
IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 3, MARCH 2025 805

WhistleBlower: A System-Level Empirical
Study on RowHammer

Wei He , Zhi Zhang , Yueqiang Cheng , Wenhao Wang , Wei Song , Member, IEEE, Yansong Gao ,
Qifei Zhang , Kang Li , Dongxi Liu , and Surya Nepal , Member, IEEE

Abstract—With frequent software-induced activations on
DRAM rows, bit flips can occur on their physically adjacent rows
(i.e., RowHammer). Existing studies leverage FPGA platforms to
characterize RowHammer, which have identified key factors that
contribute to RowHammer bit flips, e.g., data pattern. As the
FPGA-based studies have removed the interference of the OS and
the memory controller, their findings on the identified contributing
factors do not always work as reported in a real-world computing
system, resulting in negative effects on system-level RowHammer
attacks and defenses. In this paper, we carry out a system-level
empirical study on factors from both the software side and the
DRAM side that contribute to RowHammer. We conduct the study
on 33 DRAM modules including both DDR4 and DDR3, with 292
DRAM chips from various vendors. Our experimental results from
the software side show that some prior findings about existing
factors are inconsistent with our observations, thus not applicable
to a real-world system. Also, we contribute to identifying one new
factor that effectively affects RowHammer bit flips. Our DRAM-
side results identify three types of new contributing factors and
indicate that DRAM modules are more vulnerable if they achieve
better performance and lower power consumption. Particularly,
Intel XMP, intended for improving DRAM performance, might be
abused for RowHammer attacks.

Index Terms—Computing system, DRAM, FPGA, RowHammer.

Manuscript received 14 March 2022; revised 4 October 2022; accepted 1
January 2023. Date of publication 10 January 2023; date of current version 12
February 2025. This work was supported in part by the National Key R&D
Program of China under Grant 2020YFB1805402, in part by the National
Natural Science Foundation of China under Grants 62272452, 62002167, and
62172406, and in part by the Natural Science Foundation of JiangSu under
Grant BK20200461. Recommended for acceptance by S. Sethumadhavan and
S. Devadas Guest Editors. (Wei He and Zhi Zhang are co-first authors.) (Corre-
sponding author: Wenhao Wang.)

Wei He, Wenhao Wang, and Wei Song are with the SKLOIS, Institute of
Information Engineering, CAS and School of Cyber Security, University of
Chinese Academy of Sciences, Beijing 101408, China (e-mail: hewei@iie.ac.cn;
wangwenhao@iie.ac.cn; songwei@iie.ac.cn).

Zhi Zhang is with the University of Western Australia, Crawley 6009, Aus-
tralia (e-mail: zhi.zhang@uwa.edu.au).

Yueqiang Cheng is with the NIO, Hefei 201805, China (e-mail: yue-
qiang.cheng@nio.io).

Yansong Gao is with the Data61, CSIRO, Canberra 2601, Australia, and
also with the School of Computer Science and Engineering, NanJing Uni-
versity of Science and Technology, Nanjing 210095, China (e-mail: yan-
song.gao@njust.edu.cn).

Qifei Zhang is with the School of Software, Zhejiang University, Hangzhou
310027, China (e-mail: cstzhangqf@zju.edu.cn).

Kang Li is with Baidu, Beijing 100085, China (e-mail: kangli01@baidu.com).
Dongxi Liu and Surya Nepal are with the Data61, CSIRO, Canberra 2601,

Australia (e-mail: dongxi.liu@data61.csiro.au; surya.nepal@data61.csiro.au).
Digital Object Identifier 10.1109/TC.2023.3235973

I. INTRODUCTION

W ITH the rapid progress of semiconductor technology,
DRAM storage cells continue scaling down and dis-

tances between cells are getting smaller, resulting in electromag-
netic coupling problems [1]. Among them, RowHammer has
attracted the most attention from both academia and industry
in recent years, as it poses a a serious challenge to system
security. Specifically, RowHammer is a circuit-level interfer-
ence phenomenon where repeatedly accessing DRAM rows
(aggressor rows) can induce bit flips in data from nearby rows
(victim rows) [2]. By exploiting RowHammer-induced bit flips,
an unprivileged attacker can achieve privilege escalation [3],
[4], [5], [6], [7], [8], [9], sandbox escaping [6], [7], [10], [11],
denial-of-service [12] and cryptographic key recovery [13], [14].

To address the security challenge and mitigate the RowHam-
mer attacks, researchers have spent great efforts characterizing
RowHammer with the assistance of Field-Programmable Gate
Array (FPGA) platforms [2], [15], [16], [17], [18], [19], [20],
and their results have identified key factors that contribute
to RowHammer bit flips both effectively and efficiently. Al-
though FPGA platforms can serve as an alternative and con-
trollable memory controller to obtain precise results, such plat-
forms conceal the complexity of real-world computing systems,
which are the primary targets of attackers. Thus, the identified
RowHammer factors might not work as expected in a real-
world scenario, as these factors were tested through the FPGA
platform without the interference from the OS and memory
controller.

For example, Kim et al. [2] leverage the FPGA platform to
characterize RowHammer bit flips based on the DRAM cell
type [21]. In particular, RowHammer causes a DRAM true
cell flip from ‘1’ to ‘0’ and an anti cell flip from ‘0’ to ‘1’.
Following their work, CTA [22], as a system-level RowHammer
defense, places all page tables onto high physical addresses of
true cells and leverages the monotonic bit-flip direction of true
cells to protect page tables from RowHammer attacks. However,
in a real-world commodity system, the monotonic property does
not hold, because the data scrambling feature deployed by the
modern memory controller [23] enables a true cell to flip from
either direction, breaking the security guarantee of CTA. Also,
Cojocar et al. [15] utilize the FPGA and the UEFI firmware
to record DDR commands and count DRAM activation rate.
They show that using memory barriers (e.g., mfence) slows
down the DRAM activation (ACT) rate and induces less bit

0018-9340 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Institute of Information EngineeringCAS. Downloaded on February 13,2025 at 09:13:01 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9434-5218
https://orcid.org/0000-0003-3604-5369
https://orcid.org/0000-0002-6277-340X
https://orcid.org/0000-0001-7294-2724
https://orcid.org/0000-0001-5649-1580
https://orcid.org/0000-0001-5783-2172
https://orcid.org/0009-0001-8247-4562
https://orcid.org/0000-0003-3985-6116
https://orcid.org/0000-0002-0221-2571
https://orcid.org/0000-0002-3289-6599
mailto:hewei@iie.ac.cn
mailto:wangwenhao@iie.ac.cn
mailto:songwei@iie.ac.cn
mailto:zhi.zhang@uwa.edu.au
mailto:yueqiang.cheng@nio.io
mailto:yueqiang.cheng@nio.io
mailto:yansong.gao@njust.edu.cn
mailto:yansong.gao@njust.edu.cn
mailto:cstzhangqf@zju.edu.cn
mailto:kangli01@baidu.com
mailto:dongxi.liu@data61.csiro.au
mailto:surya.nepal@data61.csiro.au

806 IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 3, MARCH 2025

TABLE I
A COMPARISON OF PRIOR FINDINGS AND OUR SYSTEM-LEVEL EMPIRICAL STUDY

flips. In contrast, we observe from a real-world system that using
mfence for hammer can trigger much more bit flips.

Besides, hardware manufacturers frequently tune DRAM pa-
rameters to improve performance and reduce power consump-
tion, which are likely to introduce more vulnerable DRAM
modules. For example, eXtended Memory Profile (XMP) [24],
proposed by Intel, optimizes DRAM process and parameters
to overclock DRAM and improve DRAM performance. We
observe that enabling XMP from hardware significantly in-
creases DRAM susceptibility to RowHammer, indicating that
an attacker might abuse XMP to mount a RowHammer attack.
Unfortunately, many DRAM parameters have been ignored by
prior works and a comprehensive evaluation of these parameters
with regard to RowHammer is needed.

A. Our Work

To bridge the gap between FPGA-based findings and system-
level RowHammer defenses and attacks, we perform an em-
pirical study on factors contributing to RowHammer bit flips
from a real-world system (i.e., a system-level study), using a
popular Ubuntu OS and 33 different DRAM modules including
both DDR3 and DDR4 (292 DRAM chips from 12 vendors).
Specifically, our testbed consists of commercially available
hardware, that is, Intel i3-10100 processor + MSI Z490 moth-
erboard and Intel i7-4790 processor + ASUS Z97 motherboard.
For the software of our testbed, we extend DRAMDig [27], a
DRAM address mapping reverse engineering tool, to implement
a RowHammer test. Our test supports 5 user-configurable pa-
rameters that have observable effects on bit flips, i.e., hammer
pattern, data pattern, hammer method, hammer count and multi-
thread. We first launch the RowHammer test with default DRAM
parameters to perform memory templating and find a certain
number of physical addresses vulnerable to bit flips. Based on
the stored vulnerable addresses, we then investigate factors from
both the software side and the DRAM side as follows.

Investigating factors from the software side: We attribute
RowHammer factors that can be controlled by software into this
category. They are known to have noticeable effects on bit-flip
rates, and are thus crucial for RowHammer attacks and defenses.
In our study, we first summarize prior findings about existing
contributing factors. We then provide the RowHammer test with
different parameter values to re-evaluate these findings in terms
of their bit-flip rate on the vulnerable addresses. Table I shows a
comparison of prior findings and our empirical observations. For
the re-evaluation, we also leverage an FPGA board to reproduce
some prior findings from prior FPGA-based studies, that is, we
leverage SoftMC [28], an open-source FPGA-based platform to
perform RowHammer tests on a Xilinx ML605 FPGA board. As
a comparison, similar experiments are conducted in a Lenovo
Thinkpad T420 s laptop with Ubuntu Gnome environment in-
stalled. Both the FPGA board and the Thinkpad laptop use the
same vulnerable single-rank Samsung DDR3 SODIMM (2 GiB
with 8 DRAM chips). We summarize the experimental results
as well as the new contributing factor identified in our study as
follows.
• Hammer pattern (e.g., many-sided hammer [29]) specifies

the number of rows being hammered. An effective hammer pat-
tern results in frequent row activations and could bypass Target
Row Refresh (TRR), a RowHammer defense implemented in
present DDR4 modules [30]. We have examined 4 hammer
patterns and observe that hammering fewer rows with the same
access number for each row achieves better bit-flip effectiveness,
being inconsistent with [16] which claims that if ann1-side ham-
mer (n1 > 2) can successfully flip the bit, then n2-side hammer
(n2 > n1) is also successful to induce the bit flip if the same
access number is applied. We note that we have successfully
reproduced the claim from [16] using the FPGA board and the
system-level observation using the Thinkpad laptop.
• Data pattern refers to data values stored in aggressor and

victim rows (e.g., “RowStripe” [2]), which is critical in trigger-
ing bit flips. In [25], the “Killer” pattern is reported to be the most

Authorized licensed use limited to: Institute of Information EngineeringCAS. Downloaded on February 13,2025 at 09:13:01 UTC from IEEE Xplore. Restrictions apply.

HE et al.: WHISTLEBLOWER: A SYSTEM-LEVEL EMPIRICAL STUDY ON ROWHAMMER 807

effective in triggering bit flips. In our study, we tested 10 data
patterns including the “Killer” pattern. The results show that the
“RowStripe” and “Checkered” patterns with their inverses are
the most effective ones among the tested data patterns on the
system-level. We also conduct the same experiments on both
the laptop and the FPGA board. The results from the laptop
are consistent with the system-level observation. While for the
FPGA board, the results confirm prior works [2], [17] done at the
FPGA level, that is, the ‘RowStripe” pattern is the most effective
one.
• Hammer method (e.g., clflush followed by a memory

load and mfence [2]), bypasses CPU caches and enables
DRAM memory accesses to a row being hammered. We have
experimented with 12 hammer methods and showed that these
methods have different RowHammer bit-flip effectiveness in
given DRAM modules. We also observe that the order of by-
passing caches and triggering memory accesses (known as the
“gather” pattern and the “scatter” pattern) do not work the same
as observed in [10]. The two patterns show distinct effectiveness
in triggering bit flips against given DRAM modules. Besides,
we note that a hammer method without a memory barrier (e.g.,
mfence) induces much fewer bit flips compared to that with
a memory barrier on some given DRAM modules, which is
inconsistent with the observation from [15] in the FPGA level,
indicating that an improved DRAM activation rate made from
the FPGA platform does not necessarily contribute to a more
effective hammer method at the system level. As the number of
row buffer conflicts is an strong indicator of hammering effec-
tiveness, we leverage an Intel server (i.e., Intel Xeon E5-2660
v2), to collect the statistics of row buffer conflicts caused by dif-
ferent hammer methods with and without mfence. The results
show that different hammer methods cause different row buffer
conflict rates and thus cache-flush instructions with memory
read are more effective than other hammer methods, while the
mfence-based hammer methods do increase the row buffer
conflict rate, resulting in an improved hammering effectiveness.
• Minimal hammer count is the least number of accesses

required to each hammered row for inducing the first bit flip. We
test the minimal hammer count (i.e., HCfirst in [17]) from the
system-level and find that the minimal hammer count of DDR4
modules (i.e., 10 K) is same as previously reported [17] while the
minimal hammer count of DDR3 modules is much higher than
that from previous FPGA-level works [2], [17]. Our experiments
on the laptop and the FPGA board validate the DDR3-based
finding, that is, the minimal hammer count on DDR3 in the
system-level is much more that in the FPGA-level.
• Multi-thread is proposed to improve hammer effectiveness,

as hammering multiple aggressor rows within a single thread is
inefficient [8], [12], [25], [26]. Our system-level RowHammer
test supports multi-thread hammer, based on the implementa-
tions of SGX-BOMB1 and “rowhammer_armv8”.2 The experi-
ments show that multi-thread hammer is much less effective than
single-thread hammer for DDR4 modules with TRR, and more
effective for DRAM modules without TRR. The effectiveness

1[Online]. Available: https://github.com/sslab-gatech/sgx-bomb
2[Online]. Available: https://github.com/VandySec/rowhammer_armv8

difference is probably caused by the TRR’s sampler, which
might be ignored by prior works [8], [12], [25], [26].

•Bit-flip Direction: From our system-level RowHammer test,
we observe that the bit-flip direction for a DRAM cell can be
different if the system restarts, that is, a vulnerable DRAM
cell can be flipped from either ‘0’ to ‘1’ or ‘1’ to ‘0’, which
can be attributed to the data scrambling feature in modern
commodity systems. The effect of data scrambling has been
ignored by a recent RowHammer defense (i.e., CTA [22] in
ASPLOS’19), which leverages different DRAM cell types to
enforce monotonic bit-flip direction.
• Running Environment: We have identified a new contribut-

ing factor that significantly affects the number of bit flips that
can be triggered. Particularly, we conduct our system-level
RowHammer test on the Ubuntu Gnome environment and text-
only terminal, respectively. The results show that the Ubuntu
Gnome environment is much more effective in inducing bit flips
(the number of bit flips can be two orders of magnitude more).

Identifying factors from the DRAM side: Motivated by XMP,
we leverage the system-level RowHammer test with different
DRAM parameters to explore the DRAM-side factors. Par-
ticularly, we examine the effectiveness of RowHammer with
respect to major DRAM parameters, including the DRAM
frequency, DRAM supply voltage, and DRAM timing param-
eters. The results in general imply that a DRAM module is
more vulnerable to RowHammer if it is configured for bet-
ter performance, similar to the aforementioned observation of
XMP. We have identified three types of contributing factors as
follows.
• Frequency: The frequency always facilitates RowHammer,

as a higher DRAM clock rate improves memory-access through-
put and triggers more bit flips.
• Supply Voltage: The higher supply voltage often suppresses

RowHammer, as it may overcharge DRAM cells. Accordingly
it is relatively more difficult for cells to leak enough charge,
resulting in fewer bit flips.
• Timing Parameters: We select 17 timing parameters for

configuration (16 for DDR4 and 10 for DDR3). From our exper-
iments, RowHammer mainly correlates with 6 parameters, i.e.,
tRCD, tRP, tRAS, tRFC, tREFI and tWR. Interestingly, we
observe that some of the parameters (e.g., tRAS) may affect the
bit-flip effectiveness either positively or negatively, depending
on the tested DRAM modules.

B. Contributions

In summary, this paper makes the following contributions.
• We conduct a comprehensive system-level empirical study

of factors that contribute to Rowhammer bit flips. Our study
examines factors from both the software side and the DRAM
side based on extensive RowHammer tests.
• From the software side, we re-evaluate prior findings about

5 existing factors and a neglected feature, showing that most
existing findings are inconsistent with our empirical observa-
tions and thus they are not widely applicable. Moreover, our
study reveals a new contributing factor in affecting RowHammer
bit-flip effectiveness.

Authorized licensed use limited to: Institute of Information EngineeringCAS. Downloaded on February 13,2025 at 09:13:01 UTC from IEEE Xplore. Restrictions apply.

https://github.com/sslab-gatech/sgx-bomb
https://github.com/VandySec/rowhammer_armv8

808 IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 3, MARCH 2025

Fig. 1. The DRAM memory organization.

• From the DRAM side, we quantify the impacts of major
DRAM parameters on the effectiveness of Rowhammer, in-
cluding DRAM frequency, DRAM supply voltage, and DRAM
timing parameters. Our study identifies a potentially exploitable
Intel feature and 3 types of contributing factors.

II. BACKGROUND AND RELATED WORKS

In this section, we first provide DRAM basics and then
introduce RowHammer as well as related works. Please refer
to the JEDEC standards [31], [32], [33] and two comprehensive
surveys [1], [34] for more details about DRAM and RowHam-
mer, respectively.

A. DRAM

DRAM Organization: Fig. 1 presents an overview of a modern
DRAM memory organization. Specifically, a memory controller
(MC) transfers data and commands to and from DRAM modules
through memory channels. A modern DRAM module known as
the Dual In-line Memory Module (DIMM) is usually composed
of one or two ranks. A rank consists of a set of DRAM chips
that operate in lockstep to reply to commands from the MC.
A DRAM chip has multiple cross-chip banks, and each bank
has a sense amplifier and many subarrays. A sense amplifier,
also called the row buffer, senses a row of data that has been
recently accessed. A subarray is a two-dimensional array of
DRAM cells, which is divided into rows and columns for its
connected wordline and bitline. Each cell consists of an access
transistor serving as a switch and a capacitor storing a single bit
of either ‘1’ or ‘0’. A cell has two types, i.e., true cell and anti
cell. When the true cell’s capacitor is charged (or discharged), it
represents bit ‘1’ (or bit ‘0’). The anti cell works in the opposite
way.

DRAM Operations: A modern MC issues a set of DRAM
commands to read (or write) data from (to) DRAM chips. First,
an activate (ACT) command is sent to open a targeted row, whose
data will then be copied into the row buffer. Second, a read/write
(RD/WR) command is issued to select the desired cache lines
from the row buffer for loading or storing data. Last, a precharge
(PRE) command is used to close the row and clear the row buffer
for subsequent access to another row.

As DRAM cells leak charge over time, a minimum time period
that the cells maintain a correct bit is referred to as the retention
time. The MC periodically issues a refresh (REF) command to
the DRAM banks to ensure all cells are refreshed before the
retention time expires. The standard refresh interval for a row
is 64 ms [31], [33], within which at least 8192 REF commands
need to be issued.

B. Related Works

RowHammer: Kim et al. [2] were the first to identify the
existence of electromagnetic disturbance errors (the so-called
RowHammer) in modern DIMMs. They observed that activating
aggressor rows (i.e., hammering) frequently enough within the
refresh interval can flip bits stored in adjacent victim rows. Even
worse, recent DIMMs are more vulnerable to RowHammer than
before, as DRAM manufacturers continue increasing DRAM
storage density [17], [35].

There are several empirical studies on RowHammer [2], [15],
[16], [17], [18], [19], [20], [25]. To characterize RowHammer
and explore factors that contribute to RowHammer, some [2],
[18], [19], [20] experiment with DDR3 modules while some
others [15], [16], [17], [25] focus on both DDR3 and DDR4
modules.

All existing empirical studies above except [25] utilize FP-
GAs to characterize RowHammer. Particularly, Kim et al. [2]
provide a relatively comprehensive RowHammer characteri-
zation and identify multiple factors triggering RowHammer
such as access pattern, hammer count, data pattern, DRAM
cell type, etc. Following their work, Park et al. [18], [19], [20]
conduct experimental studies on minimal hammer count, data
pattern, ambient temperature and tRP (i.e., a period for the
DRAM PRE command). Kim et al. [17] examine a large amount
of DDR3, DDR4 and lpDDR4 chips about minimal hammer
count, data pattern and error spatial distribution, reporting that
newer DRAM chips are more vulnerable to RowHammer. Jiang
et al. [16] propose a mathematical model of capacitive-coupling
in DRAM and analyze multiple factors in their proposed model
contributing to RowHammer. Cojocar et al. [15] explore the
DRAM internal address mapping and the hammer efficiency
of different hammer methods using a DDR interposer and an
FPGA on Intel server platforms booting into the UEFI mode.
All these FPGA-based works have identified critical factors
contributing to RowHammer. Besides the FPGA-based studies,
Lanteigne [25] implements Memesis, a customized Linux kernel
embedded enterprise memory test, to examine multi-threading
hammer, regional RowHammer (i.e., 2 MB memory region as a
Linux hugepage for hammering) and data pattern.

However, none of the above studies analyze RowHam-
mer at a commodity-operating-system level, generating a non-
neglectable gap between their findings and OS-level RowHam-
mer attacks and defenses. To this end, multiple RowHam-
mer attacks and defenses [10], [13], [22], [36], [37], [38],
[39] spend efforts in analyzing and leveraging one or more
RowHammer-relevant factors. For example, Radar [38] studies
the impacts of different hammer methods on hammering effi-
ciency while Smash [10] investigates the hammering effective-
ness from different sequences of cache-flush instructions and

Authorized licensed use limited to: Institute of Information EngineeringCAS. Downloaded on February 13,2025 at 09:13:01 UTC from IEEE Xplore. Restrictions apply.

HE et al.: WHISTLEBLOWER: A SYSTEM-LEVEL EMPIRICAL STUDY ON ROWHAMMER 809

TABLE II
EXPERIMENTAL SETUP AND THREE DEFAULT HAMMER PARAMETERS

memory accesses. RAMBleed [13] and Pinpoint [37] carefully
craft data patterns to suppress unwanted RowHammer bit flips.
ANVIL [36] reports that RowHammer still occurs in real-world
systems even if the DRAM refresh interval is reduced by half.
CTA [22] implements a system-level method to identify the
DRAM cell type for a given DRAM row.

III. EVALUATION METHODOLOGY

Our primary goal is to re-evaluate existing factors and explore
new factors that contribute to RowHammer bit flips at the system
level, i.e., on real-world computing systems. We consider both
software factors (controlled by software) and DRAM factors
(configured by the DRAM manufacturer or by the user through
the BIOS). We conduct the experiment in the following three
steps.
• First, to rule out the effect of robust DRAM cells, we need

to collect enough vulnerable DRAM locations in advance. For
this purpose, we conduct a RowHammer test with default pa-
rameters’ values to find enough (i.e., more than 1000) vulnerable
physical addresses per module where reproducible bit flips occur
and collect these addresses offline.
• Second, we investigate the effect of each candidate factor

from the software side on bit flips by varying the parameters’ val-
ues for the RowHammer test with the default DRAM parameter
configuration (refer to Table VII). We quantify the effectiveness
of the candidate factor using the metric of bit-flip rate, i.e.,
the number of re-generated bit flips divided by the number of
collected vulnerable bits.
• Last, we evaluate the effect of each candidate factor from

the DRAM side on bit flips. We use the default system-level
RowHammer test to further study the effects of candidate factors
from the DRAM side.

In this section, we first discuss how to conduct the RowHam-
mer test and describe our experimental setup. Deriving from
our RowHammer test, we then elaborate our empirical study
from both the software side (Section IV) and the DRAM side
(Section V) respectively.

System-level RowHammer Test: To trigger RowHammer bit
flips and collect vulnerable physical addresses for a given
DRAM module, we develop an effective Rowhammer test tool,
which has 5 user-configurable parameters (i.e., hammer pat-
tern, data pattern, hammer method, hammer count and multi-
thread). The source code used for evaluation has been released at
https://github.com/whistleblower2022/whistleblower_tool. We
introduce how to implement the tool as follows.

Specifically, based on a distribution of rows being hammered
(i.e., aggressor rows), we have multiple hammer patterns [5],
[7], [29]. Among them, our extended RowHammer test selects
double-sided hammer for DDR3 modules as it is the most
efficient [7]. For DDR4 modules, we leverage TRRespass [29]
to identify the best hammer pattern that produces most bit flips
within a specified time frame, shown in Table II. To imple-
ment the efficient hammer patterns, (partial) knowledge about
the virtual-to-physical address mapping and physical-to-DRAM
address mapping is required from the software perspective [3]. In
our evaluation, we have access to the /proc/pid/pagemap
interface for virtual-to-physical address mapping. We further re-
verse engineer the physical-to-DRAM address mapping to issue
memory requests precisely by DRAMDig [27]. Then we can
specify rows within the same bank for subsequent hammering
under a given hammer pattern.

Previous works [2], [13], [17] have shown that data values
stored in the aggressor and victim rows also have observable
effects on bit flips, known as data pattern. There have been a
number of proposed data patterns such as “Solid” and “Row-
Strip” [2], among which the difference in inducing bit flips can
be in an order of magnitude. We incorporate 10 data patterns
detailed in Section IV-B into our test and select the “RowStripe”
as the default.3

After padding targeted rows with a distinct data pattern, we
need an appropriate hammer method to enable direct memory
accesses to every aggressor row. Existing hammer methods can
be classified into three categories, cache eviction-based [4],
[10], [36], [40], uncached memory-based [8], [41], [42], and
explicit instructions-based [2], [5], [7], [14], [15], [29]. In
our test, we implement 12 hammer methods and choose the
clflush+read-based sequence with mfence that works for
our Intel processors as the default hammer method.

Hammer count is the number of accesses to each hammered
row in a finite loop. We choose 1000 K based on previous
works [7], [29], [40]. Each hardware thread of multiple threads
can be used to hammers all aggressor rows [8], [12], or hammers
some aggressor rows [26]. We use single-thread by default.

Experimental Setup: We use Ubuntu Gnome environment to
run a system-level RowHammer test, which allocates 80% size
of the total memory to find vulnerable physical addresses using
default parameter values. To this end, we install Ubuntu systems

3We pad memory with the “RowStripe” and its variant (i.e., its inverse)
respectively in a RowHammer test and sum up their number of bit flips for
the evaluation of “RowStripe”.

Authorized licensed use limited to: Institute of Information EngineeringCAS. Downloaded on February 13,2025 at 09:13:01 UTC from IEEE Xplore. Restrictions apply.

https://github.com/whistleblower2022/whistleblower_tool

810 IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 3, MARCH 2025

on commodity platforms and focus on evaluating 31 DDR4
modules with 276 chips and 2 DDR3 modules with 16 chips, as
DDR4 is the mainstream in the market and DDR3 is relatively
outdated. Although 31 DDR4 modules have been tested, only
4 out of them have a statistical number of bit flips, which
come from different vendors. Table II shows the experiment
setup including the 6 vulnerable DRAM modules where our
RowHammer test is conducted as well as three default hammer
parameters.

Besides, we use an FPGA board to reproduce observations
from prior FPGA-based studies to show the difference in ham-
mering effectiveness from the FPGA level and the system level.
Specifically, we leverage SoftMC [28], an open-source FPGA-
based infrastructure to perform RowHammer tests on a Xilinx
ML605 FPGA board. The FPGA board has a DDR3 SODIMM
slot with a vulnerable single-rank Samsung DDR3 SODIMM
(2 GiB with 8 DRAM chips) inserted, and a PCIe interface
connecting itself to a Linux host machine. Please note that the
DDR3 SODIMM has a part number of M471B5773DH0-CH9,
which is different from the tested UDIMMs that are suitable only
for a workstation as shown in Table II. SoftMC is composed of 3
major parts, i.e., API, PCIe driver, and hardware and the general
working flow among the three parts is as follows: the Linux host
machine generates a set of SoftMC instructions by invoking the
SoftMC API, which is sent by the SoftMC PCIe driver over a
PCIe bus to the SoftMC hardware implemented on the FPGA
board. After receiving the instructions, the SoftMC hardware
can execute them. As a comparison, similar RowHammer tests
are conducted in a Lenovo Thinkpad T420 s laptop with Ubuntu
Gnome environment installed and the same vulnerable DDR3
module used.

IV. FACTORS FROM THE SOFTWARE SIDE

From previous works, we have summarized 5 existing factors
from the software perspective including the hammer pattern,
data pattern, hammer method, hammer count and multi-thread.
We also identify a new contributing factor, that is, running envi-
ronment. In the following, we conduct quantitative experiments
on these factors to re-evaluate previous findings and present
new empirical observations at the system level. Particularly,
we re-evaluate three factors, i.e., the hammer pattern, the data
pattern and the minimal hammer count in both FPGA and OS
contexts. We note that prior FPGA studies do not study other
factors mentioned before as they are not supported by the FPGA
platform. And we analyze the impact of data scrambling on
RowHammer, which has been ignored by existing RowHammer
characterization works.

A. Hammer Pattern

The hammer pattern denotes the number of hammered rows
and there are four uniform hammer patterns from prior works,
i.e., single-sided hammer [2], [7], double-sided hammer [2], [7],
one-location hammer [5] and many-sided hammer [29]. In this
section, we evaluate the effect of the aggressor-row number on
RowHammer.

Fig. 2. Average bit-flip rate on tested modules when different hammer patterns
(in the left plot) and different data patterns (in the right plot) are applied,
respectively. Each bar in the right plot is a sum of bit-flip rates generated from
a data pattern and its inverse. The “Sol”, “Row”, “Col”, “Che”, “Kil” are short
for “Solid”, “RowStripe”, “ColStripe”, “Checkered”, “Killer”.

TABLE III
A COMPARISON OF XILINX ML605 FPGA AND THINKPAD T420 S IN BIT-FLIP

RATES CAUSED BY DIFFERENT HAMMER PATTERNS

Recently, Jiang et al. [16] report that if n1-sided hammer
(n1 > 2) induces bit flips successfully, any n2-sided hammer
(n2 > n1) should also be successful when they apply the same
hammer count to each hammered row. Specifically, they first
find reproducible bit flips in certain DRAM cells by hammering
and then apply less aggressor rows to these location. In our
system-level experiment, we start with the default hammer pat-
tern and increase the number of aggressor rows keeping hammer
count the same. As the bit-flip rate tendency of different hammer
pattern on each module is similar, we deliver the average bit-flip
rate of all 6 modules in the left plot of Fig. 2. The average
bit-flip rate for each tested DIMMs decreases as the number of
hammered rows increases. This is probably because that, when
more rows are hammered, the time for hammering each row is
reduced within the fixed DRAM refresh interval and victim rows
are less likely to leak charge, thus generating less bit flips.

We reproduce the experiments above using the FPGA board
and carry out the above system-level experiment on the Thinkpad
laptop. To be specific, we randomly select more than 1000 bits
that can be flipped using 5-sided RowHammer on the FPGA
board. We then count the bit-flip rate of these flippable bits
under 3/4/5-sided RowHammer. As we can see from Table III,
the bit-flip rate for each 3/4/5-sided RowHammer is similar to
each other in the FPGA context, validating the previous obser-
vation in [16]. For the Thinkpad T420 s, we collect vulnerable
bits under 3-sided RowHammer and conduct the system-level
experiments as above. The results on Thinkpad are also shown
in Table III. Clearly, increasing the number of hammered rows
reduces hammer effectiveness towards the selected vulnerable
bit at the system level.

Observation 1: If row buffer is flushed and TRR is bypassed,
more hammered rows trigger less bit flips at the system level.

Authorized licensed use limited to: Institute of Information EngineeringCAS. Downloaded on February 13,2025 at 09:13:01 UTC from IEEE Xplore. Restrictions apply.

HE et al.: WHISTLEBLOWER: A SYSTEM-LEVEL EMPIRICAL STUDY ON ROWHAMMER 811

Fig. 3. “Killer” data pattern. The sandwiched victim row looks as
‘0x492492...’ in hexadecimal.

TABLE IV
A COMPARISON OF XILINX ML605 FPGA AND THINKPAD T420 S IN BIT-FLIP

RATES CAUSED BY DIFFERENT DATA PATTERNS AND THEIR INVERSES

B. Data Pattern

Data pattern refers to the data values stored in aggressor
rows and victim rows. Typically, there are four common data
patterns [2]: “Solid” (all cells are padded with the same value
‘0’ or ‘1’), “RowStripe” (rows padded with ‘0’ are interleaved
with rows padded with ‘1’), “ColStripe” (columns padded with
‘0’ are interleaved with columns padded with ‘1’) and “Check-
ered” (cells are padded with either ‘0’ or ‘1’ in a checkerboard
pattern). Lanteigne [25] reports that the “Killer” data pattern
(cells in a row are padded in a 3-bit cycle of either ‘010’ or
‘101’, making the row look as ‘0x492492...’ or ‘0xb6db6d...’ in
hexadecimal, and the bit cycle shifted by one bit is used to pad
nearby rows, shown in Fig. 3) is the most effective in inducing
bit flips among all data patterns on their tested modules. We
re-evaluate these data patterns with their inverses on our testbed.
Similar to the hammer pattern, we show the average bit-flip
rate of all 6 modules in the right plot of Fig. 2, manifesting
that the “RowStripe” and the “Checkered” data patterns are
the best while the “Killer” data pattern is not. Besides, as the
bit-flip rate for a data pattern where cells of each row have
the same values (e.g., “RowStripe”) is much higher than that
of a data pattern where cells of each column have the same
values (e.g., “ColStripe”), aggressor cells and victim cells are
more likely to reside in different rows rather than in different
columns of the same row. Our results indicate the disturbance
impact raised by different wordlines is larger than that from
different bitlines, which is consistent with previous FGPA-based
studies [2], [17].

We also use the Xilinx ML605 and Thinkpad to compare the
hammering effectiveness from two levels and present results
in Table IV. The results from the Thinkpad are consistent with
previous system-level experiments shown in Fig. 2, that is, the
‘RowStripe” and “Checkered” perform the best at the system
level. The results from the Xilinx ML605 are also consistent
with prior works [2], [17] done at the FPGA level, that is,
the ‘RowStripe” is the most effective data pattern. But these
are inconsistent with a previous observation done by [25] that

Listing 1. 3-sided hammer: clflush+r (left) and movnti+w (right).

reports that the “Killer” is the most effective one.4 The different
effectiveness for the same data pattern between the FPGA and
OS contexts might be caused by the data-scrambling feature
within the memory controller, as the “Killer” that is perceived
by the OS might not be the “Killer” from the perspective of the
FPGA.

Observation 2: “Killer” is not as effective as previously
reported [25] at the system level. “RowStripe” performs the
best at the system level, consistent with prior works [2], [17]
done at the FPGA level.

C. Hammer Method

Based on the default RowHammer test that implements
clflush, we evaluate different instruction-based hammer
methods, which are the most efficient for a local test in x86 archi-
tectures [38]. Specifically, we consider two types of instructions
available on our Intel platforms: cache-flush instructions includ-
ing clflush [7] and clflushopt [15] and non-temporal
instructions [11] including movnti andmovntdq. We provide
our system-level RowHammer test with 12 different hammer
methods and classify them into 3 categories depending on their
memory-access type, that is, read (r), write (w), read-and-write
(rw) (see two examples in Listing 1). Based on our experimental
results, we have made 4 key observations as follows.

First, Qiao et al. [11] observe that hammer methods with non-
temporal instructions work as effectively as that with cache-flush
instructions. However, a hammer method based on one of the
observed instructions does not trigger bit flips in some tested
DRAM modules. Particularly, we test movnti+w (identified by
Qiao et al. [11]) against M0 and M1, showing that movnti+w
is as effective as clflush+r in M1 but surprisingly induces
no bit flips in M0.

Observation 3: The effectiveness of non-temporal instruc-
tion based hammer methods is likely dependent on DRAM
modules.

Second, summarizing from all tested hammer methods man-
ifested in Figs. 4 and 5, cache-flush instructions with memory
read work better than that with memory write while memory
write are better for non-temporal instructions. Considering that

4We note that the observation is neither done from the FPGA level nor the
real-world OS level. Instead, [25] uses Memesis, a Linux kernel embedded
commercial memory test.

Authorized licensed use limited to: Institute of Information EngineeringCAS. Downloaded on February 13,2025 at 09:13:01 UTC from IEEE Xplore. Restrictions apply.

812 IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 3, MARCH 2025

Fig. 4. Bit-flip rate on tested modules when different non-temporal-based
hammer methods are applied.

Fig. 5. Bit-flip rate on tested modules when different flush-based hammer
methods are applied. The DDR3 modules of M4 and M5 are not illustrated
in the right plot as the DDR3-based platform does not support clflushopt
instruction.

Listing 2. “gather” sequence (left) and “scatter” sequence (right).

non-temporal instructions do not work consistently on each
module, the cache-flush instructions are better choices.

Observation 4: Cache-flush instructions with memory read
are preferable to implement an effective instruction-based
hammer method.

Third, we re-evaluate a prior observation that the sequence
of clflush and memory read significantly affects bit flip for
many-sided hammer [10]. Particularly, Ridder et al. [10] find that
the “gather” sequence can produce bit flips while the “scatter”
sequence cannot. As shown in Listing 2, the “gather” sequence
refers to a batch of memory requests followed by a batch of
clflush. In the “scatter” sequence, clflush is interleaved
with memory request. In our experiments, their finding does
not apply to our tested DRAM modules. As shown in Fig. 6
represented by the spotted column, both sequences cause bit
flips in multiple modules. The “scatter” performs better on M1
and M4 while the “gather” is better on M5, and both hardly
trigger bit flips on the other three DRAM modules (i.e., M0, M2,
M3).

Fig. 6. Bit-flip rate on tested modules when different orders of hammer
instruction sequence are applied.

Observation 5: The effectiveness of the order of clflush
and memory access on RowHammer depends on DRAM
modules.

Last, memory-barrier instructions (e.g., mfence) make sure
that data is flushed to memory before subsequent memory in-
struction is executed, as shown in Listing 1. Cojocar et al. [15]
observe that a hammer method without the memory barrier
presents a higher ACT rates (thus a higher hammer efficiency)
than that with the memory barrier on Intel server processors
booting into the UEFI mode, because the memory barrier in-
troduces additional CPU cycles. Based on their observation, a
hammer method without the memory barrier should generate
more bit flips. However, as shown in Fig. 6 where a spotted
bar is for a hammer instruction sequence without mfence and
the grey bar is for a sequence with mfence, hammer with
mfence can trigger bit flips on every modules while hammer
without mfence can only work on half of the test modules,
which might be due to the CPU’s optimization, that is, the
CPU re-orders memory accesses for a given hammer instruction
sequence without the memory barrier and serve the accesses
from the cache, resulting in no bit flips in some modules.

Observation 6: Although memory barriers decrease hammer
efficiency [15], they can be counter-intuitively more effective
in inducing bit flips in a DRAM module.

Analyzing the hammering effectiveness in different combi-
nations of instructions: To investigate the root cause behind
the different hammering effectiveness, we observe that an Intel
server can be of great help as it provides the statistics of row
buffer conflicts. Specifically, an Intel CPU has a large part
outside its actual cores, called “Uncore”. The uncore part has
LLCs, PCI-express, memory controller, etc, and provides a
list of performance counter events to monitor its performance,
among which an event called PRE_COUNT.PAGE_MISS can
capture DRAM precharge events due to page misses [43].
A page miss is referred to as a “page/row buffer conflict”
and occurs when a row buffer is open but has a wrong
row in it. Derived from this event and other two events
(i.e., CAS_COUNT.RD counts all DRAM read requests and
CAT_COUNT.WR counts all DRAM write requests), another

Authorized licensed use limited to: Institute of Information EngineeringCAS. Downloaded on February 13,2025 at 09:13:01 UTC from IEEE Xplore. Restrictions apply.

HE et al.: WHISTLEBLOWER: A SYSTEM-LEVEL EMPIRICAL STUDY ON ROWHAMMER 813

Fig. 7. A comparison of different hammer methods with regard to the percent-
age of row buffer conflicts they induced every 50 milliseconds in a given period
of 5 seconds.

event called PCT_REQUESTS_PAGE_MISS reports the per-
centage of memory requests that result in row buffer conflicts,
that is, PRE_COUNT.PAGE_MISS / (CAS_COUNT.RD +
CAS_COUNT.WR). As RowHammer requires accessing differ-
ent rows frequently to trigger bit flips, it results in an abnormal
number of row buffer conflicts. Clearly, the more row buffer
conflicts within a given short period indicate more effective
hammering.

To this end, we leverage PCT_REQUESTS_PAGE_MISS to
analyze the different combinations of instructions that present
different hammering effectiveness. To be specific, we use
an HP Z420 Workstation with Intel Xeon E5-2660 v2 and
64 GiB ECC-enabled Hynix DDR3 installed, and download
an open-source tool5 that is built on top of Linux perf.
To evaluate the hammering effectiveness of each hammer
method, we execute each to hammer a randomly selected
pair of addresses in an infinite loop. The pair of addresses
is from different rows within the same bank to trigger row
buffer conflicts. In the meantime, this tool is launched for
5 seconds and reports PCT_REQUESTS_PAGE_MISS ev-
ery 50 milliseconds, resulting in 100 values. Fig. 7 shows
PCT_REQUESTS_PAGE_MISS of each hammer instruction
with a distinct memory type, followed by mfence by de-
fault (clflushopt is not supported in this microarchi-
tecture). Clearly, clflush+read has the highest percent-
age of row buffer conflicts, indicating its highest hammering
effectiveness.

We use the Intel server platform to analyze the impact of
mfence as well. Fig. 8 shows the impact of mfence in affect-
ing the hammering effectiveness of clflush+read in both
“scatter” and “gather” sequences (i.e., the order of clflush
and memory access). Clearly, the hammering effectiveness of the
hammer method with mfence is much better than that without
mfence in either sequence.

5[Online]. Available: https://github.com/andikleen/pmu-tools

Fig. 8. A comparison of different instruction sequences with regard to the
percentage of row buffer conflicts they induced every 50 milliseconds in a given
period of 5 seconds.

TABLE V
THE MINIMAL HAMMER COUNT ON TESTED MODULES

D. Minimal Hammer Count

Kim et al. [17] report the minimal hammer count that can
induce the first bit flip across different DRAM type-node con-
figuration (i.e., 22.4 K for DDR3, 10 K for DDR4) using an
FPGA platform with REF disabled. Considering the scheduling
of memory requests and the translation from virtual address to
physical address and to DRAM internal location, this minimal
value may not be applicable to a real-world system. We examine
the minimal hammer count at the system level. Specially, we
utilize a prior TRR-fuzzing tool [29] to find the most efficient
hammer pattern (i.e., the one that triggers most bit flips in a
given time period) for TRR-protected DDR4 modules. However,
after around 10 hours fuzzing (more than 1000 billion hammer
times in total), most of our tested modules are robust enough
that no bit flips occur. We thus regard these module’s minimal
hammer count as infinite. In our experiments, we find only one
DDR4 module’s minimal hammer count is 10 K, consistent with
the prior work [17], while the minimal values in other DDR4
modules are much higher than 10 K, as shown in Table V. For
DDR3 modules at the system-level, the minimal hammer count
is 230 K, which is much more than prior reported number of
22.4 K [17].

We also re-examine the minimal hammer count of the
SODIMM on both the Xilinx ML605 and Thinkpad. Specifi-
cally, the respective minimal hammer count is 170 K at the sys-
tem level and 90 K at the FPGA level, validating our observation
that the minimal hammer count on DDR3 in the system-level is
much more that in the FPGA-level.

Authorized licensed use limited to: Institute of Information EngineeringCAS. Downloaded on February 13,2025 at 09:13:01 UTC from IEEE Xplore. Restrictions apply.

https://github.com/andikleen/pmu-tools

814 IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 3, MARCH 2025

E. Multi-Thread

Previous works spawn multiple threads for hammer to im-
prove RowHammer effectiveness [8], [12], [25], [26]. We divide
these works into two categories, i.e., each thread hammers all
aggressor rows [8], [12], and each thread hammers some of
aggressor rows [26]. We re-examine these two categories on our
test platforms. On DDR3 modules and certain DDR4 module
TRR-unequipped (i.e., M1), all of them improve bit-flip rate
as previously reported [8], [12], [25], [26]. While on DDR4
modules that support TRR, single-thread is much better as
multi-thread hammer rarely induces bit flips. Take M0 as an
example, the bit-flip rate of 2-thread hammer in the first category
is 2.8% while it is more than 70% for the single-thread hammer.
Also, all the tested multi-thread (i.e., 2, 3, 4) hammer of the
second-category and more-thread (i.e., 3, 4) hammer of first-
category do not flip any bit. On other TRR-employed DRAM
modules (i.e., M2 and M3), they have similar bit-flip rates as M0.
This is probably because leveraging multiple threads for many-
sided hammer will asynchronously issue memory accesses and
interfere with TRR’s sampler [29], triggering additional REF
commands issued to victim rows. A hammer thread should care-
fully synchronize with others to order the whole memory reads
by the addresses in memory controller’s read queue. We note that
additional instructions required for the synchronization (e.g.,
lock and semaphore) can delay the memory reads, thus badly
affecting the hammering efficiency. Thus, for TRR-protected
DRAM modules, the single-sided hammer is probably better.

Observation 7: On TRR-protected DDR4 modules, multi-
thread hammer is not as effective as previously reported [8],
[12], [25], [26] on DDR3 modules.

F. Bit-Flip Direction

The data scrambling feature, employed by the modern mem-
ory controller, applies pseudo-random patterns on the DDR data
bus to minimize the impact of resonant frequency and cold-boot
attacks [23]. Particularly, a DRAM cell’s value, visible to the
software, is the XORed output of the cell’s logical value and a
pseudo-random number generated by the data scrambling when
the system boots up.

To verify whether the data scrambling is used in practice, we
perform the following analysis of the RowHammer test results.
From the collected vulnerable physical addresses, we select
addresses that are monotonically flipped from ‘0’ to ‘1’ using
the inverse “RowStripe” data pattern. These selected addresses
are only mapped to DRAM anti-cells if the data scrambling
is not in place. Then we restart the system and re-launch the
test with both “RowStripe” and its inverse against the selected
addresses. The results show that the bit-flip rate for the two data
patterns is almost equal in all the tested DRAM modules and
these addresses are flippable from either ‘0’ to ‘1’ or ‘1’ to ‘0’.
Due to data scrambling, both true-cell and anti-cell can be flipped
in both directions at the system level.

With the above conclusion, we observe that the security
guarantee of CTA [22] does not hold. Specifically, CTA (Cell-
Type-Aware) [22] employs a two-step approach for protecting
page tables from rowhammer attacks. In the first step, CTA puts
all page tables into a dedicated region of the physical memory.
The physical addresses containing page-table pages are higher
than that of user pages. In the second step, CTA ensures that
these addresses are mapped to true cells which can be flipped
monotonically from ‘1’ to ‘0’. In the case of a bit flip in true-cells
storing a page table entry (PTE), the new address pointed by the
PTE will only be lower than the original address, thus the bit flip
cannot change the PTE from pointing to a user page to pointing to
a page-table page. However, with the data scrambling deployed,
an attacker can bypass CTA by bit-flipping the PTE from ‘0’ to
‘1’ and gain unfettered access to page tables.

Observation 8: Data scrambling enforced by the memory
controller breaks the security guarantee of CTA [22].

G. Running Environment

When the RowHammer test is running on a text-only terminal
environment, the number of bit flips is surprisingly much lower
than that with a Gnome Desktop environment (other parameters
are the same). Take M2 as an example, the bit-flip rate produced
on the text-only terminal environment is less than 1% while
it is almost 70% on the Gnome Desktop environment. This
unexpected case is reproducible on all tested DRAM modules,
implying that the effect of running environment is independent
on DRAM modules. Further experiment shows that when we
implement RowHammer attack, if we run a helper thread to
issue continuous memory accesses to an area larger than the
Last-Level-Cache size (e.g., 6 MB on the i3-10100), the bit-flip
rate will surge. We will explore the root cause of RowHammer
effectiveness in different running environments using some tools
(e.g., HMTT [44]), as discussed in Section VI.

Observation 9: The environment where a RowHammer test
runs significantly affects bit flips: the Gnome environment is
much more effective than the text-only terminal.

V. FACTORS FROM THE DRAM SIDE

With the extended RowHammer test as the basis, we iden-
tify DRAM parameters from DRAM-side that contribute to
RowHammer. As the DRAM standards [31], [32], [33] specify
numerous DRAM parameters, we focus on DRAM frequency,
DRAM supply voltage and DRAM timing parameters (see Ta-
ble VI) which are closely related to memory performance. We
select the clflush+r with mfence as the default hammer
method, “RowStripe” and its inverse as the default data pattern,
1000 K as the default hammer count and apply the best hammer
pattern to perform the RowHammer test using single thread.

Authorized licensed use limited to: Institute of Information EngineeringCAS. Downloaded on February 13,2025 at 09:13:01 UTC from IEEE Xplore. Restrictions apply.

HE et al.: WHISTLEBLOWER: A SYSTEM-LEVEL EMPIRICAL STUDY ON ROWHAMMER 815

TABLE VI
MAJOR DRAM PARAMETERS WE EXAMINED

A. DRAM Frequency

DRAM modules have an internal clock for synchronization.
Modern Double Data Rate (DDR) DRAM uses a single-edged
clock to synchronize control and address transmissions, and a
dual-edged clock for data transmissions. Thus, some data bits are
transmitted on the data bus upon the rising edge of the clock and
other bits are upon the falling edge, making the DDR DRAM
channel data rate twice its bus clock rate. DRAM frequency
denotes the DRAM channel data rate and its default value in
each tested DRAM module is shown in Table VII. The unit of
a timing parameter can be either nanosecond or clock cycle and
the conversion between them is decided by the frequency as
follows:

nanoseconds = 2× cycles/frequency (1)

Considering that a higher DRAM frequency enables a faster
access rate to a row and might induce more bit flips, we thus
examine its effectiveness in triggering bit flips. We only de-
crease the frequency to quantify its effect in terms of bit-flip
rate, as the system may not boot up when the frequency is

set larger than the default value. As illustrated in the left plot
of Fig. 9, the bit-flip rate on M1-M5 monotonically decreases
when the frequency is reduced with some exception of M0,
M4, M5, where the bit-flip rate rises when the frequency drops
in some cases. This is probably because that decreasing the
frequency will increase the nanoseconds of timing parameters
when their clock cycles remain unchanged, based on (1). For
these exceptions, the increased DRAM refresh interval has a
greater impact on RowHammer than the decreased frequency.
We then reduce frequency and the tREFI which determines
DRAM refresh interval, finding that bit-flip rate reduces com-
pared to the former as shown in the middle plot of Fig. 9,
proving this conjecture of refresh interval’s disturbance. To
evade latency’s inference, we reduce DRAM frequency and
all timing parameters to keep their nanoseconds unchanged
as shown in the right plot of Fig. 9. By doing so, the only
effect on RowHammer is limited to the data transfer rate,
and reducing it monotonically triggers fewer bit flips, be-
cause the hammer efficiency is decreased in the fixed refresh
interval.

Observation 10: Higher DRAM frequency triggers more bit
flips.

B. DRAM Supply Voltage

Voltage is supplied to the DRAM array and peripheral circuits
through the power pins on a DRAM chip [45]. DDR4 is specified
to operate at 1.2 V [33] and DDR3 is at 1.5 V [31], with a
small deviation. Considering that RowHammer’s electromag-
netic coupling effect indirectly drains adjacent cells’ charge, we
investigate supply voltage’s impact on RowHammer. Specifi-
cally, we provide the supply voltage from their default values to
the maximum safe values, with a stride of 0.05 V. For each supply
voltage, we perform RowHammer test against each module. As
shown in Fig. 10, the bit-flip rate decreases when the supply
charge increases. When victim cells are accessed, they may be
overcharged by the row buffer. Thus, it is harder for them to
be drained by electromagnetic coupling effect to lose enough
charges and introduce bit flips.

Observation 11: Higher DRAM supply voltage suppresses
bit flips.

C. DRAM Timing Parameters

Besides the frequency and supply voltage, there are numerous
timing parameters defined in the DRAM standards [31], [32],
[33]. In this section, we focus on 17 major timing parameters in
total, which are briefly described in Table VI. We examine 16
timing parameters for DDR4 modules and 10 timing parameters
for DDR3 modules, respectively. Specifically, we cannot con-
figure tCCD_S from BIOS on DDR4 platform, otherwise, the
system cannot boot up. For the remaining timing parameters,
we change each one from a value below default to a rational
maximum, most of which is the highest value can be configured.

Authorized licensed use limited to: Institute of Information EngineeringCAS. Downloaded on February 13,2025 at 09:13:01 UTC from IEEE Xplore. Restrictions apply.

816 IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 3, MARCH 2025

TABLE VII
DEFAULT DRAM PARAMETERS FOR EACH MODULES

Fig. 9. Bit-flip rate on tested modules when frequency and different timing parameters are tuned. The right plot omits some low frequency cases because the
BIOS cannot adjust timings to keep the same memory access latency.

Fig. 10. Bit-flip rate on tested modules when DRAM supply voltage is tuned.

All their values are in the unit of clock cycles in BIOS. In the
following, we summarize our empirical results about each timing
parameter.
tRCD/tRP: tRCD and tRP are a pair that have the same

value on DDR4 platforms, i.e., if either is modified from BIOS,
the other will be changed automatically. On DDR3 platforms,
they can be updated separately. Prior works [45], [46], [47], [48],
[49] clearly demonstrate that reducing tRCD and tRP causes bit
flips due to interrupted charge sharing, sense amplification and
precharge processes before they are completed, thus benefiting
RowHammer. Our experiments results support the demonstra-
tion at the system level, as illustrated in Fig. 11.

Observation 12: Lower tRCD/tRP contributes to
RowHammer bit flips.

tRAS: Similar to tRCD/tRP, reducing tRAS improves the
RowHammer effectiveness on almost all the tested modules,
probably due to the improved ACT rate or the reduced retention
time caused by partially-refreshed or non-refreshed DRAM
cells. An exception is M3 where reducing tRAS unexpectedly

Fig. 11. Bit-flip Rate on tested modules when tRCD or tRP is tuned.

Fig. 12. Bit-flip Rate on tested modules when tRAS or tRFC is tuned.

decreases the bit-flip rate that is shown in the left plot of Fig. 12.
This is probably because a lower tRAS cannot offer enough
charge to M3, resulting in a weaker electromagnetic coupling
effect than that of a higher tRAS.

Observation 13: Lower tRAS contributes to bit flips.

tRFC: tRFC decides the time period of refreshing a set of
rows within a bank. Only after tRFC can the memory controller

Authorized licensed use limited to: Institute of Information EngineeringCAS. Downloaded on February 13,2025 at 09:13:01 UTC from IEEE Xplore. Restrictions apply.

HE et al.: WHISTLEBLOWER: A SYSTEM-LEVEL EMPIRICAL STUDY ON ROWHAMMER 817

Fig. 13. Bit-flip Rate on tested modules when tREFI or tWR is tuned.

issue a valid command to DRAM,6 resulting in an interval of no
memory access. Thus, increasing tRFC is expected to increase
memory access latency and interfere with REF, further decrease
hammer effectiveness as tRAS. The experimental results on
M0 and M1 indeed validate our expectation, shown in the
right plot of Fig. 12. However, lower tRFC on M2 works the
opposite, probably due to M2’s different internal circuits and
manufacturing process. The reason why tRFC on M3 has no
effect is probably because that the value range of tRFC that M3
allows to change from the BIOS is too narrow to affect bit flips.

Observation 14: Lower tRFC can contribute to bit flips.

tREFI: tREFI decides the time interval of DRAM refresh.
A higher tREFI prolongs the REF command interval and is
supposed to induce a higher bit-flip rate. As shown in the left
plot of Fig. 13, almost all modules we tested work as expected.
The only exception is M3 where default tREFI triggers the
most bit flips compared to when it is scaled up to 2x, 4x or down
to 0.5x, respectively, which is probably because that different
TRR mechanisms are switched on upon different tREFI.

Observation 15: Higher tREFI can contribute to bit flips.

tWR: As shown in Table VI, tCWL, tWR, tWTR_S and
tWTR_L are related to the DRAM WR command, we addi-
tionally replace the hammer method of test with clflush+w.
However, our DDR3 motherboard cannot read tWR and the
clflush+w hammer method only induces bit flips on M1 of
all DDR4 modules. From our experiments, tCWL, tWTR_S and
tWTR_L do not contribute to RowHammer statistically, while
increasing tWR triggers more bit flips as shown in the right plot
of Fig. 13, different from the other timing parameter. Higher
tWR time might overcharge and puncture the parasitic coupling
capacitance between aggressor and victim rows, thus opening
up the victim cell’s access transistor and leaking the charge of
the victim’s capacitor.

Observation 16: Higher tWR contributes to bit flips.

Remaining Timing Parameters: By configuring each of the
remaining parameters, we did not observe a clear difference in
bit-flip rate.

6In fact, only the DES (Device Deselected) command can be issued within
tRFC [33].

Observation 17: The timing parameters in Table VI, except
tRCD, tRP, tRAS, tRFC, tREFI and tWR, contribute little
to bit flips.

D. Extreme Memory Profile on Rowhammer

Intel proposes XMP for system acceleration [24]. XMP has
been widely supported by memory manufacturers, serving as
an extension to standard JEDEC SPD specifications. XMP is
intended to overclock DRAM and is accessible to users through
profiles and predefined overclocking configurations that are
known to be stable. Unlike JEDEC, XMP is designed for high
performance and usually customized and tweaked to the physical
characteristics of the chip.

We conduct our RowHammer test on M2 and M5 that support
XMP. By default, M2’s frequency is 2133MT/s and M5 is
1600MT/s. When XMP is enabled, M2’s frequency is increased
to 4000MT/s and M5’s is increased to 1866MT/s with some
parameters changed. Our results show that the bit-flip rate in-
creases significantly from less than 10% with the default setting
to more than 60% with XMP enabled on M2 and from around
10% to more than 40% on M5, implying that XMP is effective
in inducing more bit flips.

Observation 18: The XMP feature, intended for better system
performance, might be abused for Rowhammer.

VI. DISCUSSION

Our study has summarized multiple new observations on
existing and new factors contributing to RowHammer bit flips.
In this study we do not intend to explore the root causes for
such effects in an exhaustive manner. For the following obser-
vations, we plan to find their root causes and shed more light on
RowHammer characterization from the system level.
• In Section IV-G we show that the running environment

significantly affects the bit-flip effectiveness. To explain its
root cause, a possible way is to collect all the memory traces
coming from the Gnome environment and the text-only terminal
respectively (e.g., using HMTT [44], a commercial hardware
tool, to snoop on the memory bus), and perform a detailed
analysis of the collected traces.
• Section V shows that some timing parameters (e.g., tRAS,

tRFC and tREFI) do not work as expected on certain DRAM
modules and we need more low-level experiments to explain the
root causes behind these anomalies. A possible approach is to
obtain and analyze the memory-access information by capturing
DRAM commands issued to targeted DRAM banks.

VII. CONCLUSION

Previous studies have identified several factors that contribute
to RowHammer bit flips such as data pattern and hammer
method. As these works mainly relied on FPGA-based test plat-
forms to characterize RowHammer, their findings on the iden-
tified factors may not work in a real-world computing system

Authorized licensed use limited to: Institute of Information EngineeringCAS. Downloaded on February 13,2025 at 09:13:01 UTC from IEEE Xplore. Restrictions apply.

818 IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 3, MARCH 2025

where the OS and the memory controller inevitably interfere. In
this paper, we presented a system-level empirical study on the
key factors that affect the RowHammer effectiveness. Our study
reported some new observations from both the software and
DRAM side, which we believe can benefit future RowHammer
research.

REFERENCES

[1] O. Mutlu and J. S. Kim, “Rowhammer: A retrospective,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 39, no. 8, pp. 1555–1571,
Aug. 2020.

[2] Y. Kim et al., “Flipping bits in memory without accessing them: An
experimental study of DRAM disturbance errors,” in Proc. Int. Symp.
Comput. Architecture, 2014, pp. 361–372.

[3] Y. Cheng, Z. Zhang, S. Nepal, and Z. Wang, “CATTmew: Defeating
software-only physical kernel isolation,” IEEE Trans. Dependable Secure
Comput., vol. 18, no. 4, pp. 1989–2004, Jul./Aug. 2021.

[4] P. Frigo, C. Giuffrida, H. Bos, and K. Razavi, “Grand pwning unit:
Accelerating microarchitectural attacks with the GPU,” in Proc. IEEE
Symp. Secur. Privacy, 2018, pp. 195–210.

[5] D. Gruss et al., “Another flip in the wall of rowhammer defenses,” in Proc.
IEEE Symp. Secur. Privacy, 2018, pp. 245–261.

[6] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A re-
mote software-induced fault attack in JavaScript,” in Proc. 13th Int.
Conf. Detection Intrusions Malware, Vulnerability Assessment, 2016,
pp. 300–321.

[7] M. Seaborn and T. Dullien, “Exploiting the DRAM rowhammer bug to
gain kernel privileges,” in Proc. Black Hat, 2015, pp. 13–57.

[8] A. Tatar, R. K. Konoth, E. Athanasopoulos, C. Giuffrida, H. Bos,
and K. Razavi, “Throwhammer: Rowhammer attacks over the net-
work and defenses,” in Proc. USENIX Annu. Tech. Conf., 2018,
pp. 213–226.

[9] Z. Zhang, Y. Cheng, D. Liu, S. Nepal, Z. Wang, and Y. Yarom, “Pthammer:
Cross-user-kernel-boundary rowhammer through implicit accesses,” in
Proc. Int. Symp. Microarchitecture, 2020, pp. 28–41.

[10] F. de Ridder, P. Frigo, E. Vannacci, H. Bos, C. Giuffrida, and K.
Razavi, “SMASH: Synchronized many-sided rowhammer attacks from
JavaScript,” in Proc. USENIX Secur. Symp., 2021, pp. 1001–1018.

[11] R. Qiao and M. Seaborn, “A new approach for rowhammer attacks,” in
Proc. Hardware Oriented Secur. Trust, 2016, pp. 161–166.

[12] Y. Jang, J. Lee, S. Lee, and T. Kim, “SGX-bomb: Locking down the
processor via rowhammer attack,” in Proc. 2nd Workshop Syst. Softw.
Trusted Execution, 2017, pp. 1–6.

[13] A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, “RAMBleed: Reading bits
in memory without accessing them,” in Proc. IEEE Symp. Secur. Privacy,
2020, pp. 695–711.

[14] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos, “Flip
feng shui: Hammering a needle in the software stack,” in Proc. USENIX
Secur. Symp., 2016, pp. 1–18.

[15] L. Cojocar et al., “Are we susceptible to rowhammer? an end-to-end
methodology for cloud providers,” in Proc. IEEE Symp. Secur. Privacy,
2020, pp. 712–728.

[16] Y. Jiang, H. Zhu, D. Sullivan, X. Guo, X. Zhang, and Y. Jin, “Quantifying
rowhammer vulnerability for DRAM security,” in Proc. Des. Automat.
Conf., 2021, pp. 712–728.

[17] J. S. Kim et al., “Revisiting rowhammer: An experimental analysis of
modern DRAM devices and mitigation techniques,” in Proc. Int. Symp.
Comput. Architecture, 2020, pp. 638–651.

[18] K. Park, S. Baeg, S. Wen, and R. Wong, “Active-precharge hammer-
ing on a row induced failure in DDR3 SDRAMS under 3× nm tech-
nology,” in Proc. IEEE Int. Integr. Rel. Workshop Final Rep., 2014,
pp. 82–85.

[19] K. Park, C. Lim, D. Yun, and S. Baeg, “Experiments and root cause analysis
for active-precharge hammering fault in DDR3 SDRAM under 3× nm
technology,” Microelectronics Rel., vol. 57, pp. 39–46, 2016.

[20] K. Park, D. Yun, and S. Baeg, “Statistical distributions of row-hammering
induced failures in DDR3 components,” Microelectronics Rel., vol. 67,
pp. 143–149, 2016.

[21] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-aware
intelligent DRAM refresh,” in Proc. Int. Symp. Comput. Architecture,
2012, pp. 1–12.

[22] X.-C. Wu, T. Sherwood, F. T. Chong, and Y. Li, “Protecting page tables
from rowhammer attacks using monotonic pointers in DRAM true-cells,”
in Proc. Architectural Support Program. Lang. Operating Syst., 2019,
pp. 645–657.

[23] J. A. Halderman et al., “Lest we remember: Cold-boot attacks on encryp-
tion keys,” Commun. ACM, vol. 52, no. 5, pp. 91–98, 2009.

[24] Intel Corporation, “Intel extreme memory profile (intel XMP) and over-
clock RAM,” 2022. [Online]. Available: https://www.intel.com/content/
www/us/en/gaming/extreme-memory-profile-xmp.html

[25] M. Lanteigne, “How rowhammer could be used to exploit weaknesses
in computer hardware,” presented at SEMICON China, 2016. [Online].
Available: https://www.thirdio.com/rowhammer.pdf

[26] Z. Zhang, Z. Zhan, D. Balasubramanian, X. Koutsoukos, and
G. Karsai, “Triggering rowhammer hardware faults on arm: A re-
visit,” in Proc. Workshop Attacks Solutions Hardware Secur., 2018,
pp. 24–33.

[27] M. Wang, Z. Zhang, Y. Cheng, and S. Nepal, “DRAMDig: A knowledge-
assisted tool to uncover DRAM address mapping,” in Proc. Des. Automat.
Conf., 2020, pp. 1–6.

[28] H. Hassan et al., “SoftMC: A flexible and practical open-source infrastruc-
ture for enabling experimental DRAM studies,” in Proc. Int. Symp. High
Perform. Comput. Architecture, 2017, pp. 241–252.

[29] P. Frigo et al., “TRRespass: Exploiting the many sides of target row
refresh,” in Proc. IEEE Symp. Secur. Privacy, 2020, pp. 747–762.

[30] Micron, Inc., “DDR4 SDRAM Datasheet,” 2015. [Online]. Available:
https://www.micron.com/products/dram/ddr4-sdram/

[31] JEDEC Solid State Technology Association, “DDR3 SDRAM standard,”
2012. [Online]. Available: https://www.jedec.org/standards-documents/
docs/jesd-79--3d

[32] JEDEC Solid State Technology Association, “Low power double data
rate 4 (LPDDR4),” 2015. [Online]. Available: https://www.jedec.org/
standards-documents/docs/jesd209--4b

[33] JEDEC Solid State Technology Association, “DDR4 SDRAM standard,”
2017. [Online]. Available: https://www.jedec.org/standards-documents/
docs/jesd79--4a

[34] Z. Zhang et al., “A retrospective and futurespective of rowhammer attacks
and defenses on DRAM,” 2022, arXiv:2201.02986v2.

[35] P. Jattke, V. van der Veen, P. Frigo, S. Gunter, and K. Razavi, “BLACK-
SMITH: Scalable rowhammering in the frequency domain,” in Proc. IEEE
Symp. Secur. Privacy, 2022, pp. 716–734.

[36] Z. B. Aweke et al., “ANVIL: Software-based protection against next-
generation rowhammer attacks,” in Proc. Architectural Support Program.
Lang. Operating Syst., 2016, pp. 743–755.

[37] S. Ji, Y. Ko, S. Oh, and J. Kim, “Pinpoint rowhammer: Suppressing
unwanted bit flips on rowhammer attacks,” in Proc. Asia Conf. Comput.
Commun. Secur., 2019, pp. 549–560.

[38] Z. Zhang, Z. Zhan, D. Balasubramanian, B. Li, P. Volgyesi, and
X. Koutsoukos, “Leveraging EM side-channel information to detect
rowhammer attacks,” in Proc. IEEE Symp. Secur. Privacy, 2020,
pp. 729–746.

[39] Z. Zhang et al., “SoftTRR: Protect page tables against rowhammer attacks
using software-only target row refresh,” in Proc. USENIX Annu. Tech.
Conf., 2022, pp. 399–414.

[40] D. Gruss, C. Maurice, and S. Mangard, “Program for testing for the DRAM
rowhammer problem using eviction,” May 2017. [Online]. Available:
https://github.com/IAIK/rowhammerjs

[41] M. Lipp et al., “Nethammer: Inducing rowhammer faults through network
requests,” 2018, arXiv: 1805.04956.

[42] V. van der Veen et al., “Drammer: Deterministic rowhammer attacks on
mobile platforms,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
2016, pp. 1675–1689.

[43] Inc Intel., “Intel Xeon processor e5–2600 product family uncore perfor-
mance monitoring guide,” 2012.

[44] C. A. O.S. Institute of Computer Technology, “HMTT: Hybrid memory
trace toolkit,” 2022. [Online]. Available: https://www.intel.com/
content/dam/www/public/us/en/documents/design-guides/xeon-e5-
2600-uncore-guide.pdf

[45] K. K. Chang et al., “Understanding reduced-voltage operation in mod-
ern DRAM devices: Experimental characterization, analysis, and mecha-
nisms,” in Proc. ACM Meas. Anal. Comput. Syst., vol. 1, no. 1, pp. 1–42,
2017.

[46] K. K. Chang et al., “Understanding latency variation in modern DRAM
chips: Experimental characterization, analysis, and optimization,” in Proc.
2016 ACM SIGMETRICS Int. Conf. Meas. Model. Comput. Sci., 2016,
pp. 323–336.

Authorized licensed use limited to: Institute of Information EngineeringCAS. Downloaded on February 13,2025 at 09:13:01 UTC from IEEE Xplore. Restrictions apply.

https://www.intel.com/content/www/us/en/gaming/extreme-memory-profile-xmp.html
https://www.intel.com/content/www/us/en/gaming/extreme-memory-profile-xmp.html
https://www.thirdio.com/rowhammer.pdf
https://www.micron.com/products/dram/ddr4-sdram/
https://www.jedec.org/standards-documents/docs/jesd-79--3d
https://www.jedec.org/standards-documents/docs/jesd-79--3d
https://www.jedec.org/standards-documents/docs/jesd209--4b
https://www.jedec.org/standards-documents/docs/jesd209--4b
https://www.jedec.org/standards-documents/docs/jesd79--4a
https://www.jedec.org/standards-documents/docs/jesd79--4a
https://github.com/IAIK/rowhammerjs
https://www.intel.com/content/dam/www/public/us/en/documents/design-guides/xeon-e5-2600-uncore-guide.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/design-guides/xeon-e5-2600-uncore-guide.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/design-guides/xeon-e5-2600-uncore-guide.pdf

HE et al.: WHISTLEBLOWER: A SYSTEM-LEVEL EMPIRICAL STUDY ON ROWHAMMER 819

[47] J. Kim, M. Patel, H. Hassan, and O. Mutlu, “Solar-DRAM: Reducing
DRAM access latency by exploiting the variation in local bitlines,” in
Proc. IEEE 36th Int. Conf. Comput. Des., 2018, pp. 282–291.

[48] D. Lee et al., “Design-induced latency variation in modern DRAM chips:
Characterization, analysis, and latency reduction mechanisms,” in Proc.
ACM Meas. Anal. Comput. Syst., vol. 1, no. 1, pp. 1–36, 2017.

[49] D. Lee et al., “Adaptive-latency DRAM: Optimizing DRAM timing for
the common-case,” in Proc. IEEE 21st Int. Symp. High Perform. Comput.
Architecture, 2015, pp. 489–501.

Wei He received the BS degree from Tongji Univer-
sity. He is currently working toward the PhD degree
with the University of Chinese Academy of Sciences
and SKLOIS, Institute of Information Engineering,
CAS. His research interests include system security.

Zhi Zhang received the PhD in computer science
from the University of New South Wales. He is a
lecturer with the University of Western Australia.
Prior to that, he was a research scientist with CSIRO’s
Data61, Australia. His research interests are in the
areas of system security, rowhammer and adversarial
artificial intelligence.

Yueqiang Cheng received the PhD degree from the
School of Information Systems, Singapore Manage-
ment University under the guidance of professor
Robert H. Deng and associate professor Xuhua Ding.
He is head of security research with NIO. His research
interests are system security, trustworthy computing,
software-only root of trust and software security.

Wenhao Wang received the BS degree from the
Ocean University of China, in 2009, and the PhD
degree from the University of Chinese Academy of
Sciences, in 2015. He is an associate professor with
the Institute of Information Engineering, Chinese
Academy of Sciences. His research interests include
system security, trusted execution environment and
cryptography.

Wei Song (Member, IEEE) received the PhD degree
in computer science from the University of Manch-
ester, Manchester, U.K., in 2011. He is currently an
associate professor with the Institute of Information
Engineering, CAS. His current research focuses on
the security enhancement of computer architectures,
such as the defenses for cache side channel and
control-flow hijacking attacks.

Yansong Gao received the MSc degree from the
University of Electronic Science and Technology of
China, in 2013 and the PhD degree from the School
of Electrical and Electronic Engineering, University
of Adelaide, Australia, in 2017. His current research
interests are AI security and privacy, hardware secu-
rity and system security.

Qifei Zhang received the PhD degree in computer
science from Zhejiang University. He serves as deputy
director of IoT and Intelligent Computing center in
School of Software, Zhejiang University. He is a
member of Association Committee on IoT and Em-
bedded System of Zhejiang Province, China and a
member of Expert Committee on intelligent manufac-
turing of Zhejiang Province, China. His main research
interests include System Security, IoT Application.

Kang Li received the BS degree from Tsinghua Uni-
versity, the master’s degree from Yale Law School,
and the PhD degree from Oregon Graduate Institute,
OHSU. He is the director of Baidu X-Lab. His re-
search interests are system security and privacy.

Dongxi Liu is a principal research scientist in CSIRO.
His research interests include applied cryptography,
light weight encryption, and system security. His
recent work aims to design public key encryption
based on checkable hardness facts and design new
proof-of-work blockchain protocol for crowdmining.

Surya Nepal (Member, IEEE) is a senior principal
research scientist with CSIRO Data61 and leads the
distributed system security research group. His main
research focus has been in the area of distributed
systems, with a specific focus on security, privacy and
trust. He has more than 200 peer-reviewed publica-
tions to his credit. He currently serves as an associate
editor in IEEE Transactions on Service Computing
and IEEE Transactions on Dependable and Secure
Computing.

Authorized licensed use limited to: Institute of Information EngineeringCAS. Downloaded on February 13,2025 at 09:13:01 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

