to optimise the implementation of an FSM for area or speed

benefits. In recent years, FSM analysis also finds its usage in

hardware verification. Since the size of a hardware system

increases significantly with the shrinking device geometry,

which leads to the exponential state space growth [3], verifying

the system as a whole becomes extremely difficult if it is still

possible. A way to cope with this problem is to verify the

control portion of the system separately, where the automatic

FSM detection and the state space analysis are among the

crucial issues.

The usage of FSM detection in this paper is however

different. The state spaces and the connections of the FSMs,

This work is supported by EPSRC Grant “Globally Asynchronous Elastic
Logic Synthesis (GAELS)” (EP/I038306/1).

which are automatically detected, are used to reveal suitable

system partitions. Re-implementing the global communication

of a chosen partition in asynchronous circuit, a software would

be able to automatically convert a synchronous RTL system

into a globally asynchronous and locally synchronous (GALS)

system [4]. It is well known that asynchronous circuits can

be used to reduce energy consumption and resolve the global

clock issues [4]–[6]. However, the current design flow is to

manually partition the system, and then design the global

asynchronous communication circuits by hands or using spe-

cial asynchronous design tools, both of which are intimidating

tasks to traditional synchronous hardware engineers.

To handle this problem, the approach pursued in this re-

search is to automatically identify suitable system partitions

and afterwards replace them with global asynchronous com-

munication circuits. The first step of this two step process is

the more difficult one. A partition divides a system into a

number of loosely related blocks which talk with each other

using channels having variable data rates. Since these channels

must be controlled by FSMs (or counters), detecting these

FSMs is crucial to the identification of suitable boundaries.

Since a software has to exhaust all potential partitions before

choosing an optimal one, all FSMs, including the counters

used as controllers, must be detected. This full coverage is

the major difference between our FSM detection algorithm

and the algorithms used for logical synthesis or hardware

verification, where missing some FSMs does not compromise

the functionality of the hardware. This is also the reason

why the paper is titled as controller detection instead of FSM

detection.

II. PREVIOUS WORK

Throughout literature, there are three types of FSM de-

tection techniques: matching of certain code styles, program

slicing and pattern recognition.

Current commercial synthesis tools [7] are the typical

examples of using code styles to detect FSMs. According

to the Verilog user guide provided by the Synopsys HDL

Compiler™, an FSM must be written as a register assigned

only with predefined values, used only in case, if, == and

!= statements (expressions), and never used as ports. These

strict restrictions match only the FSMs written in the standard

form of one or two always blocks. Hierarchical FSMs and

the counters used as controllers are rejected by the matching

2013 16th Euromicro Conference on Digital System Design

`/13 $26.00 © 2013 IEEE

DOI 10.1109/DSD.2013.94

844

algorithm. However, this is not a serious problem for syn-

thesis tools because overlooking an FSM results to only sub-

optimised control circuits.

Program slicing is another effective FSM extracting tech-

nique provided that the names of the controllers of interest are

foreknown and the code is not parsed. It works on the source

code. Given a set of signals, the program slicing algorithm

extracts all the codes related to the given signals through a

line by line scan of the source code. The result is a reduced

source code which contains only the lines related to the given

signals. When the given signals are FSMs, the result would

be the sub-circuit describing and utilising these FSMs. This

technique was first used in software projects to savage useful

code segments [8]. Later it was adopted in hardware languages

[9] to extract the control paths from a large design. However, it

is not a fully automatic process as users are required to identify

the names of the FSMs before slicing the source code. In other

words, it is more of an effective program extractor rather than

an FSM detector.

Pattern recognition is the only technique possible to auto-

matically recognise and detect all FSMs without strict restric-

tions on coding styles. It applies several matching criteria to

certain abstracted graphic representations of parsed designs. If

a node matches the pattern defined by the criteria, it is recog-

nised as an FSM. As the graph is an abstracted representation,

this technique does not depend on any coding styles and it can

be applied to designs described by any hardware languages.

Using the process-module graph, an algorithm [3,10] has been

able to report all the processes (always blocks in Verilog) that

contain FSMs.

The detection algorithm proposed in this paper belongs

to the category of pattern recognition techniques. Compared

with the work in [3], this paper is able to improve the

granularity from always block to signals. In this way, the new

algorithm can recognise the FSMs buried inside the always

blocks having non-FSM signals. Furthermore, design hierarchy

is flattened and broken into signal level graphs. The new

algorithm has no requirements on the content of sub-modules,

which is however a must in [3]. In summary, this is the first

FSM detection algorithm providing the full coverage of FSMs

with the granularity level of signals.

III. FSM RECOGNITION CRITERIA

A synchronous circuit can be understood as a network

of registers (mostly flip-flops) connected by combinational

circuits. Described in register transfer level (RTL) hardware

description languages (HDLs), such as the Verilog HDL lan-

guage [1], the registers are grouped into multi-bit signals, the

combinational circuits are described by abstracted statements

and the whole circuit is partitioned into hierarchical modules.

In other words, synchronous circuits described in RTL designs

reveal a huge amount of abstract information, including system

partitions, wire groups, control/data division, control/data flow,

logical operations, etc. Extracting this information, a software

is possible to automatically understand the behaviour of an

RTL design. This paper tries to use this information to detect

all FSMs.

Using the abstract information, an RTL design can be con-

verted into a register relation graph (RRG), where registers are

represented by nodes and combinational circuits are depicted

as directed arcs. These arcs are classified into four different

types, including control, data, clock and reset, depending on

the relations between sources and targets. An FSM is a control

register used to control the modification of other registers,

while its own value follows a dynamic path in a predefined

finite state space. Each state transition occurring on this path

is affected by the status of the environment at the transition.

According to the behaviour of FSMs, a pattern in the RRG

can be defined and used to detect them. Followings are the

proposed criteria for FSM detection:

Definition 1. Let a register be an FSM, at least one of its

output paths is a self-loop path which does not go through

higher hierarchies.

Since the transition of an FSM is restricted by its predefined

state space, each transition always and must transit from a

known previous state to a new state depending on the status of

its environment. As a result, an FSM must have a self-loop to

identify the previous state. The extra hierarchical constraint is

set for practical concerns. In normal RTL designs, the calcula-

tion of the next state is located in the same module containing

the FSM or sub-modules inside the FSM module, which

complies with the constraint. However, some RTL designs

have manual test chains or combinational loops [11] which

may confuse the FSM detection algorithm. The hierarchical

constraint is added to prevent any global combinantional loop

from making a false self-loop to a non-FSM register.

Definition 2. Let a register be an FSM, at least one of its

output paths is a control path towards another register.

The value of an FSM register must has been used to control

the modification of other registers; otherwise, this register is

a non-control one on data paths.

Definition 3. Let a register be an FSM, all its input data

comes from self-loop paths or constant numbers.

This criterion is inferred from the finite state space limita-

tion of FSMs. Although the state transitions of FSMs depend

on their environment, the value set of each FSM is predefined.

Therefore, the data inputs of an FSM come from only itself

or a predefined constant value.

Some typical patterns in RRGs are shown in Fig. 1 where

the operation and the type of each arc is labelled as “(opera-

tion)/type”. Fig. 1a shows the register connection pattern of a

general program counter (pc) in a microprocessor. Although it

has a self-loop for address increment and it controls the next

value of the instruction register, according to Definition 3,

it is not recognised as an FSM due to its data input from

instruction. A jump instruction can modify the value of pc,

which makes the state space of pc infinite. The accumulator

(acc) depicted in Fig. 1b is not an FSM either no matter

845

�� �����	���
�
���
����

���

�	���

(a) Program counter

�������

����������������

(b) Accumulator

���

���

��	
� ��	

���������

(c) Counter

Fig. 1: Examples of some typical registers

whether it has control output paths. For the same reason as pc,

it has an infinite state space due to its data input from data.

Fig. 1c shows a programmable counter (cnt), which is not

recognised as an FSM by commercial synthesis tools [7], but

accepted as an FSM in this paper as long as it has control

outputs. Since the counter has no data input other than the self-

loop, its value range is finite so as its state space. If this counter

is used to control other registers, it should be considered as

an FSM although it does not match the normal FSM coding

style.

IV. REGISTER RELATION GRAPH

Fig. 1 has shown several examples of the register relation

graph (RRG). The formal definition of an RRG can be

described as follow:

Definition 4. A register relation graph is a directed multi-

graph denoted by a quadruple RRG = (V,A, TA, FA), where

V is a finite set of nodes representing registers and ports;

A ⊆ V × V is a finite set of arcs denoting the combinational

paths between nodes;

TA ∈ {control, data, clock, reset} is a finite set of available

arc types;

FA : A → TA is a function mapping types to arcs.

The software flow of detecting FSMs is illustrated in Fig. 2.

Assuming a multi-file hierarchical RTL design is parsed into

an abstract syntax tree (AST) [2], a signal level data flow

graph (DFG) can be extracted from the AST to reveal the

hierarchical signal relations among all registers and combina-

tional units. Generated from the signal level DFG, the RRG

is a flattened register relation graph which has no hierarchy

or combinational blocks. The paths between all registers in

the signal level DFG are iterated and reduced to arcs in the

��� ��� ���

����	�

��

��
�����	�	��

���

���

����

Fig. 2: Software flow of detecting FSMs

RRG. Applying the FSM detection criteria on the RRG and

the signal level DFG, a group of FSM registers are recognised.

A. Signal level data flow graph

Definition 5. A signal level data flow graph is a di-

rected multi-graph denoted by a six-tuple DFG =
(V,A, TA, FA, TV , FV), where

V is a finite set of nodes representing the parallel components

in the AST;

A ⊆ V × V is a finite set of arcs denoting the connection

between components;

TA ∈ {control, data, clock, reset} is a finite set of available

arc types;

FA : A → TA is a function mapping types to arcs;

TV ∈ {seq block, combi block, i port, o port,module} is a

finite set of available component types;

FV : V → TV is another function mapping the types of all

components.

The signal level DFG is a hierarchical graph, where a node

can be a sub-module (module) storing the port mapping to a

sub-DFG, a sliced always block (seq block or combi block)

containing the statements related to a single signal, a sliced

assign statement (combi block) assigning a single signal, an

input port (i port), or an output port (o port). The arcs

between nodes have the same type definition as in RRGs but

they describe detailed connections between AST components

rather than registers.

As an example, Fig. 3 lists a traffic light controller with its

signal level DFG drawn in Fig. 4. The traffic light switches

between red and green for every 50 seconds. A 3-second yel-

low is added when switching from red to green while another

5-second one is inserted after green. The controller design has

a main FSM (state) to control the colour. It is described in a

standard two-block structure where the next state is described

in a combinational always block. A programmable counter

(cnt) is used to count the remaining time of each colour.

846

module traffic(clk, rstn, red, green, yellow);

parameter R = 0; // red state

parameter YR = 1; // yellow state after red

parameter G = 2; // green state

parameter YG = 3; // yellow state after green

input clk, rstn;

output red, green, yellow; // light control

reg [1:0] state; // state machine

reg [1:0] state_nxt; // next state

reg [5:0] cnt; // second counter

always @(posedge clk or negedge rstn)

if(˜rstn)

state <= R;

else

state <= state_nxt;

always @(state or cnt) // next state

if(cnt == 0)

case(state)

R: state_nxt = YR;

YR: state_nxt = G;

G: state_nxt = YG;

default:

state_nxt = R;

endcase // case (state)

else

state_nxt = state;

always @(posedge clk or negedge rstn)

if(˜rstn)

cnt <= 0;

else if(cnt == 0)

case(state)

R: cnt <= 2;

YR: cnt <= 49;

G: cnt <= 4;

default:

cnt <= 49;

endcase // case (state)

else

cnt <= cnt - 1;

assign red = state == R ? 1 : 0;

assign green = state == G ? 1 : 0;

assign yellow =

(state == YR || state == YG) ? 1 : 0;

endmodule

Fig. 3: Traffic light controller

The signal level DFG shown in Fig. 4 is generated from the

AST by an automatic process. It reflects the relations between

the components in the Verilog source code.

All sequential always blocks (seq block) are depicted as

rectangles labelled “FF”. Continuous assignments and com-

binational always blocks are denoted by blank circles. Input

and output ports are represented by circles labelled with “I”

and “O” respectively. If there is a module entity, it would be

drawn as a rectangle labelled “Module”. The corresponding

signal names are noted besides the nodes. Arcs are used to

demonstrate the relations between nodes. If the value of a

signal is determined by another signal through an assignment,

such as state nxt assigns the value of state in the first always

block, a data arc is used to link them together, just as the bold

black arrow from state nxt to state. All the signals appeared in

� �

��

��

� � �

�

��

�

����	

����	

���
��
����

����
����

	���

�����

���
	��

��
�

Fig. 4: Signal level DFG of the traffic light controller

the condition statement of if, case, for, while and the condition

operator “?:” are considered as control signals affecting the

assignments of the node where they are used. In the traffic

light controller, since state is used in both case statements as

the case condition, two corresponding control arcs (a red dash

arrow) is drawn from state to cnt and state nxt respectively.

The arcs for reset and clock are depicted in different arrows

as well.

This representation of different nodes and arcs in Fig. 4 will

be inherited in all succeeding graphs for easy understanding.

Due to the automatic process, the signal level DFG has

some special issues deserving mentioning. The signals ap-

peared in range selector “[]” are treated as control signals as

variable range expressions are normally used the control of a

multiplexer. A dummy combinational node (combi block) is

inserted on the inner side of each input/output port (i port

or o port). This ensures that the ingress degree of an i port

and the egress degree of an o port is always one, which is

purely required by the cross-hierarchy arc searching algorithm

for simplicity reasons.

B. Block analysis

Generating the signal level DFG from the AST is an

automatic process. A DFG is drawn for each module during

the process. The design hierarchy is stored in the module node

generated for each module entity and the port mapping inside

the module node. At the beginning, a DFG is a graph con-

taining unconnected nodes representing all the components in

a single module. A scanning algorithm named block analysis

is used to scan every always block and continuous assignment

to get a pair of signal sets, control and data, for each node

in the DFG. Using these two signal sets, corresponding arcs

can be drawn in the DFG, which finishes the process.

If an always block or a continuous assignment assigns the

values of multiple signals, it must be sliced into multiple nodes

in the DFG before block analysis. It is possible to use program

slicing techniques [8,9] to slice the RTL source codes before

parsing them but this is done in the AST in this research, since

our parser supports the compilation time unfolding (generate

847

���

����

���

�����

	

 �� � ��

���

�������	

����	���

����������

(a)

���

�����

�����	
���	
������
(b)

Fig. 5: Relation tree for cnt block

blocks [1]) features which cannot be done before semantic

analyses.

Taking the always block assigning cnt in the traffic light

controller for an example, the block analysis would first

generate a relation tree as shown in Fig. 5a from the AST.

Then this relation tree is used to obtain the pair of signal sets.

The block analysis is a traversal over the AST. The target

signal being assigned by this AST (cnt in this case) is set as

the root at the beginning. During the traversal, if a statement

is a conditional one (if, case, for or while), it is converted

into a control node (linked with its parent using a control

arc) containing all the signals in the condition expression.

Therefore the signals rstn and cnt are put into control nodes

due to the if statements and the signal state is also placed in a

control node due to the case statement. All control nodes are

linked to their parents with control arcs.

If the statement is an assignment, it is converted into a

data node (linked with its parent using a data arc) containing

all data signals and constant values in the right-hand side

expression. In Fig. 5a, four data nodes containing constant

values (2, 49, 4 and 49) are linked with the node state

representing the four branches of the case statement. When

the right-hand side expression of an assignment has control

signals (the signals in [] and ?: operations), they are put in

a parallel control node linked to the same parent of the data

node. In both cases, the nodes of an assignment statement are

leaf nodes. When a condition statement does not have a default

branch (if without else or case without default), an extra data

node containing the target signal is added.

Once the relation tree is done, all the signals in the tree

are put into two signal sets as shown in Fig. 5b. The signals

in control nodes are put into the control set and the signals

in data nodes are put into the data set. Constant values are

ignored as they are not drawn in the signal level DFG. Some

signals (cnt) may appear in both sets, indicating that they are

��

��

��

�

(a) Folded output paths

��

�

��

��

��

��

��

��

��

��

��

����

����

����

��	�
��

��	�
��

��	�
��

��	�
��

����

����

����

(b) Unfolded output paths

Fig. 6: Path unfolding

used as both data and control.

Using these sets, the nodes in the signal level DFG are

connected. For each signal in the data set, a data arc is added

in the signal level DFG. Similarly, a control arc is added for

each signal in the control set. As a result shown in the signal

level DFG (Fig. 4), node cnt has a data input arc from itself,

and three control input arcs from state, rstn (which is later

replaced with a reset arc) and, again, itself. When the always

block is an edge triggered one, the signal in the sensitive list

but not in the control set is the clock signal, while the one in

both is the reset signal and its arc type is changed to reset.

C. Path iteration

A path in an RTL design is a combinational link from

a register or an input port to another register or an output

port. In an RRG, it is represented as an arc. The process of

generating an RRG from a signal level DFG is to eliminate all

combinational nodes and the hierarchy. The key step in this

process is to iterate all the output paths of a register or an

input port along with their types in the signal level DFG, and

then connect all the ending registers or output ports of these

paths with arcs having the same types in the RRG.

Assuming the output paths of a register named regA have the

signal level DFG shown in Fig. 6a. This is a tree having regA

as the root and it is folded because some intermediate nodes

have more than one path from the root. To iterate all paths

848

from the root to all leaves, the tree has to be unfolded into

an expanded tree shown in Fig. 6b. The number of paths can

increase exponentially with the growing depth of the folded

tree in the worst cases.

Besides exploring all leaf nodes, the other task of the path

iteration is to calculate the type of each path. In the unfolded

tree shown in Fig. 6b, the type of a path is a compilation of

the arc types through the way. If all the arcs have the same

type, such as the path from regA to outD, obviously the path

type is the same type of all the arcs. However, if the arc types

are mixed, the path type depends on the priorities of different

arc types. In this paper, control has a higher priority than

data. Considering the path from regA to regC through arc

comE→comH (highlighted with a grey line in Fig. 6b), since

comE controls the value of comH, comE actually controls the

value of all downstream nodes towards regC and the type of

this path should be control. The compiled type for each path

of the unfolded tree is shown besides the leaf in Fig. 6b.

Iterating the unfolded tree is time consuming as it takes

exponential time to finish. As an example, the RRG generation

for the OR1200 microprocessor (124 register signals) [11]

takes less than 2 seconds while the same process for the

H.264/AVC baseline decoder (855 register signals) [12] cannot

finish in 10 minutes.

To resolve this problem, it is found that software caches

(dynamic programming [2]) can be used to obtain the types

of all paths without unfolding the tree. This is possible based

on two observations: one is that an arc in an RRG is specified

by the source node, the target node and the arc type, while

the intermediate nodes are omitted. There is no need to travel

both paths if they end at the same leaf node and have the same

type. The other one is that the type of a path can be compiled

from its disjunctive sub-paths. If the type of a sub-path is

known, there is no need to travel it. As a result, if a sub-tree

is shared by many paths in the unfolded tree, it is possible to

store these types and leaf nodes in a software cache, and use

this information to compile the types when the sub-tree needs

to be visited again.

The recursive path iteration algorithm using the aforemen-

tioned software cache is presented in Fig. 7. The software

cache is a two-layered map named rmap. The first layer

stores a map for each node in the folded tree. The second

layer stores all the reachable leaves of an intermediate node

and the types of the sub-paths between the intermediate node

and the leaves. Written in the C++ template fashion, ramp is

defined as map<Node, map<Node, TYPE>> where Node

denotes the data structure storing a node and TYPE represents

a path type. Using this cache, an algorithm can obtain the types

of all leaves by traversing the folded rather than the unfolded

tree.

Provided with a root node R (a register or an input port),

function getOutPaths() is the function returning the path

types of all connected leaves (registers or output ports) in

the form of a path map (map<Node, TYPE>). This func-

tion implements a depth-first search (DFS) to traverse all

the nodes in the folded tree using a recursive sub-function

// return the output paths of a register node R

map<Node, TYPE> getOutPaths(Node R) {

// node relation map

map<Node, map<Node, TYPE>> rmap;

// the paths to be returned

map<Node, TYPE> paths;

for each output node N of R {

rmapUpdate(R, N, rmap); // traverse

}

return rmap[R];

}

// rmap update function

void rmapUpdate(Node P, // parent node

Node N, // this node

map<Node, map<Node, TYPE>> rmap

) {

if N is a register or a top level output {

// end point, update the type in rmap

rmap[P][N] |= type(P,N);

} else {

if rmap[N] existed { // visited

for each pair<Node, TYPE> (M,t) in rmap[N] {

// update the type

rmap[P][M] |= type(P,N) + t;

}

} else { // new node

for each output node M of N

rmapUpdate(N, M, rmap); // traverse

}

}

}

Fig. 7: Output path iteration algorithm

rmapUpdate(). When the DFS is done, the map stored for

the root node R in the cache (rmap[R]) is the path map

expected.

The sub-function rmapUpdate() handles the search for

each node. It takes the parent node P, the current node N and

the cache rmap as input arguments. If the current node is a

leaf, the type of the arc P→N (type(P,N)) is obtained and

stored at cache position rmap[P][N]. If a map is already

stored for the current node in the cache, its sub-tree must

have been fully searched according to the DFS algorithm. In

this case, the map rmap[N] stores the types of all paths

starting from N and can be used to generate a new map

(rmap[P][M]) recording the types of all sub-paths starting

from P and through N using type addition (+). A full search

is needed only when the current node is not visited yet.

The type addition operation follows the truth table de-

fined in Table I. The path type TYPE is a 4-bit vector

(clock, reset, control, data) denoting the four possible types.

Multiple bits may be set in TYPE if multiple paths with

different types co-exist between a pair of nodes. Table I

shows only the operations for sub-type (control, data) as the

special type control has a higher priority than data. When the

upstream sub-path A or the downstream sub-path B is purely

control, the result type is control. For all other cases and for

the sub-type (clock, reset), addition is equivalent to binary

OR.

Utilising the output path iteration algorithm to all registers

849

TABLE I: (A + B) for sub-type (control, data)

B
00 01 10 11

A

00 00 01 10 11
01 01 01 10 11
10 10 10 10 10
11 11 11 10 11

� �

��

��

� � �

�

��

�

����	

����	

��
������

	���

�����

���
	��

��
�

Fig. 8: RRG of the traffic light controller

and top level input ports of a signal level DFG, an RRG can be

produced. The RRG of the traffic light controller is depicted

in Fig. 8. The combi block node state nxt and the dummy

nodes for all ports are reduced to arcs with different types.

The only non-port nodes left in the RRG are the two registers

state and cnt.

V. FSM DETECTION

The FSM detection algorithm utilises the three criteria

defined in Section III to detect FSMs. The pseudo-algorithm is

described in Fig. 9. It reads in the RRG G and the signal level

DFG DG and returns a set of FSMs. There are two internal

loops: The first one uses Definition 1 to find all potential

FSM registers with self-loops in or below their hierarchies in

the signal level DFG. Similar to getOutPaths(), function

getLoopPaths() returns all self-loops that do not go

through higher hierarchies using a software cache.

The second loop removes all fake FSMs from the

potential set according to Definition 2 and 3. Function

getControlOutPaths() returns all the control arcs start-

ing from R in the RRG G. If this set is empty, register R has

no control output path and is discarded. Similarly, function

getDataInPaths() returns all the none-loop data arcs

towards node R in G. If this set is not empty, register R has

input data paths from other registers and is removed as well.

Function getLoopPaths() and getOutPaths() are

the most time consuming procedures. Thanks to the software

cache, the average time complexity of both algorithms is

O(MN) where M is the number of registers in the RTL

set<Node> getFSMs(RRG G, DFG DG) {

set<Node> FSMs; // set of FSM registers

// find out all registers with self-loops

for each register R in G {

if (empty != getLoopPaths(R, DG))

FSMs.insert(R);

}

// remove fake FSMs

for each register R in FSMs {

// remove registers with no control outputs

if (empty == getControlOutPaths(R, G))

FSMs.erase(R);

// remove registers with non-self data inputs

if (empty != getDataInPaths(R, G)))

FSMs.erase(R);

}

return FSMs;

}

Fig. 9: FSM detection algorithm

design and N is the average number of the arcs in the folded

tree shown in Fig. 6a. The maximum area overhead of the

cache is O(N2) where N is the number of nodes in the largest

folded tree.

All algorithms described in this paper have been imple-

mented using C++. The final software [13] has a full featured

Verilog HDL parser recognising all synthesisable language

features.

VI. CASE STUDY

The FSM detection algorithm has been utilised to detect

FSMs in three large scale RTL designs chosen from the

OpenCores® project repository.

The first design is the well-known OR1200 OpenRISC

microprocessor [11] which is a 32-bit 5-stage RISC processor.

The program counter is one of the difficulties in this design.

It controls the behaviour of the processor but is not an FSM.

The other problem is the register forwarding loop and the

debugging unit, which together cause a combinational control

loop through the current instruction register. Due to this loop,

a small number of data registers are mistakenly recognised as

FSMs. It is difficult to accurately identify the true FSMs in

this design.

The second design is a Reed-Solomon decoder [14]. Al-

though the design is provided as an industrial standard hard-

ware IP, the coding style is actually ad hoc. Control registers

are frequently written in an always block assigning other non-

control registers. Complicated expressions are used in variable

range expressions, which further blurs the boundary between

control and data. Traditional FSM detection algorithms would

fail in such designs because their granularity levels are not

small enough [3] or because the coding style of this design is

not standard [7]. An accurate FSM detection for this design

relies deeply on the correct slicing of its bulky always blocks.

850

TABLE II: Results of the FSM detection for different test cases

Design DFG Nodes Registers Time
FSMs

Rate
Types

Reported Verified FSM Counter Bit Fake

OR1200 2074 124 < 1s 19 17 89% 7 5 5 2
Reed-Solomon 1063 325 2.0s 56 54 96% 6 36 12 2
H.264/AVC 7043 855 7.1s 55 49 89% 13 30 6 6

The last design is an ASIC verified H.264/AVC baseline

decoder, which has the largest gate count (around 196K) in

all chosen cases. Used as global pace synchronisers, several

counters have large numbers of output paths. One of these

counters is connected to more than 400 registers leading to an

unfolded relation tree with around 280K leaves. This is the

case chosen to examine the time efficiency of the cache-based

path iteration algorithm.

Running the FSM detection algorithm on an Intel Core™2

Due 3.00 GHz PC with 2 GB memory, Table II reveals the

results of the proposed FSM detection algorithm. The number

of nodes in the signal level DFG and the number of registers

are listed in the first two columns to demonstrate the non-

trivial scales of all designs. The third column shows the

running time of the detection algorithm (including the time

for path iteration). The detection finishes in around 7 seconds

for the 196K gate design of the H.264/AVC baseline decoder,

which verifies its speed efficiency for industrial scale designs.

Starting from the fourth column, Table II reveals the details

of the FSM reports. All reported FSMs and the fake FSMs

discarded by the detection algorithm are manually verified off-

line. The number of FSMs reported by the detection algorithm

is shown in column “reported FSMs” while the true FSMs

verified by hands is counted in column “verified FSMs” with

the success rate shown in column “rate”. There are two types

of errors for any detection algorithms: false positive errors

(missing true FSMs) and false negative errors (recognising

fake FSMs). The manual verification shows that the FSM

detection algorithm has no false positive error (therefore it

is not listed in Table II) but has false negative errors, which

is denoted by the success rate.

The manual verification reveals that the reported FSMs can

be sorted into four categories: “FSM”, the traditional FSMs

recognisable to synthesis tools; “counter”, the fixed range

counters used as controllers; “bit”, the 1-bit control flags; and

“fake”, the data registers mistakenly recognised as FSMs. Only

pattern recognition techniques, including this research and [3],

recognise the controllers of types “counter” and “bit”.

False negative errors occur for different reasons. In the

OR1200 microprocessor, all the two errors are caused by

the global combinational loop, which confuses the path type

calculation. In the Reed-Solomon decoder and the H.264/AVC

baseline decoder, the mistakenly reported FSMs are used

in range expressions which actually belong to data paths.

Since variable range expressions can be used as table indices

(normally on data paths) or data selectors (normally control), it

is difficult to tell their types without some help from designers.

Nevertheless, our FSM detection algorithm is still considerably

more effective than other existing techniques because it can

automatically detect all FSMs in the granularity level of signals

with only a small number of false negative errors.

VII. CONCLUSION

This paper presents a new FSM detection algorithm for large

scale RTL designs. A design is converted to a signal level

DFG revealing the connections between hardware components

and an RRG showing the relation between registers. Applying

three detection criteria on the signal level DFG and the RRG,

the FSM detection algorithm is able to recognise all FSMs

with a small number of false negative errors. The detection

accuracy and speed efficiency are proved in three large scale

projects. This is the first pattern recognition algorithm that is

able to detect all FSMs in the granularity level of signals.

REFERENCES

[1] IEEE Computer Society, IEEE Standard Verilog® Hardware Description

Language, September 2001.
[2] G. D. Micheli, Synthesis and Optimization of Digital Circuits. McGraw-

Hill, 1994.
[3] C.-N. J. Liu and J.-Y. Jou, “An automatic controller extractor for HDL

descriptions at the RTL,” IEEE Design & Test of Computers, vol. 17,
no. 3, pp. 72–77, 2000.

[4] M. Krstić, E. Grass, F. K. Gürkaynak, and P. Vivet, “Globally asyn-
chronous, locally synchronous circuits: overview and outlook,” IEEE

Design and Test of Computers, vol. 24, no. 5, pp. 430–441, 2007.
[5] L. A. Plana, S. B. Furber, S. Temple, M. Khan, Y. Shi, J. Wu, and

S. Yang, “A globally asynchronous, locally synchronous infrastructure
for a massively-parallel multiprocessor,” IEEE Design & Test of Com-

puters, vol. 24, no. 5, pp. 454 – 463, 2007.
[6] F. Clermidy, C. Bernard, R. Lemaire, J. Martin, I. Miro-Panades,

Y. Thonnart, P. Vivet, and N. Wehn, “A 477mW NoC-based digital
baseband for MIMO 4G SDR,” in International Solid-State Circuits

Conference, Digest of Technical Papers, 2010, pp. 278–279.
[7] Synopsys, Inc., HDL Compiler™ for Verilog User Guide – Version G-

2012.06, June 2012.
[8] F. Lanubile and G. Visaggio, “Extracting reusable functions by flow

graph based program slicing,” IEEE Transactions on Software Engi-

neering, vol. 23, no. 4, pp. 246–259, April 1997.
[9] T. Li, Y. Guo, and S.-K. Li, “Automatic circuit extractor for HDL

description using program slicing,” Journal of Computer Science and

Technology, vol. 19, pp. 718–728, 2004.
[10] C.-N. Liu and J.-Y. Jou, “A FSM extractor for HDL description at RTL

level,” in Proc. of Asia-Pacific Conference on Hardware Description

Languages, 1998, pp. 33–38.
[11] OpenRISC Community. (2009) Or1200 openrisc processor. [Online].

Available: http://opencores.org/or1k/OR1200 OpenRISC Processor
[12] K. Xu. (2009) H.264/avc baseline decoder. [Online]. Available:

http://opencores.org/project,nova
[13] W. Song. (2013) An asynchronous verilog synthesis (AVS) system.

[Online]. Available: https://github.com/wsong83/Asynchronous-Verilog-
Synthesiser

[14] Varkon Semiconductors. (2010) Reed solomon decoder. [Online].
Available: http://opencores.org/project,reed solomon decoder

851

