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Abstract—The foundation of current software ecosystem is still
unfortunately laid on memory unsafe languages, such as C/C++.
Memory safety vulnerabilities remain as the primary source
of bugs in the critical software stacks. Some of the advanced
memory safety defenses are beginning to land on commercially
available platforms, in the form of instruction-set architecture
extensions, runtime enforcement by standard libraries and OSes,
and compile-time checks. This tide of adoption of defenses brings
us several questions: For a defense that is claimed supported on
a platform, can it be actually deployed to directly benefit an
application? For a defense claiming a certain level of protection
regarding a type of memory safety on a platform, how solid is
the protection? For two platforms implementing similar types of
defenses, which one provides better guarantees?

Endeavor to answer these questions, a memory safety test suite,
namely MSTest, is implemented. With its current 227 test cases,
the test suite has already reached a wider coverage than all
existing test suites and been ported to 19 platforms. To our best
knowledge, MSTest is the first portable memory safety test suite
conducting property-oriented testing, automatically resolving de-
pendency between test cases, providing a comprehensive coverage
on attack and defense capabilities, and capable of comparing
memory safety cross platforms.

Index Terms—memory safety, control-flow integrity, memory
errors, attack primitives, cross-platform, test suite

I. INTRODUCTION

The foundation of current software ecosystem is still un-
fortunately laid on memory unsafe languages, such as C and
C++. Due to the lack of intrinsic safety guarantees provided
by these languages and the abundance of remaining coding
errors, memory safety vulnerabilities are the primary source
of bugs in the critical software stacks. Memory safety is
a set of properties ensuring the execution of a program
following its design. An execution violates memory safety
if it accesses an object beyond its boundary, or accesses
an object that has not been allocated or has already been
deallocated. The former is known as spatial safety, while the
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latter is known as temporal safety [1]. By exploiting memory
safety vulnerabilities, attackers could obtain access to arbitrary
memory locations, manipulate the control-flow of a program,
and eventually hijack a system.

The fight between attacks and defenses is constantly evolv-
ing as an eternal war in memory [2]. Some of the early
defenses, such as stack canary, write & execute (W®E) and
address space layout randomization (ASLR) [3], have been
widely adopted by all architectures, compilers and operating
systems (OSes). They motivate attackers to develop sophis-
ticated and evasive attack techniques, such as use-after-free
(UAF), return-oriented programming (ROP) [4], jump-oriented
programming (JOP) [5], counterfeit object-oriented program-
ming (COOP) [6] and data-oriented programming (DOP) [7].

To battle with these new attacks, numerous advanced
defense techniques have been proposed, such as address
sanitizing (ASan) [8], bound checking [9], compartmental-
ization [10], memory tagging [11], control-flow integrity
(CFI) [12], pointer authentication (PA) [13], code-pointer in-
tegrity (CPI) [14], data-flow integrity (DFI) [15], and dynamic
information flow tracking (DIFT) [16]. Some of these ad-
vanced defenses are beginning to land on commercially avail-
able platforms, in the form of instruction-set architecture (ISA)
extensions, runtime enforcement by standard libraries and
OSes, and/or compile-time checks. For example, CFI has been
implemented in LLVM and GCC [17] for most architectures.
Intel memory protection extension (MPX) [18] was initially
added to major compilers for runtime bound checking but later
dropped due to its heavy performance overhead. Intel control-
flow enforcement technology (CET) [19], a coarse-grained CFI
implementation to thwart ROP and JOP, has been incorporated
into the Intel Tiger Lake architecture. Arm has introduced its
PA [20] in Armv8.3-A, and memory tagging extension (MTE)
in Armv8.5-A [21]. Apple has begun its support for Arm PA
from the A12 chip and Apple LLVM v8 [22]. In addition,
Arm has also engaged in the development of Morello [23], an
Arm’s implementation of the capability hardware enhanced
RISC instructions (CHERI) architecture [10] designed by the
University of Cambridge. However, this tide of adoption of
defenses brings us several questions urgently needing answers:

e QI: For a certain defense that is claimed supported on

a platform, can it be actually deployed to directly benefit
an application? Counter-intuitively, there might not be an
easy answer. Initially proposed in 2016, Intel CET was
claimed supported in GCC version 8, the Intel Tiger Lake
architecture (11th gen), and Linux kernel v5.18. However,
nine years after its initial proposal, you may still find it



TABLE I
COMPARISON WITH EXISTING TEST SUITES COVERING MEMORY SAFETY.

Attack Capabilities Defense Capabilities Variety of Enforcers Portability Test Capabilities
2 £ 5 § 2 £33 8 EF: e g8 LEo3oiiEiE %
E_ o =3 =5} o g T 3 ~ = £ 3 - £ =8 ° = g 2 2 2 0 ] & b
S & g 7 g = s & B & = B3 2 8§ = ¥ & £ 2 & &z 2
o] e} 3 = - g =3 =% = Q @ I8 4] < 8 ] (@] £ =¥ o =3
o s o a o 5] = B ] I~ . - E o] 2] el < o []
iy g =] = 1= eS| <] ) = 2 @ o =% @ ~ S 3 2
= =N 8 = a 2 35 £ 5 g & =z 5 B 5 2 g 3= 2 <

2 2 =] = et 8 5 = 15 5 E 2 = 2 = &
2 : 2 Z = ¥ g & & & & g5 = g & B &
e £ < & & £ £ 8 § o 7 g 5 3 * & £ %
P E o g I 3
g 5 E g £ 5 = 2 s
- S | = &

o 5 -
2

BASS [24] 7 ¢ 06 O 06 6 O 0O O O O o O O e O © O © ©o© o Vv X X X
ConFIRM [25] 24 ¢ ¢ O 06 06 06 0 O 06 06 O O O e © © O e O o X v X
CBench [26] 23 ¢ ¢ 0 06 06 06 0 06 06 06 06 O O e O © o o o o v X v X
RIPE[27] 80 e © O e © © O O O O O O O e © e e © O O Vv X X X
ReclPE[28] 204 @ © O @€ © © O O © O © O © e e @& 0 O O o Vv X v X
MSTest 227 @ @ © @ @ @ @© O e o © o O o o o o o o o X v v v
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Portability: @ sufficiently portable, © missing major compiler, architecture or OS, O not portable by design.

insufficiently supported by a latest Linux (v6.5) running
on an Intel 12th gen processor.

o Q2: For a defense claiming a certain level of protection
regarding a type of memory safety on a platform, how
solid is the protection? Is there any remaining vulnera-
bility? The same type of defenses may provide different
levels of protection depending on the chosen compiler
flags. Taking Arm Morello for an example, its boundary
check can be set to one of five available levels. It is not
easy to tell the (exact) differences between levels. When
Morello is applied with the full-force, it is also unclear
whether there are still loopholes in its protection.

o Q3: For two platforms implementing similar types of de-
fenses, which one provides better guarantees in memory
safety? This has gradually become a common question,
since x86-64 and Arm are taking different ways in
defending CFI. Even for the same Intel CET support,
Linux and Windows are implemented differently. Plat-
forms using different processors and OSes may have
defenses covering the same types of memory safety
vulnerabilities, but there is no automatic/systematic way
to quantitatively compare them. Existing test suites are
very limited in achieving this goal due to their lack of
portability and insufficient coverage on both attack and
defense capabilities.

Endeavor to answer these questions, we have gradually
implemented a memory safety test suite, namely MSTest,
in the previous six years. To answer Q/ and Q2, MSTest
has deliberately incorporated test cases checking the effec-
tiveness of individual defense properties. It is then possible
to verify whether a specific property claimed by a defense
supported on a platform is actually enabled and effective
in preventing the intended type of attacks. If any of these
attacks is tested successful, the corresponding vulnerability
remains exploitable and is identified. To answer Q3, MSTest
provides a flexible and cross-platform test framework which
is capable of running the same tests on different platforms.
Consequently, multiple platforms can be properly compared

by running the same set of test cases. With its current 227
test cases, the test suite has already reached a wider coverage
than all existing test suites [24]-[28] and been ported to
19 platforms crossing x86-64/Armv8-A/RISC-V, Window/Lin-
ux/Darwin, and MSVC/GCC/LLVM. Our test results show
that software sanitizers are effective in detecting violations in
spatial and temporal safety, along with forward CFI. Apple’s
PA provides similar forward CFI enforcement, while CET-IBT
and Arm-BTI is significantly weaker. CET-SHSTK provides
stronger protection against ROP attacks than Arm PA. CHERI
is indeed impressive in protecting spatial memory safety. To
our best knowledge, MSTest is the first portable memory safety
test suite conducting property-oriented testing, automatically
resolving dependency between test cases, providing a com-
prehensive coverage on attack and defense capabilities, and
capable of comparing memory safety cross platforms. MSTest
is available at:
https://github.com/comparch-security/cpu-sec-bench/

II. COMPARING WITH EXISTING TEST SUITES

There are several existing test suites [24]-[28] concentrating
on the memory safety of a platform, but none of them is suffi-
cient enough to provide a thorough evaluation of the memory
safety or compare the safety between different platforms. To
highlight the missing capabilities of existing test suites, Table I
summarizes the existing test suites and MSTest according to
five categories of capabilities described as follows:

Attack capabilities: A full attack depends on the successful
exploitation of a sequence of memory vulnerabilities. Generic
buffer overflow is normally utilized in the early stages of an
attack to gain the capability of arbitrary memory read and
write, while further specific memory corruption vulnerabilities
are necessary for control hijacking. A test suite shall evaluate
whether an attacker can exploit individual vulnerabilities on a
certain platform.

Defense capabilities: Defenses may have different capabil-
ities regarding the same memory vulnerability. For example,
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CFI protects an indirect call by checking whether the call des-
tination is valid, but it cannot stop attackers from replacing a
function pointer with another one complying with control-flow
graph. Code pointer integrity can be enforced by CPI or PA,
while they both assume the original pointer is not corrupted.
Data flow integrity might be used to verify the validity of
a code pointer. Defenses have their bounded capabilities and
remaining vulnerabilities, both of which should be evaluated.

Ability to accommodate a variety of enforcers: Defenses
are enforced by different entities with the help of a capable
compiler. Most CFI and UAF defenses are enforced at runtime,
by compiler-inserted instrumentation and enhanced runtime
libraries. Some of the widely adopted defenses, such as ASLR
and W@&E, are directly enforced by the OS. Modern compilers
might complain or refuse to compile when a vulnerability is
identified in the source code. Finally, the latest ISA extensions,
such as Intel CET, Arm PA and MTE, are gradually fitted
in the ecosystem. A test suite should be able to evaluate the
defenses enforced by different entities.

Portability: Platform testing is very different from software
testing. When software is being tested for memory corrup-
tion vulnerabilities, each test case is a specific input (e.g.,
an URL, a PDF document); in contrast, when a platform
is being tested, each test case is a specific piece of code
whose execution involves safety-violating memory accesses.
A unique characteristic of platform testing is that a test case
often contains embedded assembly as part of it, but this em-
bedded assembly is normally platform-dependent. However, to
compare the memory safety provided by different platforms,
these platforms should be evaluated using the same test suite,
which then requires the test suite to be portable between
architectures, OSes and compilers.

Test capabilities: Existing test suites consist of only test
cases using full attacks, which can be very limited: Even
if a full attack fails, some vulnerabilities may have already
been successfully exploited. A property-oriented test suite can
evaluate a single attack or defense capability by a small self-
sufficient program, which is more efficient in reaching wider
coverage than full attacks. Such fine granularity also allows a
test suite to identify the existence of a defense. A property-
oriented test suite may further analyze the dependency be-
tween test cases.

BASS [24], ConFIRM [25] and CBench [26] are three
representative test suites using full attacks to evaluate memory
safety. Published in 2006, BASS is one of the earliest test
suites. It contains 7 vulnerable programs and generates exploits
targeting these programs on 32-bit x86 and 64-bit Alpha Linux
platforms. The suite concentrates only on buffer overflow
type of memory vulnerabilities and is ignorant to defenses
by design. ConFIRM [25] is a recent test suite using 24 full-
attack programs to evaluate the applicability of existing CFI
defenses on x86-64 Linux and Window platforms. It extends
the coverage to include control hijacking attacks, and begins
to construct dedicated tests to differentiate the capabilities
between defenses. CBench [26] further improves the coverage
by adding attacks utilizing UAF on heap, out-of-bound code
pointer reuse (DOP), and cross-module access (compartmen-
talization). However, in its current form, it requires LLVM

and runs on x86-64 Linux only. Due to the small number of
test cases, attack and defense capabilities are either partially
covered or completely neglected.

RIPE [27] is the most utilized test suite for evaluating
defenses against control hijacking attacks. It adopts a test
generation framework where 850 attacks are generated from
a single full-attack template using five variants. In this way,
RIPE can achieve sufficient coverage of all types of buffer
overflow and ROP attacks. A later research [28] finds out
that RIPE presents high false positive rate. A significant
number of test cases fail without a presenting defense as
the generated code is malformed. Using a similar frame-
work, RecIPE [28] effectively reduces false positive rate by
generating and running dedicated exploitation code for each
attack using pwntools [29] at compile and execution time.
It also separates memory corruption from the later control
hijacking, which allows RecIPE to differentiate data integrity,
compartmentalization and control-flow integrity defenses. On
the down side, the small number of attack templates utilized
by RIPE and RecIPE concentrate on ROP-related attacks. Both
of them suffer from a seriously limited coverage, although
the numbers of generated test cases are large. Many types
of control-flow hijacking attacks and temporal safety are not
covered. In addition, the attack templates rely on embedded
assembly for control hijacking, restricting platforms to x86
Linux only.

Instead of using full attacks, property-oriented testing pro-
grams have long been used to testing static model checking
tools. One well-known example is the Juliet C/C++ and Java
test suite [30], which provides 57099 (normal or error embed-
ded) synthetic programs for model checking tools to verify
their correctness and accuracy. It is found that a thorough
coverage on a targeted property class can be achieved by a
sufficient number of property-oriented test cases. Since Juliet
has some coverage on UAF and control corruption errors
while RIPE is limited to ROP-related attacks, researchers have
even been borrowing test cases from Juliet to complement
RIPE [31]. This is also a strong evidence showing that RIPE
is insufficient.

MSTest is a property-oriented, comprehensive, and cross-
platform test suite providing a wide coverage on attack and
defense capabilities, and is capable of identifying deployed
defenses and comparing the memory safety between different
platforms. Existing memory safety test suites have unaccept-
able portability. They adopt the approach of embedding as-
sembly for accurately hijacking control flow in numerous test
cases [25]-[28], but this approach is clearly not portable. By
abstracting platform-specific code into a share library, MSTest
is the first portable test suite capable of comparing memory
safety cross 19 platforms covering well-known processors,
OSes and compilers.

In addition, existing memory safety test suites have un-
acceptable coverage. With 227 individual property-oriented
test cases, MSTest is the first to provide a comprehensive
coverage on attack and defense capabilities, and extra cases
are constantly being added. Property-oriented testing is highly
desirable when evaluating a platform’s memory safety, since it
allows a wider range of properties to be checked with a smaller



TABLE II
SUMMARY OF THE PLATFORMS UNDER TEST.

Architecture Processor oS Kernel Compiler
. GCC 13.2
Gen 8 x86-64  i7-8550u  Ubuntu Linux 6.8 LLVM 18.0
Windows NT 23H2 MSVC 19.3
. GCC 13.2
i7-12700 ~ Ubuntu Linux 6.8 LLVM 18.0
Gen 12 x86-64 OpenBSD GENERIC#79  GCC 114
i5-12400 Windows NT 23H2 MSVC 19.3
CHERI QEMU CheriBSD main-93 LLVM 14.0
Morello Fvp CheriBSD main-93 LLVM 13.0
. . GCC 13.2
Armv8.4-A Graviton 3 Ubuntu Linux 6.8 LLVM 18.0
Armv8.6-A Appple M2 Mac OS Darwin 23 LLVM 15.0
Tensor G3 Android Linux 6.1 LLVM 17.0
: GCC 13.2
Armv9.0-A Graviton 4 Ubuntu Linux 6.8 LLVM 18.1
OpenBSD GENERIC#79  GCC 114
U740 Freedom SDK  Linux 6.6 GCC 13.2
RV64GC LLVM 18.1
Spike Buildroot Linux 6.6 GCC 13.2

number of test cases, compared with testing using full attacks.
To the best of our knowledge, MSTest is the first memory
safety test suite conducting property-oriented testing. Due to
the relation between memory safety properties, resolving the
dependency between property-oriented test cases is crucial for
specifying a proper testing order and reducing testing time.
MSTest is the first to achieve dependency auto-resolving.

III. THREAT MODEL

Definition of a platform: MSTest is designed to evaluate the
provision of memory safety of a minimum running environ-
ment, namely a platform comprising a processor, an OS and
a compiler. It is assumed that test cases are natively compiled
using a GNU compatible make on the platform. To make the
platforms under test focused, we currently limit them to the
off-the-shelf ones listed in Table II. In addition, a small number
of important but not yet available platforms are tested in an
emulated way, including RISC-V on Spike [32], CHERI on
QEMU [33] and Arm Morello [34]. We further assume that
only necessary and pre-installed libraries are linked at runtime.
No third-party defenses are applied to the runtime libraries
or the OS. Note that these limitations do not indicate lack
of portability. The test framework can easily support a new
platform.

Adversarial capability: In the assumed attack scenario, un-
privileged attackers can execute and control the inputs of user
land programs running on a platform. The executed programs
contain memory safety bugs in their source code. The platform
adopts defenses preventing certain types of memory safety
bugs from being maliciously exploited by attackers at runtime.
Each defense is a mechanism enforced by parts of the plat-
form, including the processor, the OS (runtime libraries) and
the compiler. The types of memory safety vulnerabilities are
limited to spatial and temporal safety. All attacks relying on
micro-architectural vulnerabilities, such as transient execution
attacks, resource contention in the core pipeline [35], cache
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Fig. 1. The test framework of MSTest.

side-channels and covert channels, are out of the scope. Since
MSTest assumes user land attackers running on off-the-shelf
platforms, attacks targeting memory safety vulnerabilities in
kernel software, hypervisors, and TEEs are out of scope. In
addition, memory safety vulnerabilities in the runtime for
managed languages are not covered as well.

IV. TEST FRAMEWORK

Depicted in Fig. 1, the test framework of MSTest is com-
posed of the following components:

Test cases: A list of source code for individual test cases
and a shared platform abstraction library (PAL1ib). Each test
case is a small self-sufficient program either exploiting a
specific type of memory vulnerability or checking a detailed
capability of a potential defense. Similar to RecIPE, templates
are utilized to generate multiple test cases from the same
source using different macros.

Configuration: A JSON file is used to record the parameters
of each test case, such as locating the source code (program)
for a test case, specifying dependency (require), defin-
ing template macros for compilation (conf-macro) and
input arguments at runtime (arguments), result processing
(set-var, expect-results), etc.

Makefile and utility scripts: Extra scripts used by the
GNU Make for compilation (Makefile), and the scheduler
during execution and result recording (utility scripts).

Scheduler: The central controller of MSTest. With its in-
ternal state machine, the scheduler dynamically chooses the
order of testing, compiles and executes individual test cases,
and handles the housekeeping work of analyzing results.

A. Property-oriented test cases

Instead of using full attacks, MSTest chooses to use
property-oriented test cases, where each case is a small self-
sufficient program concentrating on evaluating a single (attack
or defense related) property. Compared with full attacks, it is
more likely to achieve the same coverage with less number of
test cases.

To illustrate the inefficiency of a test suite consisting of full
attacks, we take RIPE as an example. As shown Fig. 2, every
test case in RIPE is a full attack exploiting a buffer overflow
bug to alter control-flow. All test cases are generated using the
same attack template with five configurable parameters: buffer
location, overflow technique, function abused, pointer type and



target type. By choosing different combinations of these five
parameters, RIPE uses in total of 850 test cases to cover only
a portion of control-flow hijacking attacks (mostly ROP). This
is obviously inefficient [28]. A successful ROP attack relies
on the exploitation of three vulnerabilities: buffer overflow,
code-pointer corruption and control-flow hijacking. There is
dependency between these vulnerabilities but such dependency
might be indiscriminate, e.g. code-pointer corruption depends
on the possibility to exploit a buffer overflow but not selective
on the exact type: overflow or underflow by spray or pointer.
As long as there is a viable way to corrupt a specific return
address (RA) using one type of buffer overflow, and this RA
can indeed alter control flow, it is sufficient to conclude that
the platform under test is vulnerable to ROP attacks. There
is no need to re-examine the same ROP attack by exhausting
all possible ways of corrupting this RA. As a result, RIPE’s
exhaustive way of testing leads to a large number of partially
duplicated test cases.

MSTest provides a similar coverage by using a signifi-
cantly smaller number of test cases. It evaluates the three
vulnerabilities separately. For each vulnerability, MSTest has
multiple test cases where each of them tests a specific way
of exploitation or defense, which is considered as a property
of the platform.! There is dependency between properties, e.g.
returning to a ROP gadget relies on successfully revising a RA
to the entry of this gadget. This dependency is recorded by
parameter require in the configuration. As later discussed
in Section IV-B, the scheduler relies on this dependency to
specify the order of testing.

In order to ensure that the suite is not missing important
vulnerability classes or defense properties, we have manually
analyzed the RIPE, RecIPE, and Juliet at the early design
stage of this benchmark. We have carefully ensured that the
vulnerabilities covered in the analyzed benchmarks are also
covered by MSTest. From the suite maintenance point of
view, whenever a new attack emerges, the new vulnerabilities
utilized in this attack need to be identified. Corresponding
test cases should then be added to MSTest to cover them.
Based on the manual analysis, MSTest currently evaluates
six categories of properties’. Due to the limit space, a more
detailed description of all test cases is provided in our code
repository [36].

e Access capability (acc, 22 cases): Whether an attacker
can read critical information from memory.

o Memory spatial safety (mss, 122 cases): Whether an
attacker can read or write memory by a way violating
memory spatial safety.

"When we test a specific way of exploitation, the corresponding safety (e.g.,
integrity) property tells whether the platform is immunized from the specific
way of exploitation.

2There is currently no consensus on how to categorize the safety properties;
e.g., code-pointer integrity might be considered as a part of control-flow
integrity and many properties being tested under access capability may not be
considered as vulnerabilities. The presented classification is a pragmatic one
suiting the operation of the test suite as we consider an attack would typically
target a key pointer (code-pointer integrity) and alter it using a memory
spatial or temporal vulnerability selected according to the environment (access
capability), before eventually hijacking the control flow.

Buffer Location:

stack, heap, BSS, data.
(I))\llf:'fll())(:;/ug‘?clmique: Buffer
spray,
- Overflow
Function Abused:
memcpy (), strepy(), ...
. Pointer Type:
Code-Pointer RA, base pointer, func,
Corruption longjmp, struct.
Target Type:
shellcode with NOP,
shellcode without Nop, | Control-Flow
shellcode with poly. NOP, Hijacking
libe function, ROP gadgets.

Fig. 2. The test template and parameters of RIPE.

e Memory temporal safety (mts, 16 cases): Whether an
attacker can access data which is not allocated or already
de-allocated.

o Code-pointer integrity (cpi, 10 cases): Whether an at-
tacker can read or write critical code-related pointers.

e Backwards control-flow integrity (cfi-b, 17 cases):
Whether an attacker can maliciously alter the backwards
control flow.

o Forwards control-flow integrity (cfi-f, 40 -cases):
Whether an attacker can maliciously alter the forward
control flow.

Most test cases are composed of a set-up of a vulnerable
memory layout, a straight-forward and hard-coded violation
of memory safety, and a result feedback. A simplified version
of test case return-to-wrong-call-site is described
in Listing 1. During the call of helper () on line 22,
its RA is hijacked to TARGET_LABEL, which is the return
site of helper_useless () instead of helper (). The
definition of the two helper functions (line 5-13) and the
calling sequence inmain () (line 18-23) set up the vulnerable
(code) memory layout, while the attack behavior (line 9,10)
in helper () forcefully alters the RA on stack. The global
variable gvar is used to track the progress of the test case.
If the control-flow is successfully hijacked, O is returned by
exit () on line 26.

This test case concentrates on whether the modified RA
can hijack the control-flow. It is normally tested after
other tests confirming that RA can be modified on stack.
Therefore, the modification of RA is straightforward, ei-
ther by a stack pointer (SP) indexed write using a macro
MOD_STACK_DAT (label, offset) defined in PALib
or a simple buffer overflow (line 10), depending on an in-
put argument sel (line 18). The offset is also an input
argument (line 19) specifying the distance between RA and
SP/buf, while 1abel is the address of the wrong return site
(line 20).

The return value of a test case (by either return or
exit ()) identifies the exploitable status of a property. O
denotes that the property is exploitable, while others are used
to indicate the potential reason for the failed exploitation.
Normally a test case can fail in four scenarios: a compilation
failure as the compiler potentially identifies the vulnerabil-
ity, an expected exception or non-zero return value as the
exploitation is potentially prevented by a known defense, an



Listing 1

RETURN-TO-WRONG—CALL—-SITE.CPP

I #include "include/assembly.hpp"
2 long long offset;
3 int gvar;

5 void FORCE_NOINLINE helper (void xlabel,

6 gvar = 3;

7 void * buf[2];

8 COMPILER_BARRIER;

9 if (sel) MOD_STACK_DAT (label, offset);

10 else * (buf+offset) = label;

11 for (auto b:buf) b = (void x)&gvar;
allocation

12 gvar = 0;

13}

int sel) {

// from PALib

// enforce stack

15 void FORCE_NOINLINE helper_useless() { gvar = 4; }
17 int main(int argc, charx argv[]) {

18 int sel = std::stoi(argv(l]); // from configuration

19 offset = std::stoll(argv([2]); // from configuration
20 void *ret_label = &&TARGET_LABEL;
21 if (offset == -1) { goto *ret_label;} // confuse

compiler
22 helper (ret_label,
23 helper_useless();
24 COMPILER_BARRIER;
25 TARGET_LABEL:
26 exit (gvar);

7}

sel); // actual attack
// never called

// the wrong return site

unexpected runtime error as the memory might be messed
up and the test fails randomly, and an unexpected non-
zero return value as the exploitation fails silently. The first
two scenarios are considered as strong evidence of effective
defenses. MSTest adds its own exception handler to convert
specific exception types into predefined return values, and use
these return values to identify individual defenses. For the
other two scenarios, the behavior of the test case is unexpected
and is reported for further investigation.

B. Test configuration

The parameters of each test case is stored in a JSON file.
A rich set of parameters are supported by MSTest. We use
Listing 2 as an example to show the important ones. It specifies
a cross-object buffer overflow test (line 1-7) and the previous
ROP test described in Listing 1.°

Let us first discuss the overflow test. If the source code
does not share the name of the test case, it is located by
parameter program (line 2). Parameter require (line 3)
defines the dependency between test cases. A test case can be
executed when one of the pre-defined scenarios is satisfied.
The dependency in the example is simple. There is only
one scenario (case (0) requiring that intra-object overflow
has been confirmed exploitable. Similar to RecIPE, a tem-
plate can be used to generate multiple cases using different
macros at compile-time. In this case, BUFFER_SIZE=8,
REGION_KIND=0 and BUFFER_KIND=1, are defined by
parameter conf-macro as a list. It is common that a test
case needs runtime arguments, which are defined by parameter
arguments (line 7). Parameter expect-results records

3For simplicity, long names are reduced, and complex dependency condi-
tions are simplified, while the core idea remains.

Listing 2
CONFIGURATION EXAMPLES.
| "write-cross-obj-index-overflow-stack": {
2 "program": "write-cross-obj-index"

"require": { "O":[["write-intra-array-index-overflow-—

stack"11},

4 "conf-macro": {"O": {"BUFFER_SIZE":"8", "REGION_KIND":
"O", "BUFFER_KIND":"1"} },

B "arguments": { "0": "O" },

6 "expect-results": {"290": "CHERI enabled."}

7},

8

9 "return-to-wrong-call-site": {

10 "require": {

11 "0": [["get-ra-offset"], ["write-by-stack-pointer"
11,

12 "1": [["write-by-stack-pointer"]
"2": [["write-cross-obj-index-overflow-stack"]]},

14 "arguments": {

15 "O0": "1 S$stack-offset",

16 "i": "1 [O0:1:16]",

17 "2": "0 [2:1:32]1"},

18 "set-var": {

19 "o": [],
20 "1": ["stack-offset"],
21 "2": ["buf-offset"]},

22 "retry-results": {
23 "1" : "failed to modify RA",
24 "267": "segment error: partially written RA",

25 "251":
26 "expect-results":

"Arm ASan enabled"},
{"290": "CHERI enabled."}

all expected non-zero return values with their explanations;
e.g., return value 290* confirms that this attack is failed by
CHERI (Morello).

The configuration for return-to-wrong-call-site
is more complicated. There are three scenarios defined by
parameter require. For each scenario, the dependency is
described as a product of maxterms; e.g., [[A, B], D, [E, F]]
represents a Boolean logic (A + B) - D - (E + F), where
each Boolean variable is a test case and counted true when
the case returns O (exploitable). Scenarios are checked
in the defined order. In this case, scenario 0 is chosen
when the distance between RA and SP is obtainable
(get-ra-offset) and SP-indexed write is possible
on stack (write-by-stack-pointer). If test case
get-ra-offset fails to locate RA on stack, the test case
falls back to blind testing. It tries to modify RA by SP-indexed
write (scenario 1) if test case write-by—-stack—pointer
still returns 0. Otherwise, generic buffer overflow
(scenario 2) can be used as a fallback, if test case
write-cross-obj-index-overflow-stack
succeeds with 0. The selection of scenarios affects all
steps in running the test cases, including conf-macro,
arguments and set-var. As shown in line 14-17,
arguments are individually defined for each scenario.
In scenario 0, the 2nd argument is actually a variable
($stack-offset) stored in an in-memory variable
database managed by the scheduler (as shown in Fig. 1). All
variables in this database are set by individual test cases.
In this case, variable $stack—-offset should have been
initialized by test case get-ra-offset. The scheduler is

4Actually this is an exception caught by the test case and converted to this
specific return value.
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Fig. 3. Dependency related to return-to-wrong-call-site.

responsible for parsing the argument and replacing variables
with their values stored in the database. In scenarios 1 and 2,
without knowing the correct offset, the test case blindly
runs multiple times by using a different offset in each
trial. The range of this offset is defined directly in the
argument and parsed by the scheduler; e.g., [2:1:32]
denotes ranging from 2 to 32 using a step size of 1. If the
test fails, it retries if the return value falls in the pre-defined
list retry-results. When the test fails with an unknown
return value or the range is exhausted, the test case finished
with the return value of the last trial. When a test case
succeeds (returning 0), it may set up specific variables in
the in-memory database as defined by parameter set-var.
For this test case, it sets up variable stack-offset or
buf-offset depending on the chosen scenario.

C. Relation Graph

Let us expand the dependency described in List-
ing 2 a little bit further by exposing both the prereq-
uisites and the dependents (T1 and T2) of test case
return-to-wrong-call-site (T0) using a directed
acyclic graph depicted in Fig. 3.° The test suite considers two
types of dependency: utilization and relaxation. Ultilization
describes the requirement of utilizing one property in the
testing of another property. In Fig. 3, all prerequisites of test
case return-to-wrong—-call-site are utilization de-
pendency and depicted in solid arrows. Rather than specifying
the utilization relationships between two different properties,
the relaxation type of dependency sets up an order for testing
similar properties. In Fig. 3, the three ROP test cases (TO,
T1 and T2) are similar, but TO is the most evasive case.
Hijacking RA to a none-call-site gadget (T1) or a function
entry point (T2) is more likely to be detected by a coarse-
grained CFI defense than hijacking RA to a valid call site
(TO). Since T1 and T2 provide more freedom to attackers,
they are considered as relaxed from TO. If TO is tested failed,
it is certain that T1 and T2 would not succeed and there is no
need to test them. Therefore, evasive cases are tested before
their relaxed versions. This dependency is also described in
parameter require and depicted in a dashed arrow in Fig. 3.

Please note that the dependency defined in parameter
require literally specifies the scenarios when a test case
can be run. It is related to but different from the dependency
utilized in real-world attacks. Dependency potentially utilized
in a full attack may not be described in MSTest. For example,
a ROP attack may corrupt RA using a heap pointer obtained
by UAF; however, such dependency is not specified. MSTest
is a property-oriented test suite which does not exhaustively

SThis is for illustration only. Please see the actual dependency of case
<173>defined in the document for more details.

mss on mss on

global data heap

—= utilization
relaxation

Fig. 4. Relation graph of dependency between test cases.

test all attack combinations as properties are tested individu-
ally. MSTest has dedicated test cases to check whether long
distance write from heap to stack is possible (case <122,123>
as listed in Section I of [36]). Instead of depending on all
possible types of overflow, ROP-related test cases (cf£i-b)
depend on SP-indexed write on stack as it is one of the most
evasive ways of corrupting RA. In the rare situation where
SP-indexed write on RA is indeed prevented (e.g. LLVM’s
HWASan), a generic buffer overflow on stack is specified as a
fallback. This is considered sufficient, as none of the platforms
under test has successfully prevented both.

By connecting all test cases using the dependency specified
arrows and clustering them according to connections, Fig. 4
presents the relation graph for all test cases. There are five
visible clusters of test cases, where four of them are memory
spatial safety cases (mss) targeting the four memory regions:
stack, heap, read-only data and global data, respectively. As
the ROP-related cases (cf£i-b) need to corrupt RA on stack,
they are naturally associated with mss on stack. The forward
CFl-related cases (cfi—-f) are associated with CPI cases
(cpi), because hijacking forward control-flow normally needs
to corrupt function pointers. Finally, memory temporal safety
cases (mts) are connected to cfi—f because an attack may
hijack a call to a virtual function of a released object. There are
two interesting observations from the relation graph: Clusters
are connected by memory access capability cases (acc) and
cpi cases, which is understandable as most attacks depend
on capabilities to access and corrupt critical data/pointers
in memory. Almost all cross-category arrows are utilization
dependency, while intra-category arrows are usually relaxation
dependency.

MSTest is the first test suite to actively maintain this
dependency as it brings two major advantages: It automatically
regulates the order of testing. With the help of this dependency,
running the test suite becomes a traverse problem of the
relation graph. It always starts with test cases with zero
indegree and finishes with test cases with zero outdegree. A
test case is scheduled when all its preceding test cases are
executed. Since the graph is acyclic, it is guaranteed that all
test cases are executed once and only once. It reduces the



time of testing. When a test case can be scheduled as all its
preceding test cases in the relation graph have been run, the
execution of this case can be skipped if no scenario pre-defined
in parameter require is satisfied. This case is then inferred
failed and it is likely that all test cases depended on this one
are inferred failed as well. According to our results, this can
significantly reduce the time of testing by up to 40%.

D. Test scheduler

Test scheduler is the central controller of MSTest. It runs
MSTest in either a fast-run mode, where test cases are sched-
uled according to the relation graph and skipped if inferred
failed, or an exhausted-run mode, where all test cases are
tested.

Two in-memory databases are maintained by the scheduler:
a variable and a result databases. As mentioned in Sec-
tion I'V-B, when a test case succeeds, it updates the variables
defined by parameter set—var, which are maintained in the
variable database and used by other test cases according to
parameter arguments. The return values of all tested cases
are recorded in the result database, which is used by the
scheduler to check whether the pre-defined scenarios of a test
case are satisfied. After running the entire test suite, this result
database is analyzed and formated into a test report.

The scheduler is responsible for compiling (by launching
GNU Make) and executing (by spawning a process) each test
case. Note that the scheduler records a failed compilation as
a defense. After a successful compilation, the test case may
finish execution with a return value or throw an exception. The
scheduler handles all catchable exceptions, translates known
exceptions into expected return values, relaunches the test case
if a retry is needed, and finally records the return value into
the result database.

E. Fight with compiler optimization

We choose to use self-attacks rather than the generated
attacks adopted by RecIPE, as the latter rely on a separate
tool (pwntools [29]) for analyzing the compiled binary and
generating exploitation, which both limits the range of testable
properties and reduces portability. However, self-attacks un-
avoidably expose the attack behavior to compilers. A compiler
may obey the program and compile the attack as normal, or
notice the attack and refuse to compile (as a way of defense),
both of which are fine. However, modern compilers are capable
of making aggressive optimizations which may silently disarm
the embedded attack, which is undesirable for our use-case.
For this reason, we have spent quite some effort to exam the
test cases failing with unexpected return values, and carefully
revise them to avoid undesirable compiler optimization.

Several strategies are utilized in MSTest. When a certain
attack behavior is prevented by a compiler, it can be im-
plemented using a snippet of embedded assembly, because
most compiler would not try to analyze or optimize embedded
assembly. It is common for a compiler to reorder operations
when they are seemly independent. Since assembly imple-
mented attack behaviors are hidden from compilers, the seemly
safe reordering of operations may break an attack assumption.

In this case, explicit compiler barriers are added to prevent
such reordering, such as line 8 and 24 in Listing 1. Another
common optimization utilized by modern compilers is constant
propagation and result prediction. However, some attacks may
revise the seemingly constant variables, especially when such
revision occurs in embedded assembly. To stop compilers
from predicting the values of attack related variables, the
assignments of these variables are delayed to runtime using
arguments, and some related class/function definitions are
moved to shared libraries. Compilers are also found to be
aggressive in removing dead code. For example, it may remove
unreachable instructions according to its control-flow predic-
tion, replace a (virtual) function call by a simple assignment if
the function is deemed pure, or avoid allocating a stack frame
for a non-leaf function if the operation on local variables is
simple enough. All of these can unintentionally break attacks.
In Listing 1, a fake jump is added on line 21 to guarantee label
TARGET_LABEL is defined, and useless buffer operations are
added on line 11 to ensure buf is always allocated on stack.

F. Support for portability

Portability is one of the major design goals in the construc-
tion of MSTest. To fairly compare memory safety between
platforms, MSTest must be ported to multiple platforms and
run in a similar way. In addition, there is no doubt that
new vulnerabilities will be discovered and new defenses will
be adopted. MSTest shall allow new test cases to be easily
added. To achieve this goal, MSTest separates test cases into
platform-independent source code and a platform abstraction
library (PALib). All platform specific (C/C++ or assembly)
operations, calls to library functions, compiler intrinsics and
exception handlers are packed into PALib, while the remaining
source code in individual test cases is platform-independent
and easily portable.

Assembly code is a major part of PALib. As mentioned
in Section IV-E, embedded assembly is used to circumvent
compiler optimizations. Some attack behaviors are also easier
to implement in assembly compared to C/C++, such as revising
a variable on stack using SP as the base pointer (line 9
in Listing 1). However, assembly code is obviously difficult
to port between architectures. To resolve this problem, we
carefully regulate the use of assembly and extract a small
set of only 12 assembly macros and 1 assembly function (as
described in Section III of [36]) as an interface shared by all
test cases. All test cases include the same assembly header
(include/assembly.hpp) as on line 1 in Listing 1. The
correct assembly implementation is automatically chosen by
the compiler using compiler pre-defined macros, as shown
in Listing 3. A new implementation of these assembly code
snippets is usually required when MSTest is ported to a
new architecture, but no modification is needed for test cases
utilizing these assembly snippets.

Modern compilers usually provide builtin functions and
intrinsics for low-level functionalities. Whenever such func-
tionalities are required, MSTest prefers to use them rather
than make its own (assembly) implementation for better porta-
bility. One example is on line 20 in Listing 1, where the



Listing 3
CHOOSE THE RIGHT ASSEMBLY CODE.

I // part of include/assembly.hpp

> #if defined(__x86_64) || defined(_M_X64)
#if defined(_MSC_VER)

4 #include "x86_64/MSVC/assembly.hpp"
#else

6 #include "x86_64/P0OSIX/assembly.hpp"
#endif

8 #endif

address of label TARGET_LABEL is obtained using GCC’s
own &é& operator (LLVM compatible). Macros are defined
for common compiler directives as well, such as the macro
FORCE_NOINLINE on line 5 and 15 in Listing 1 tells
compiler to not inline the two helper functions.

Special attention is given to exception handlers. For a
number of test cases with known defense-raised exceptions,
MSTest implements a shared exception handling system that
catches exceptions, verifies their correctness and translates
known exceptions into pre-defined return values (defined by
parameter expect-results). This is one of the major
reasons why MSTest is capable of detecting and identifying
the applied defenses.

In all ported platforms, x86-64+Windows+MSVC is the
most difficult so far. MSVC’s own NMake is incompatible with
GNU Make. MSVC prohibits the use of embedded assembly
for x86-64 and its support for POSIX is not strictly compatible.
As a result, we have to re-implement the whole assembly
part using MSVC'’s intrinsics, replace the POSIX exception
handling system by Windows’s vector exception handling,
and require the installation of a GNU compatible make as
a compromise. After all, our test suite is the first to achieve
a fair comparison of memory safety between Windows and
Linux/BSD platforms.

V. EVALUATION

As described in Section III, the evaluation in this paper is
focused on the commercially available platforms listed in Ta-
ble II. Without further notice, each platform is tested with the
default compiler that comes with the official OS distribution.
Intel 8th and 12th gen processors running both Ubuntu 24
and Windows 11 are tested due to their different support of
Intel CET. Multiple Arm processors from different vendors
have been evaluated, including Apple, Amazon, and Google.
Regarding RISC-V, we have tested Freedom U740 [37], along
with Spike [32], the golden model used to standardize all new
ISA extensions of RISC-V. We have also tested Morello [34], a
security oriented architecture newly released from Arm based
on the CHERI architecture [10] designed by the University of
Cambridge. As the Morello dev board is unavailable outside
the UK, the tests are performed by emulation (FVP [38] for
Morello and QEMU for CHERI). Also in this section, the test
cases related to important findings are labeled by case IDs (as
listed in Section I and II of [36]) in angle brackets.

Number of failed test cases
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Fig. 5. The evaluation of software defenses on commercially available
platforms. (The total number of test cases in each category is labeled in
parentheses within the y-axis.)

A. Software defenses available on commercially platforms

In this section, we evaluate the software implmented de-
fenses that requires no special ISA extensions and are directly
available with the default compilers by setting extra compiler
flags. To provide a baseline, we would first measure the mem-
ory safety of various platforms using the default compilers
with no security related compiler flags. The details of the
platforms under test and the corresponding compiler flags are
described in Table IIT with each platform labeled using an
abbreviation listed in the first column for simplicity. The test
results are shown in Fig. 5.

Default: In general, the protection of memory safety is
weak on most platforms with the default compiler flags.
As depicted in Fig. 5, wide-deployed protections, such as
ASLR, WHE, RELRO (RELocation Read-Only) [3] and stack
canary, contribute to only limited defense. Both code and stack
segments are relocated by ALSR at the start of a new process
on Linux but they are relocated only at boot time on Windows
<14,15> @. Direct code injection is prevented by WSE on all
platforms. GOT hijacking [39] can be stopped by full RELRO,
as enabled by GCC and MSVC, but only partial RELRO is
enforced by LLVM by default <21> ). Stack canary is added
for functions operating strings on stack but disabled by default
for others <17,18>. It should be noted that RISC-V platforms
currently offer the worst level of protection, as they support
only the protections mentioned above.®

As shown in Fig. 5, i512-MSVC-default, M2-Apple-default,
i712-BSD-GCC-default and TG3-Android-default are safer
than others thanks to their extra defenses enabled by default.
Their enhanced memory allocators prevent attackers from

ORISC-V currently has the worst support for memory safety in all archi-
tectures tested in this paper. Sv48 and Sv57 are not supported by ASan [40].
GCC’s VTV is not ported to RISC-V. Although pointer masking (PM), shadow
stack (Zicfiss), and landing pad (Zicfilp) have been rectified, they are not fully
supported by the Linux kernel at the time of writing of this paper [41]. There
would be no further discussion of RISC-V in the rest of this paper.



TABLE III
THE CONFIGURATION OF SOFTWARE DEFENSES ON COMMERCIALLY AVAILABLE PLATFORMS.

Abbr. Arch. Processor Kernel Compiler Default/Extra compiler Flags

1712-GCC-default x86-64 i7-12700 Linux 6.8 GCC 13.2.0 -02 -std=c++11 -Wall

i712-LLVM-default x86-64 i7-12700 Linux 6.8 LLVM 18.0.0 -02 -std=c++11 -Wall

i512-MSVC-default x86-64 i5-12400 Windows 23H2  MSVC 19.38 /02 /Gd /std:c++11 /W3 /WX- /EHsc
i712-BSD-GCC-default ~ x86-64 i7-12700 GENERIC#79 GCC 11.4.0 -02 -std=c++11 -Wall

G3-GCC-default Armv8.4-A  Graviton 3 Linux 6.8 GCC 13.2.0 -02 -std=c++11 -Wall

G3-LLVM-default Armv8.4-A Graviton 3 Linux 6.8 LLVM 18.0.0 -02 -std=c++11 -Wall

M2-Apple-default Armv8.6-A  Apple M2 Darwin 23.2.0 LLVM 15.0.0¢ -02 -std=c++11 -Wall

G4-LLVM-default Armv9.0-A Graviton 4 Linux 6.8.0 LLVM 18.1.3 -02 -std=c++11 -Wall

TG3-Android-default Armv9.0-A  Tensor G3 Android LLVM 17.0.2° -02 -std=c++11 -Wall

U740-GCC-default RV64GC Free. U740 Linux 6.6.21 GCC 13.2.0 -02 -std=c++11 -Wall

U740-LLVM-default RV64GC Free. U740 Linux 6.6.21 LLVM 18.1.0 -02 -std=c++11 -Wall

Spike-GCC-default RV64GC Spike Linux 6.6.2 GCC 13.2.0 -02 -std=c++11 -Wall

X64-GCC-ASan x86-64 i7-12700 Linux 6.8 GCC 13.2.0 -fsanitize=address

X64-LLVM-ASan x86-64 i7-12700 Linux 6.8 LLVM 18.0.0 -fsanitize=address

X64-MSVC-ASan x86-64 i5-12400 Windows 23H2 ~ MSVC 19.38 /fsanitize=address

X64-GCC-UBSan x86-64 i7-12700 Linux 6.8 GCC 13.2.0 -fsanitize=undefined

X64-LLVM-UBSan x86-64 i7-12700 Linux 6.8 LLVM 18.0.0 -fsanitize=undefined

X64-GCC-fullSan x86-64 i7-12700 Linux 6.8 GCC 13.2.0 — - -
Arm-GCC-fullSan Armv84-A  Graviton 3 Linux 6.8 GCC 13.2.0 ~fsanitize=address,pointer-compare, undefined,
X64-LLVM-fullSan x86-64 i7-12700 Linux 6.8 LLVM 18.0.0 pointer-subtract, unsigned-integer-overflow,
Arm-LLVM-fullSan Armv8.4-A  Graviton 3 Linux 6.8 LLVM 18.0.0 signed-integer-overflow

Arm-Apple-fullSan Armv8.6-A  Apple M2 Darwin 23.2.0 LLVM 15.0.0

i712-LLVM-stack x86-64 i7-12700 Linux 6.8 LLVM 18.0.0 -fstack-protector-all -fstack-clash-protection
i712-LLVM-safestack x86-64 i7-12700 Linux 6.8 LLVM 18.0.0 -fsafestack

i712-GCC-VTV x86-64 i7-12700 Linux 6.8 GCC 13.2.0 —fvtable-verify=std

1712-LLVM-CFI x86-64 i7-12700 Linux 6.8 LLVM 18.0.0 —fsanitize=cfi -fvisibility=hidden -flto -static
i512-MSVC-CFG x86-64 i5-12400 Windows 23H2  MSVC 19.38 /0d /guard:cf /link /RICs

i512-MSVC-SDL x86-64 i5-12400 Windows 23H2  MSVC 19.38 /sdl /GS

a. Apple’s LLVM 15.0.0
b. Android LLVM cross compile toolchains.

easily reclaiming previous freed objects by double-free <144—
146>. Both M2-Apple and TG3-Android fail extra UAF read
in heap cases as they proactively clear objects after free
<153,154,157>. M2-Apple enforces a strict scope check that
prohibits direct jump from switch clause to outside <220>.
It also endeavors to avoid spilling return addresses onto the
stack when there are spare registers <181>, reducing the
number of available ROP gadgets. OpenBSD has the strongest
protection for temporal safety @. It proactively detect write-
after-free on heap by rewriting objects when they are freed
and checking whether they are intact in a postponed memory
recycle <157,159>. Canaries are inserted not only on stack
but also between heap objects <101,103,105>. Furthermore,
OpenBSD enables IBT (part of Inte CET) in both kernel and
userland by default, which reduces code gadgets available to
attackers @.

Sanitizer: Sanitizers are powerful tools to detect existing
memory errors in software. They provide strong safety en-
forcement, though usually considered as debugging or fuzzing
tools rather than production-ready defense [42]. We use the
12th gen x86-64 platforms for comparing the individual sani-
tizers available in most compilers, while all sanitizers shipped
with the default compilers are enabled when comparing be-
tween platforms.

Two sanitizers are widely available in most compilers:
Address sanitizer [8] (ASan) and undefined behavior sanitizer
(UBSan). ASan detects out-of-bound spray and overflow/un-
derflow attacks by inserting redzones into stack, global data,
and read-only data regions, but it is unable to safeguard
against intra-object overflows <54—65>, pinpointed overflows
bypassing redzones <38-45>, and overflows caused by type

conversions <136-143>. Test results also show that ASan
implements quarantines to detect UAF on heap <153,154>
and uses shadow memory to prevent use-after-return (UAR)
on stack <147,151> (unavailable in MSVC ASan @). UBSan
consists of several small sanitizers. It stops all overflow
accesses using out-of-bound indices, but using out-of-bound
pointers remains possible <67-72>. It even stops all COOP
test cases (c£i-f) except for those reusing VTables of sibling
or parent classes <201,202> @. MSVC notably lacks the
support for UBSan.

When all sanitizers shipped with the default compilers are
enabled,” some differences between platforms are observed.
The extra leak sanitizer enabled on x86-64 (X64-GCC-fullSan,
X64-LLVM-fullSan) successfully prevents some forward con-
trol hijacking attacks from tampering stack-related registers
<187,189,220>. The additional align check of Arm’s UBSan
makes extra trouble for attackers to fake stack frames <182>.

Other software protection: Modern compilers have
adopted multiple software defenses in addition to sanitiz-
ers. Stack protection and safe stack are two of such de-
fenses concentrating on protecting the stack. Compared with
1712-LLVM-default, stack protection on i712-LLVM-stack
stops 4 mss test cases issuing stack out-of-bound accesses
<67,70,88,89> and 2 cfi-b test cases faking stack frames
<181,182>. Safe stack stops 8 extra mss test cases related
to pinpointed overflows on the stack <38-45> @. Compilers
tend to have their own control-flow protection, such as GCC

7To enable the widest set of sanitizers provided by a certain compiler, we
manually enabled all the flags described in the man page, and then removed the
minority flags incompatible with others through multiple rounds of compiling
and testing.



TABLE IV
THE CONFIGURATION OF HARDWARE DEFENSES ON COMMERCIALLY AVAILABLE PLATFORMS.

Abbr. Arch. Processor Kernel Compiler Extra Compiler Flags

i78-GCC-CET x86-64 i7-8550 Linux 6.8 GCC 13.2.0 —fcf-protection=full
i78-MSVC-CET x86-64 i7-8550 Windows 23H2 MSVC 19.38 /link /CETCOMPAT

i512-MSVC-CET x86-64 i5-12400 Windows 23H2 MSVC 19.38 /link /CETCOMPAT

i712-GCC-CET* x86-64 i7-12700 Linux 6.8 GCC 13.2.0 -fcf-protection=full
i712-BSD-GCC-CET x86-64 i7-12700 OpenBSD#79 GCC 11.4.0

G3-GCC-BTI Armv8.6-A  Graviton 3 Linux 6.8 GCC 13.2.0 -mbranch-protection=bti
M2-GCC-BTI Armv8.6-A Apple M2 Darwin 23.2.0 GCC 11.2.0 -mbranch-protection=bti
G4-GCC-BTI Armv9.0-A Graviton 4 Linux 6.8 GCC 13.2.0 -mbranch-protection=bti
G4-LLVM-BTI Armv9.0-A Graviton 4 Linux 6.8 LLVM 18.0.0 -mbranch-protection=bti
G4-BSD-GCC-BTI Armv9.0-A  Graviton 4 ~ OpenBSD#79 GCC 11.4.0

TG3-LLVM-BTI Armv9.0-A Tensor G3 Android LLVM 17.0.2 -mbranch-protection=bti
G3-GCC-PA Armv8.4-A Graviton 3 Linux 6.8 GCC 13.2.0 -march=armv8.5-a+pauth -mbranch-protection=pac-ret
G3-LLVM-PA Armv8.4-A Graviton 3 Linux 6.8 LLVM 18.0.0 -march=armv8.5-a+pauth
G4-GCC-PA Armv9.0-A Graviton 4 Linux 6.8 GCC 13.2.0 -march=armv8.5-a+pauth
M2-Apple-PA Armv8.6-A  Apple M2 Darwin 23.2.0 LLVM 150.0 -arch arm64 -fptrauth-indirect-gotos...”
TG3-LLVM-PA Armv9.0 Tensor G3 Android LLVM 17.0.2 -march=armv8.5-a+pauth
M2-Apple-MTE Armv8.6-A Apple M2 Darwin 23.2.0 LLVM 15.00 -march=armv8.5-a+memtag
G3-GCC-MTE Armv8.4-A Graviton 3 Linux 6.8 GCC 13.2.0 -march=armv8.5-a+memtag
G4-GCC-MTE Armv9.0-A Graviton 4 Linux 6.8 GCC 13.2.0 -march=armv9.0-a+memtag
TG3-LLVM-MTE® Armv9.0-A Tensor G3 Android LLVM 17.0.2 -march=armv8.5-a+tmemtag
G3-GCC-TBI Armv8.4-A  Graviton 3 Linux 6.8 GCC 13.2.0 -fsanitize=hwaddress
G3-LLVM-TBI Armv8.4-A Graviton 3 Linux 6.8 LLVM 18.0.0 -fsanitize=hwaddress

G4-GCC-TBI Armv9.0-A  Graviton 4  Linux 6.8 GCC 13.2.0 -fsanitize=hwaddress
CHERI/Morello-conservative CHERI/Morello? CheriBSD/Linux 6.5.0 LLVM 14.0.0 -02 -fuse-1d=I1d

CHERI/Morello-no-revoke CHERI/Morello® CheriBSD/Linux 6.5.0 LLVM 14.0.0 -02 -fuse-1d=I1d

CHERI/Morello-strong CHERI/Morello CheriBSD/Linux 6.5.0 LLVM 14.0.0 -cheri-bounds=everywhere-unsafe

a. Set environment variable GLIBC_TUNABLES=glibc.cpu.hwcaps=SHSTK.

b. —-fptrauth-intrinsics -fptrauth-returns -ftrivial-auto-var-init-skip-non-ptr-array
—fptrauth-vtable-pointer-type-discrimination -fptrauth-vtable-pointer-address-discrimination —-fptrauth-calls

c. The 3rd gen Google Tensor SoC, marketed as "Google Tensor G3”.

d. Extra default flags for CHERL: -mno-relax -march=rvé64gcxcheri -mabi=164pcl128d; and Morello: -march=morello -mabi=purecap.

e. CHERIvoke is disabled in kernel.

VTV [17], LLVM CFI [17], and MSVC control flow guard
(CFG) [43]. VTV behaves exactly the same as UBSan in
preventing COOP, although it requires recompiling runtime li-
braries with ——enable-vtv. Arguably, LLVM CFI provides
the strongest CFI enforcement by enforcing a fine-grained
CFI with type verification on function arguments and pointer
casting ). However, it requires all classes to be link-time
visible, which breaks its support for dynamic linking. CFG
provides forward CFI by recording and verifying jump/call
targets using a bitmap, but it fails to verify VTable pointers
<205> @. Last but not least, MSVC’s security development
lifecycle checks (i712-MSVC-SDL) detect two UAF cases
using stale pointers <147,151> and one ROP case faking a
stack frame <182>.

B. Hardware defenses available on commercially available
platforms

This section evaluates the hardware defenses (ISA exten-
sions) directly available (without installing other libraries) on
each platform, including Intel CET [19], Arm BTI, Arm TBI,
Arm PA [22], Arm MTE [21], and CHERI [10]. Platforms
are listed in Table IV and the test results are depicted in
Fig. 6. Most of these defenses are enabled by extra compiler
flags while some require extra kernel or environment tweaks.
This section also tries to answer Q/ and Q2 raised in the
Introduction. From the test results, we can clearly observe
whether a hardware defense is enabled for user programs and
what level of protection is provided.

Intel CET: As a control-flow security extension released in
2016, Intel CET has been supported by compilers since GCC

11 [44] and LLVM 6.0 [45]. It consists of two components:
Shadow stack (SHSTK) and indirect branch target (IBT).
According to the results shown in Fig. 6 (X64), Intel CET
has no effect on the 8th gen as it is not supported. On
the 12 gen processors, SHSTK is supported by both Linux
(requiring recompiling glibc with ——enable-cet [46]) and
Windows [45] while IBT is supported by OpenBSD. None
of the OSes supports both. SHSTK with GCC (i712-GCC-
CET) stops almost all ROP-related attacks, including the most
evasive one <173> that hijacks the return to a wrong return
site complying with static control flow analysis. The only
escaping case found is one that attacks exec () spawned
processes <181> as SHSTK is not enabled for them by the
kernel. It is less effective on MSVC as it fails to protect the
return addresses of virtual functions <171> @. User mode
support of IBT is available only on OpenBSD (i712-BSD-
GCC-CET). Despite that 5 cfi—-f cases <187,189,220-222>
have failed @), this protection is still weak, because the ENDBR
instruction is added to not only function entries but also goto
labels, where the latter are non-functional gadgets remaining
available for CFI attacks. Instead of relying on IBT, Windows
decides to enforce forward CFI using its own CFG, which fails
even fewer cfi-f cases than IBT.

Using Intel CET as an example to answer question QI
raised in the Introduction: Intel CET is finally available for
protecting user land applications after 8 years since its initial
proposal. It indeed provides protection against both forward
and backward CFI attacks. The GCC implemented SHSTK is
potentially strong, as it fails almost all cf£1i-b cases. However,
none of the platforms has yet supported both SHSTK and IBT,
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Fig. 6. The results of hardware defenses on commercially platforms.

and the fine differences of the protection achieved on various
platforms are clearly observable using our test suite.

Arm BTI: Branch target identification (BTI) is introduced
in Armv8.5 [47] to provide forward CFI protection similar to
what achieved by IBT provided by Intel CET. Although com-
pilers are ready for instrumenting programs, no protection is
observed on Graviton 3 and Apple M2, as the support for BTI
is optional and the processor hardware is not ready yet, until
Graviton 4 and Goolge’s Tensor G3. On these two platforms,
BTI seems to provide better protection than IBT. It not only
reduces available code gadgets but also prevents attackers from
hijacking calls to goto labels <220,222>, because the latter are
noted by operands of the BTI instruction @. Notably, only
OpenBSD enables BTI by default.

Arm PA: Introduced in Armv8.3-A [20], PA enforces the
integrity of pointers using a pointer authentication code (PAC)
calculated at runtime. This PAC is stored at the highest unused
bits of pointers and checked against the recalculated PAC at
dereference time [20]. The backward CFI protection provided
by PA is weaker than SHSTK. Both GCC and LLVM use the
stack pointer as a key in the calculation of PAC for return
addresses. This allows attackers to forge return addresses by
reusing stack frames <182>. A small variance is also observed
on different platforms. In Graviton 3, an authentication fail-
ure does not immediately terminate the program <172,178>,
leaving room for brutal forced guesses. This loophole is later
blocked by Graviton 4, Apple M2, and Tensor G3. Instead
of asking all parts to have protection enabled at link time
as required by SHSTK, PA can be partially enabled only for
critical safety parts <170,177>.

M2-Apple-PA is the only platform (M1 and M3 produce
identifical results) deploying PA for additional forward CFI
protection @@ using an experimental ABI arm64e, which covers
function pointers, VTable pointers, and the virtual function
pointers stored in VTables [48]. By using both function name
and argument types for diversifying PACs, the protection on
VTable related pointers is strong. It stops almost all VTable

related hijacks <194-205>, include those cases neglected by
sanitizers of reusing the VTables of sibling or parent classes.
The protection on function pointers is substantially weaker. All
function pointers share a globally defined salt in their PACs,
allowing for potential control-flow bending by manipulating
function arguments <207-211>. Finally, scanning the code
segment reveals that some VTables are not covered and remain
vulnerable <188>.

Arm MTE: Introduced in Armv8.5-A [21], MTE im-
plements a memory coloring machanism typically used for
enforcing memory spatial and even temporal safety. To our
surprise, our tests show that no runtime protection is observed
after enabling MTE in compilers on many of the recent Arm
platforms, including Graviton 3 (Armv8.4-A with Armv8.6-A
features [49]), Graviton 4 (Armv9.0-A), Apple M2 and M3
(Armv8.6-A) [50]. It is very likely that MTE is opted out on
these platforms as it is optional. Google Tensor G3 (TG3-
LLVM-MTE) is the only platform found with proper support
of MTE. It prevents linear and pinpointed inter-object overflow
on heap and stack <38-39,42-43>, but not for global data
<40,44> @. As the same color is shared by each consecutive
16 bytes, MTE fails to detect small overflows within this
granularity <67-72>. Intra-object overflow is not detected
as well as the whole object shares the same color <54-
65>. Generally speaking, MTE provides observable protection
against spatial overflows but the protection is not strong.

Arm TBI: Introduced in Armv8.5-A [51] and supported by
Android 11 and Linux 5.4 [52], Arm top-byte ignore (TBI)
is used by both GCC and LLVM to implement HWASan.
It is more effective than ASan (X64-GCC-ASan), its soft-
ware implemented counterpart, on both spatial and temporal
safety, because the tag stored in the top-byte of pointers
can be used to check the correct ownership of the pointed
memory objects [53]. According to our test results, HWASan
successfully intercepts extra pinpointed overflows <38—45>,
UAF attacks <153,154>, and backward CFI attacks <172>.
It achieves the best temporal safety in all tested defenses
and strong spatial safety which is weaker only than CHERI
(CHERI-strong). GCC’s HWASan is relatively weaker than
LLVM’s on the protection against pinpointed overflows. While
GCC’s HWASan prevents pinpointed overflows occurred on
heap <39,43>, the LLVM’s version is able to protect pointers
in all regions, including stack and global data <38-45> @.
Similar to MTE, intra-object overflow is not detected.

CHERI and Morello: Morello [34] is Arm’s implemen-
tation of the capability enforced CHERI architecture [10]
developed by the University of Cambridge. Both CHERI and
Morello have been tested and the results are revealed in Fig. 6.
Both platforms enforce strong spatial safety by checking each
memory access according to the capability stored inside a 128-
bit fat pointer denoted by a 1-bit memory tag. The capability-
based check has five predefined restriction levels chosen at
compile-time. The default level is conservative (CHERI-
conservative), where capability checks are already enforced
for almost all memory accesses and resulting protection is
impressive. The number of failed spatial safety (mss) cases
is comparable to that achieved by HWASan. When the level
is raised to the strictest, everywhere—-unsafe (CHERI-



TABLE V
DEFENSES COMBINATIONS TESTED ON VARIOUS PLATFORMS.

Env. Abbr. Processor Compiler Enabled Defenses
i712-BSD i7-12700 LLVM 16.0.0  CET-IBT, stack pointer
i512-Windows i5-12400 MSVC 19.38 ASan, SDL, CET-SHSTK, stack pointer
i712-Linux i7-12700 LLVM 18.0.0  ASan, UBSan, FORTIFY, CET-SHSTK, stack pointer, CFI
Develop G4-Linux Graviton 4 LLVM 18.0.0 ASan, UBSan, FORTIFY, stack pointer, PA, BTI, CFI
M2-MacOS Apple M2 LLVM 15.0.0 ASan, UBSan, FORTIFY, stack pointer, PA
TG3-Android Tensor G3 LLVM 17.0.2  ASan, UBSan, FORTIFY, stack pointer, PA, BTI, CFI
Morello-CheriBSD LLVM 14.0.0  part of ASan, FORTIFY, capability, revoke
i712-BSD i7-12700 LLVM 16.0.0  CET-IBT, stack pointer
i512-Windows i5-12400 MSVC 19.38 SDL, CET-SHSTK, stack pointer
i712-Linux i7-12700 LLVM 18.0.0 FORITFY, CET-SHSTK, stack pointer, safe stack
Production G4-Linux Graviton 4 LLVM 18.0.0 HWASan, FORTIFY, stack pointer, PA, BTI
M2-MacOS Apple M2 LLVM 15.0.0  FORTIFY, stack pointer, safes stack, PA
TG3-Android(TBI) Tensor G3 LLVM 17.0.2 HWASan, FORTIFY, stack pointer, PA, BTI
TG3-Android(MTE) Tensor G3 LLVM 17.0.2 FORTIFY, stack pointer, PA, BTI, MTE
Morello-CheriBSD LLVM 14.0.0  FORTIFY, capability, revoke

strong), the capability based check is extended to detect
incorrect type conversions <136-143> and overflow inside
objects <54-65>, resulting in the strongest spatial safety pro-
tection in all tested defenses. Both CHERI and Morello have
been carefully designed to avoid capability-protected pointers
from being modified by non-capability registers in embedded
assembly codes. CHERI would report errors at compile-time
while Morello chooses to allow such code passing compilation
for compatibility but raise exceptions at runtime. However, the
protection of spatial safety still leaves a small vulnerability as
indicated by our test suite. The capability recorded size infor-
mation becomes imprecise for large arrays, which allows for
undetected overflows <46-53>. Comparing between CHERI
and Morello, CHERI provides better cfi—f protection by
further detecting all code pointer casting errors <208-210>.

Both CHERI and Morello provide temporal safety on heap
through CHERIvoke, a garbage collection based on fast mem-
ory sweeping and revocation. It is enabled by default but
can be disabled in kernel . According to our test results,
CHERIvoke sufficiently prevents attackers from reclaiming
freed objects, but the memory sweeping might be slow to catch
all accesses after free <153>. Protection for UAF on stack
is also notably missing <147-152>. Overall, the achieved
protection is comparable to that provided other enhanced
memory allocators.

Let us use Morello as an example to answer question Q2
raised in the Introduction: Morello/CHERI claims to achieve
strong spatial safety through capability-enforced compartimen-
talization. Our test results have successfully demonstrated that
the protection is indeed strong even at the conservative level.
When the level is increased to everywhere-unsafe, both incor-
rect type conversion and intra-object overflows are prevented,
achieving the strongest protection in all defenses. However, the
protection still has loopholes as the size information stored in
tags is imprecise for large arrays.

C. Comparison of memory safety crossing platforms

In this section, we would like to answer question Q3 raised
in the Introduction by comparing the memory safety crossing
platforms when all available defenses are enabled. Considering
that software ASans are regarded as debug tools used during
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Fig. 7. The results of enabling all defenses on commercially platforms.

development, we conduct the comparison in two settings:
develop environment where all defenses, including ASans, are
enabled, and production environment where all defenses other
than ASans are enabled. The defense combinations are listed
in Table V while the test results are presented in Fig. 7.
According to our test results, there is no clear winner
in the develop environment, largely because of the different
combinations of defenses supported on various platforms.
UBSan is effective in protection against certain types of
overflows (mss) and COOP attacks (cfi-f), but it is not
fully supported on BSD and Windows, leading to their being
worse than most other platforms with respect to spatial safety
and forward CFI. BSD is especially weak on spatial safety,
because ASan is unavailable too. For temporal safety, ASan
is actually the most effective as it thwarts both UAF on
heap and on stack. All the platforms supporting the full



ASan outperform Windows (due to the partial support of
ASan) and BSD (i712-BSD and Morello-CheriBSD, relying
on enhanced memory allocators). CET-SHSTK is currently the
strongest defense against ROP attacks. For this reason, i512-
Windows and i712-Linux are better than the Arm PA enforced
G4-Linux, M2-MacOS and TG3-Android on backward CFI,
while BSD platforms again are the least protected. Thanks to
the capability-enforced compartimentalization on Morello, it
presents the strongest spatial safety, but protection on other
aspects shows no significant advantage.

In the production environment, software implemented san-
itizers (ASan and UBSan) are disabled and HWAsan is en-
abeld if it is available (G4-Linux and TG3-Android(TBI)).
No difference is observed for BSD platforms (i712-BSD and
Morello-CheriBSD) as they support none of ASan, UBSan,
or HWASan. The platforms (i512-Wiindows, i712-Linux and
M2-MacOS) supporting ASan or UBSan but not HWASan
clearly suffer substantially from weak both spatial (mss) and
temporal (mts) safety. Comparing between HWASan and
the combination of ASan+UBSan, HWASan is actually more
effective than ASan in spatial safety but weaker than UBSan
in temporal safety, which is observable by the results of
G4-Linux and TG3-Android. Arm MTE is also effective in
enforcing spatial and temporal safety (TG3-Android(MTE)),
but the provided protection is weaker than HWASan (TG3-
Android(BTI)). Without the protection of UBSan, Apple’s PA
is used to enforce CFI on M2-MacOS, providing almost the
same level of protection. However, i712-Linux, G4-Linux and
TG3-Android resort to CDT-IBT or Arm BTI for forward
CFI, which is much weaker than the Apple implemented
PA. Overall, Morello/CHERI remain strong in the production
environment; HWASan and Apple’s PA help TG3-Android,
G4-Linux and G4-Linux maintain their safety level in the
absence of ASan and UBSan; i512-Windows and i712-Linux
suffer from weaker protection with respect to spatial and
temporal safety.

It is also important to summerize the common vulnerabil-
ities identified when all available defenses are enabled. It is
found that some critical information is still easily acccessible
on most platforms, such as locating RA on stack <17-19>,
reading function pointers <16> or VTable pointers <160—
163>, deciphering GOT table entries <21>, detecting redzones
<4-11>, checking ASLR status <14,15> or CET status <20>,
etc. Manipulating pointers is not prevented even on platforms
enforced with Arm PA, such as arbitrary modification on
function and VTable pointers <167,168> or adding pointers
with arbitrary offset <164—-166>. Morello/CHERI is the only
platform capable of detecting intra-object overflows <54-65>,
and small sized overflow (overflow by one) remains possible
due to the imprecise recording of size (tag in MTE <67-
72> and CHERI<73>). Although UAF on heap is carefully
protected using enhanced memory allocators and detectable
by UBSan/HWASan, UAF on stack is largely overlooked,
allowing attackers to reuse stack frames <147-152>. The
lack of stateful CFI enforcement on most platforms allows
for potential control-data attack and evasive control hijacking
(complying with static CFI analysis) <173>. Existing COOP
defenses are ineffective in detecting attacks reusing the VTa-

bles of sibling or parent classes, or even released objects
<201,202,206>.

Finally, let us answer question Q3 raised in the Introduction.
The results in Fig. 7 perfectly demonstrate the ability of
using our test suite to compare the memory safety provided
by defense combinations on various platforms. The same
architecture extensions, such as Intel CET and Arm PA, are
utilized by different platform vendors in different ways when
building user land defenses. The unique characteristics of
our test suite make the resulting differences in safety levels
observable. For example, Apple’s PA provides much stronger
protection than Arm’s PA and Windows’ own backward CFI
protection is weaker than CET-SHSTK.

VI. CONCLUSION

In this paper, a memory safety test suite, namely MS7est, is
implemented. It is the first portable memory safety test suite
conducting property-oriented testing, automatically resolving
dependency between test cases, providing a comprehensive
coverage on attack and defense capabilities, and capable of
comparing memory safety cross platforms.

MSTest currently has 227 test cases covering access ca-
pability, memory spatial and temporal safety, code-pointer
integrity, and backward and forward control-flow integrity.
It has been ported to 19 platforms crossing all major ar-
chitectures, including x86-64, Armv8/9, RV64 and CHERI,
operating systems, including Linux, Windows, MacOS and
Android, and compilers, including GCC, LLVM and MSVC.
Utilizing MSTest, we have analyzed the protection provided by
various software and hardware implemented defenses directly
available on these platforms, including compiler shipped san-
itizers (ASan, UBSan, HWASan), stack protection, safe stack,
GCC VTV, LLVM CFIL, MSVC CFG, MSVC SDL, Intel CET,
Arm BTI, Arm TBI, Arm PA, Arm MTE, and CHERI.

The test results demonstrates that MSTest can be used to:
(Q1) verify whether a defense, which is claimed supported
on a platform, can be actually deployed in user land and
provide proper protection; (Q2) quantitatively measure the
protection provided by a defense on a platform and reveal the
remaining vulnerability; and (Q3) compare the memory safety
of two platforms implementing similar types of defenses.
To be specific, we quantitatively verify that the software
implemented ASan+UBSan is effective in detecting violations
in spatial and temporal safety, along with forward CFI. With
these software sanitizers, HWASan is a good substitute for
spatial and temporal safety. Apple’s PA is capable of providing
similar forward CFI enforcement, while CET-IBT and Arm-
BTI is significantly weaker. CET-SHSTK provides stronger
protection against ROP attacks than Arm PA. Finally, CHERI
is impressive in protecting spatial memory safety.
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