
1

Randomizing Set-Associative Caches Against
Conflict-Based Cache Side-Channel Attacks

Wei Song, Senior Member, IEEE , Zihan Xue, Jinchi Han, Zhenzhen Li, and Peng Liu, Member, IEEE

Abstract—Conflict-based cache side-channel attacks against the last-level cache (LLC) is a widely exploited method for information
leaking. Cache randomization has recently been accepted as a promising defense. Most of recent designs randomize skewed caches
rather than classic set-associative caches; however, skewed caches incur substantial performance overhead both in area and runtime.
We cautiously argue that randomized set-associative caches can be sufficiently strengthened and possess a better chance to be
adopted in the near future. For the first time, a dynamically randomized set-associative cache has been implemented in the LLC of a
Linux capable multicore processor. A single-cycle hash logic is designed for randomizing the cache set indices. A multi-step relocation
scheme is used to reduce the cost in remapping the cache layout. The randomized cache layout is remapped periodically for limiting
the time window available to attackers. An attack detector is implemented to catch attacks in action and consequently trigger extra
remaps. The evaluation results show that the randomized LLC has been sufficiently strengthened to thwart all existing fast algorithms
for searching eviction sets with only marginal runtime overhead, and small area and power overhead.

Index Terms—Conflict-based cache side-channel, cache randomization, attack detection, computer micro-architecture.

✦

1 INTRODUCTION

CONFLICT-BASED cache side-channel attacks against the
last-level cache (LLC) [1] is a widely exploited method

for information leaking. Since the LLC is shared between all
processing cores, it allows a malicious software to trigger
controlled conflicts, such as evicting a specific cache set
with attackers’ data [2], to infer security-critical information
of a victim program. They have been utilized to recover
cryptographic keys [3], break the sandbox defense [4], inject
faults directly into the DRAM [5], and extract information
from the supposedly secure SGX enclaves [6].

Cache randomization [7]–[11] has recently been accepted
as a promising defense. In a randomized cache, the mapping
from memory addresses to cache set indices is randomized,
forcing attackers to slowly find eviction sets at runtime [2],
[12], [13] rather than directly calculating cache set indices.
Even when eviction sets are found, attackers cannot eas-
ily tell which cache sets are evicted by them. However,
cache randomization alone does not defeat conflict-based
cache side-channel attacks but only increases difficulty and
latency [7], [14]. For this reason, dynamic remapping [7],
[10] is used to limit the time window available to attack-
ers, and cache skews [8] have been introduced to further
increase the difficulty in finding eviction sets. Most of
recent designs [8], [9], [11], [15], [16] randomize skewed
caches rather than classic set-associative caches. In an un-
likely scenario where safety is overwhelmingly important,
the recently proposed MIRAGE cache [11] claims to fully

• W. Song, Z. Xue, J. Han, and Z. Li are with Key Laboratory of Cyberspace
Security Defense, Institute of Information Engineering, CAS, Beijing,
China, and the School of Cyber Security, University of Chinese Academy
of Sciences, Beijing, China.
E-mail: {songwei, xuezihan, hanjinchi, lizhenzhen1}@iie.ac.cn

• P. Liu is with the Pennsylvania State University, University Park, USA.
E-mail: pxl20@psu.edu

eliminate attacker-controlled associativity evictions by over-
providing metadata space and introducing multi-stepped
Cuckoo relocation into randomized skewed caches. How-
ever, the extensively re-structured LLC incurs a storage
overhead of 22%. It is unlikely for any future processors to
adopt such a disruptive solution without a strong incentive.

If safety shall act as an add-on to the existing cache struc-
ture without significantly hurting performance, we would
like to question: Is the currently widely utilized non-skewed
set-associative caches really hopeless to defend? Our recent
work [10] shows that the non-skewed set-associative caches
can be made sufficiently safe against conflict-based cache
side-channel attacks. Cache randomization and dynamic
remapping are necessary to obstruct the latest eviction set
search algorithms. The strength of defense is significantly
boosted by triggering extra remaps when attacks are de-
tected in action. The performance overhead can be effi-
ciently reduced using multi-step relocation during a remap.

In this paper, we implement the proposed randomized
non-skewed set-associative cache into the LLC of the open-
sourced Rocket-Chip multicore processor [17], [18]. To our
best knowledge, this is the first time that a dynamically
remapped randomized cache has been implemented on a
Linux-capable multicore processor. It allows us to evalu-
ate defense strength and performance overhead on FPGA
rather than some simulators. The experiment results provide
strong evidences showing that the classic set-associative
cache can be sufficiently enhanced against conflict-based
cache side-channel attacks with only marginal performance
overhead. The implementation is open-sourced at:
https://github.com/comparch-security/chipyard-random-llc

Overall, this paper makes the following contributions:
A dynamically remapped randomized cache is implemented into
the LLC of a Linux-capable multicore processor. A single-cycle
hash logic is designed for randomizing the cache set indices. A
multi-step relocation scheme is used to reduce the remap cost.

2

way-0 way-1 way-3

d
a
ta

ta
g

Address

data

page offset

way-2

Cipher

Cipher

k0 k1

Skew 0 Skew 1

Fig. 1. A randomized skewed cache with two skews over four ways.

An attack detector is implemented to catch attacks in action and
consequently trigger extra remaps. All existing eviction set search
algorithms have been ported and verified failing to find eviction
sets. The average runtime performance overhead is below 1% when
evaluated using the SPEC CPU 2006 benchmark suite.

The paper is organized as follows: Section 2 introduces
the necessary background for understanding the paper.
Section 3 reasons why randomizing skewed caches might
be bad. The design of a randomized set-associative cache
is expanded in Section 4 and implemented into the Rocket-
Chip multicore processor in Section 5. The strength of the
defense and its performance overhead are evaluated in
Section 6. The limitations and related work are discussed
in Section 7. Finally, the paper is concluded in Section 8.

2 BACKGROUND

The main objective of cache randomization is to deprive
attackers from usable eviction sets [7]–[11]. Fig. 1 presents
a randomized skewed cache whose four cache ways are
evenly divided into two skew partitions independently in-
dexed. Instead of using a subset of address bits, the cache set
index is generated from a cipher taking the whole address
and a hardware managed key as inputs. Assuming the
encryption algorithm is unbroken and the key is not leaked,
the cache set index is a random number unobservable to
attackers. Therefore, they can no longer construct eviction
sets simply by picking addresses but dynamically search for
congruent addresses at runtime, which can be intolerably
slow [12], [13]. However, three types of fast search algo-
rithms have been proposed to drastically reduce the number
of cache accesses required for finding an eviction set.

Group elimination (GE) is an optimization of an old algo-
rithm against the Intel’s complex address scheme [8], [12].
It starts with a large eviction set of random addresses and
quickly trim it into a minimal one with only W addresses,
where W is the number of ways. In each trim round, the
remaining addresses are divided into W + 1 groups. Since
a minimal eviction set contains only W addresses, there
is at least one removable group containing none of the W
addresses. By sequentially testing whether the set is still an
eviction set without a certain group, the removable group is
found and removed. The trim continues until a minimal set
is produced. On average, it requiresO(SW 2) cache accesses
to find a minimal eviction set in an S set LLC [13].

Conflict testing (CT) is an algorithm first proposed to find
eviction sets in caches using random replacement [8], where
an attacker can collect an eviction set by sequentially testing
multiple random address whether any of them are congru-
ent with the target address. The target address is accessed

first to make it cached in the LLC. Then a random address
is accessed. If this address is congruent with the target
address, it might replace the target address by a chance
of 1

W thanks to the random replacement. This condition
is checked by a timed re-assess of the target address. An
eviction set is produced when enough congruent addresses
are collected. Overall, any random address might conflict
with the target address by a probability of 1

S·W . The total
number of cache accesses is estimated aroundO(SW 2). This
algorithm is also effective for permutation-based replace-
ment, such as least-recently used (LRU). To find a minimal
eviction set with W addresses, the number of cache accesses
is also around O(SW 2).

Prime, prune and probe (PPP) is also a search algorithm
exploiting the LRU replacement [8], [19]. An attacker starts
with accessing a large set of random addresses (prime set)
to prime the LLC. Since self-conflicts would naturally occur,
a prune process is used to remove conflicted addresses until
all addresses remaining in the prime set are simultaneously
cached. To collect congruent addresses from the prime set,
the attacker makes a timed re-access of the target address
and the prime set sequentially. Addresses with long latency
(miss in the LLC) are congruent with the target. In an ideal
(noiseless) scenario, just enough addresses are found in a
single probe as the order of accesses observed by the LLC is
the same order initiated by the attacker. The overall number
of cache accesses is only O(SW), which is the smallest in
all the three fast algorithms. This algorithm can be used
when other types of replacement policies is used, such as
the random replacement policy, but the overall number of
accesses rises to O(SW 2), because the number of congruent
addresses found in each search decreases to around one,
leading to multiple search rounds [19].

Several derived algorithms have been proposed based
on these fast algorithms. A couple of optimizations have
been made in [20] to speed up the PPP algorithm in
randomized skewed caches, where a search with multiple
rounds is required to find an eviction set. One technique is
to boost the probability of finding a congruent address by
adding the found addresses as extra targets in each probe
round. A similar idea has been utilized to optimize the CT
algorithm, namely CT-fast. Whenever a congruent address
is found (the target address is evicted), all the previously
found congruent addresses are accessed after re-accessing
the target to make the target easier to evict [21]. Instead
of checking congruence by evicting the target address,
detecting the prolonged latency due to the LLC enforced
serialization of parallel writes to the same cache set was also
found effective [22]. The resulted algorithm, namely W+W,
operates significantly faster than the GE algorithm.

The aforementioned search algorithms can easily defeat
statically randomized caches. As a result, a randomized
cache has to periodically remap its content by updating
the hardware managed key (k0 and k1 in Fig. 1). This
forces an attacker to dynamically search eviction sets and
finish an attack in the same remap period. Short remap
period increases the hardness to launch an attack [7], [14].
However, frequent remaps lead to significant performance
loss. During the remap process, all cache blocks in the LLC
are sequentially relocated using the updated key. When
there is no available space at the new location, a cache block

3

is evicted to make space [7]. Our experiments show that 40%
to 50% cache blocks are evicted for this reason. To reduce the
performance overhead while thwarting attacks, the remap
period is carefully selected. It was originally reported that
a remap is required for every 47K accesses to a 1024-set 16-
way LLC (only three accesses per cache block, ACC3) [8],
which is an unbearably short period. This is why skewed
caches are preferred and the period can be increased to
1.6M accesses (ACC100) [8] when two skews are utilized.
However, ACC100 was later found vulnerable to eviction
sets composed of partially congruent addresses [9], [10].
Consequently, ScatterCache pushes the number of skews
to the maximum of 16 [9] while MIRAGE tries to fully
eliminate associativity evictions by over-providing meta-
data [11]. Both of them potentially incur substantial perfor-
mance overhead.

3 REASONING AGAINST SKEWED CACHES

Instead of advocating the use of randomized skewed caches,
we cautiously argue that randomized non-skewed (classic
set-associative) caches can be sufficiently strengthened and
possess a better chance to be adopted in the near future than
their skewed counterparts.

The performance benefit of using skewed caches is not proven
by commercial processors and introducing it purely for security
purpose might be ill-fated. With our best effort, we found
that skewed caches [23] have not been adopted in the
LLCs of any commercially available modern processors.
The performance benefit of a skewed cache is the increased
cache associativity by reducing conflict misses [23]. As the
number of ways grows in modern processors, the benefit
of extra cache associativity diminishes [8]. The required
partitioning of cache sets undesirably reduces the efficiency
of the LRU/RRIP replacement policy [12], [24] adopted by
the LLCs in modern processors. Excessive skewing, such as
ScatterCache, actually hurts performance.

The area and runtime performance overhead of MIRAGE is
heavy. As the most advanced defense based on skewed
caches, MIRAGE [11] claims to fully eliminate attacker-
controlled associativity evictions by over-providing meta-
data space and introducing multi-stepped Cuckoo reloca-
tion. According to its own estimation, the storage over-
head of the over-provided metadata space has already ap-
proached 22%. The actual overhead would be much higher
due to the reduced memory density, as metadata array
is partitioned, and the significantly under-estimated logic
overhead. The runtime performance loss was estimated to
2.0% in term of cycles per instruction (CPI) based on simula-
tor results, which we believe is also under-estimated. There
is no discussion regarding the potential blocking scenarios
due to conflicts between parallel LLC accesses. An LLC is a
non-blocking cache serving multiples accesses concurrently,
each of which is a multi-step transaction fulfilled in an
atomic fashion: either a transaction is fully served or blocked
without updating any internal state. To guarantee data con-
sistency, conflicting transactions (accessing the same cache
set) must be detected and serialized. Cache skews com-
plicate the conflict detection logic as potential conflict is
checked simultaneously in all skews. This becomes even
more complex in MIRAGE as data and metadata are stored

separately, leading to extra source of conflict. It is really
difficult to accurately evaluate the area and runtime per-
formance impact without a real hardware implementation.

The non-skewed set-associative caches can be made sufficiently
safe against existing conflict-based cache side-channel attacks.
The full elimination of associativity evictions might be an
overkill with unnecessary performance overhead. What ac-
tually required is to sufficiently raise the bar for existing at-
tacks to a level that is unviable in practice. As shown by our
experiments using actual attacks running on hardware im-
plemented processors in Section 6, dynamically remapping
a randomized set-associative LLC using a combination of
detectors successfully thwarts all existing search algorithms
with a marginal performance overhead.

4 RANDOMIZED SET-ASSOCIATIVE CACHES

This section briefly re-describes the randomized set-
associative cache [10] and proposes a single-cycle hash logic
for efficiently randomizing cache set indices in hardware.

4.1 Threat Model

As the purpose of adopting cache randomization is to
deprive attackers from usable eviction sets, we consider
finding a usable eviction set targeting a specific address as
a successful attack. Only conflict-based cache side-channel
attacks targeting the LLC are considered in this paper. In
order to examine the effectiveness of defenses under hostile
scenarios, we give attackers the following set of generous
but still reasonable capabilities:

• She has fully reverse-engineered the virtual to physical
address mapping.

• She can access unlimited number of random addresses,
make arbitrary memory accesses to her own data and
accurately infer cache hit/miss status by measuring the
access latency.

• She can accurately trick the victim into running a single
memory access, and there is no other active process
during the attack.

• She has the full design details of the hardware.

4.2 Randomizing Cache Set Indices

In a randomized cache, the mapping from addresses to
cache set indices is randomized. The structure of such a
cache is depicted in Fig. 2. Assuming a 32-bit address
system, all the higher 26 address bits, except for the lower
6-bit cache block offset, are used to produce a randomized
cache set index using a hasher highlighted in red.

Instead of using a multi-cycle cryptographic cipher as
in other randomized caches, such as QARMA [9] and
PRINCE [11], we prefer a single-cycle hasher utilizing two
non-cryptographic hash functions and a key table. The
major concern here is the extra latency introduced by the
cryptographic ciphers. A 2-cycle linear block cipher was
used in [7] but found vulnerable to a shortcuts attack [20],
[25]. Consequently, all the following designs adopt the
even slower non-linear cryptographic ciphers. However, as
correctly pointed out by [25], even the lightweight (fast)
cryptographic cipher leads to considerable overhead. This

4

d
a
ta

ta
g

address

data

page offset page number

hk()

hs()

key table,
K

K[0]
K[1]

K[n-1]

randomized
set index, s

26

26

26 log2(S)

key, k

key
selector

set
randomizer

cache block
offset

hasher

Fig. 2. A randomized set-associative cache.

is especially true for the less powerful processors using in-
order cores and shared level-two (L2) caches, such as the
Rocket-Chip. In our own estimation, every extra cycle incurred
by the cipher leads to 0.4∼0.8% increase in CPI.

In layman’s terms, the shortcuts attack relies on the
existence of a factorization in the form of Equation 1 [25]:

s← F(a, k) = C(a)⊕D(k) (1)

where (a, k) is the address and key pair used by the cipher,
s ← F() is the cipher function, which can be factored
into two functions C() and D(). As a result, when two
addresses a0 and a1 are found congruent, the congruent
relation is irrelevant to k. Replacing k does not invalidate
the congruent relation between a0 and a1.

F(a0, k) = F(a1, k) (2)
⇒ C(a0)⊕D(k) = C(a1)⊕D(k) (3)
⇒ C(a0) = C(a1) (4)

To resolve this problem, the possible factorization described
in Equation 1 must be eliminated, such as using a non-
linear F(). A cryptographic cipher certainly works, but its
3∼5 cycle latency [11] incur substantial performance loss.
We would like to propose a non-cryptographic but arguably
strong enough single-cycle hasher.

As depicted in Fig. 2, our solution is a combination
of two non-cryptographic hash functions: a simple linear
hasher hk(), a non-cryptographic non-linear hasher hs(),
and a table K storing an array of randomly generated keys.
The overall function can be described as:

s← F(a,K) = hs(a,K[hk(a)]) (5)

The hs(), namely the set randomizer, is the main hash
function F() used to produce the randomized cache set
index. It adopts a non-linear design to eliminate the possible
factorization described in Equation 1. Although hs() alone
has achieved the goal of randomizing cache set indices, it
may suffer from brutal-force attacks trying to decipher the
key as its implementation is considered publicly available.
Therefore, the key selector hk() and the key table K are
introduced as an extra layer of protection. Instead of using
the same key, hk() randomly chooses a key from K indexed
by hashing the input address a: k ← K[hk(a)]. During a
remap, both the key selector hk() and the key table K are
regenerated. In this way, it becomes almost impossible for

A

B

C

DE

F

G

H

J

K L

Mp

N O P

Q

R

S

T

Fig. 3. Remapping cache block H using the multi-step relocation.

an attacker to tell whether two congruent addresses share
the same key, not to mention breaking the hasher.1

The whole hasher is implemented in combinational cir-
cuit finishing in just one cycle. As K is small, it is stored in a
register array. The key width is set to log2(S) where S is the
number of sets. This is the minimal width to ensure that an
address can be randomly mapped to all available sets. The
detailed hardware implementation of these hash functions
is described in Section 5.2.

4.3 Periodically Remapping

Cache remapping [7] is used to limit the time window avail-
able to attackers. Using the fast search algorithms described
in Section 2, attackers may collect a number of congruent
addresses forming an eviction set. To prevent attackers from
constructing and further utilizing eviction sets, a remap is
periodically triggered to randomly rearrange the mapping
of addresses to cache sets, which effectively nullifies the
congruent addresses found by the attacker.

During a remap, all cache blocks are sequentially relo-
cated to new cache sets using the regenerated hash func-
tions. Unavoidably, this relocation process causes cache
conflicts leading to cache blocks being evicted from over-
crowded sets while some sets are left with unoccupied ways.
Existing research estimated that around 40∼50% of cache
blocks are evicted in each remap [10]. To reduce the perfor-
mance loss asserted by cache remapping, the cache remap
period should be carefully selected to be just short enough
to thwart most attacks using the fast search algorithms.
For non-skewed set-associate caches, a remap is needed for
every 10 evictions per cache block on average [10].

A further optimization is to adopt a multi-step reloca-
tion method in the remap process. When a cache block is
relocated to a full cache set, instead of evicting one cache
block to make a room, the remap tries to swap the block
with a block still mapped using the old hash functions and
further relocate the swapped block. A block is evicted only
when all the blocks are already mapped using the new hash
functions. Fig. 3 demonstrates an example of remapping
cache block H (indicated by the remap pointer p) in a 5-
set 4-way cache using the multi-step relocation, where all
remapped blocks are shadowed in gray. H is relocated to set
4, which still contains blocks waiting to be remapped. Using
the multi-step relocation, block N is swapped with H, and it
is further relocated to set 1 which has an empty block. As a
result, no block is evicted. Multi-step relocation significantly
reduces the ratio of evicted blocks from 40% to just 10% [10].

1. Unlike in a traditional cryptanalysis where the ciphertext is ob-
servable, the randomized cache set index is unavailable to attackers.
By searching for congruent addresses, an attacker might extract time-
invariance of hs() and eventually break it. However, the use of hk()
makes such analysis almost infeasible, and searching congruent ad-
dresses triggers remaps which in turn nullify the analysis. Both effects
make the hasher resistant to brutal-force attacks.

5

4.4 Attack Detection
Although remap at a high frequency thwarts most side-
channel attacks, it incurs observable performance loss due
to the evicted cache blocks. Instead, moderately reducing
the remap frequency while triggering extra remaps when
attacks using fast search algorithms are caught in action
can reduce the performance loss. Existing research has
shown that both PPP and GE algorithms can be reliably
detected [10], because they need to prune a large set of ran-
dom addresses into a minimal eviction set and exceptional
number of evictions are incurred on the targeted cache set
during the prune process. An active attack can be detected
accordingly by constantly monitoring the distribution of
evictions among cache sets.

The proposed detection utilizes the Z-Score standardiza-
tion [26], which is a standard way of measuring imbalance
across samples. The Z-Score of a cache set is measured as:

zi =
ei√∑

e2

S−1

(6)

where ei is the number of evictions occurred in a monitoring
period on cache set i and zi is the calculated score for the set.
zi approaches to

√
S when all evictions in the monitoring

period occur on the i-th set (potentially targeted). However,
this might lead to false-positive errors when the cache
miss rate is extremely low and only one eviction happens
on a benign set. Consequently, the detector relies on an
accumulated and weighted score (y) calculated as:

yi[t] = (1− α) · yi[t− 1] + α · (ei − ē) · zi (7)

where (ei − ē) · zi is the weighted score to represent the
number of evictions and α is the discount factor (empirically
set to 1/32) of the exponential moving average (EMA) [27]
applied on the weighted score. This yi ranges between 0
and W and approaches W when W extra evictions unevenly
occur on the i-th set in a short period of time. Since attackers
might hide themselves by prolonging the search algorithm,
a threshold (h) shall be carefully selected to detect most
attacks while leaving benign applications unreported. It is
estimated that the success rates of PPP and GE reduce to
almost nil if h = 5 [10].

5 HARDWARE DESIGN

The randomized set-associative cache described in Section 4
has been implemented into the shared L2 cache [28] (acting
as the LLC) of the Rocket-Chip processor [17]. This section
describes the hardware design of the randomized cache
along with the extensions made to Rocket-Chip.

5.1 Overall Structure
The overall structure of the randomized LLC cache is de-
picted in Fig. 4 with the newly added modules highlighted
in red. Adopting the SiFive Tilelink protocol, five channels
(A to E) are used for the communication with the inner L1
cache and the outer memory. Table 1 provides a functional
description of these channels, along with the special channel
X for SiFive’s extension of software-controlled cache flush
operations and the newly added channel P for our extension
of software accessible performance counters (PFCs). The

Swapper

Swapper

A

B

P

C

D

E

X

Hasher 0

Hasher 1

Request
Queue

MSHRs

SchedulerBanked Store
(data array)

Directory
(metadata)

DetectorPFC

Remapper

A

C

X

A

C

D

E

Acquire

Release

Finish

Flush

PFC

Probe

Grant

Finish

Read

RData

Write &
WData

Fig. 4. Overall structure of the randomized LLC in the Rocket-Chip.

TABLE 1
Function of the extended TileLink channels

L1 side (left) Memory side (right)

A Acquire: L1 asks for a block or a
permission upgrade.

Read: LLC reads a block from
memory.

B Probe: Coherence probes from
LLC to L1 caches.

Not used.

C Release: L1 writes back a block or
answers a probe.

Write & WData: LLC writes back
a block to memory.

D Grant: LLC’s response to a release
or an acquire (may with data).

RData: LLC gets the block asked
by a previous read.

E Finish: L1 denotes the end of an
acquire transaction.

Finish: LLC denotes the end of a
read transaction.

X Flush: A processing core requests
to flush a block.

Not used.

P PFC: LLC sends PFC counts to
processing cores.

Not used.

L1 side of channels support coherent cache transactions
while only normal (uncoherent) memory transactions are
supported on the memory side. An exemplary transaction is
depicted in Fig. 5. It starts with an L1 sending an Acquire on
channel A to fetch a missing cache block B0. Unfortunately,
B0 also misses in the LLC and the cache set is full. Block
B1 is chosen by the replacer to make a room. As B1 is in
a modified status (assuming an MSI protocol), LLC probes
all L1 caches for the latest copy of B1 through channel B
and later receives it through a Release message on channel C
(which is immediately acknowledged by a Grant message
on channel D). Block B1 is then written back to memory
through a Write & WData message on channel C. Almost at
the same time, LLC requests the memory for the missing B0

by a Read message on channel A. The memory then sends
back B0 (RData) on channel D, which is quickly forwarded
to the requesting L1 by the LLC using a Grant on channel D.
Both the L1 and the LLC send back Finish messages to finish
their (Acquire/Read) transactions, respectively.

A number of modules have been added into the LLC
to support dynamic randomization. For all L1 side channels
requesting to access a specific block, i.e., channel A (Acquire),
C (Release) and X (Flush), the channel input module is
pushed further into the LLC to allow the added hashers

L2 (LLC) MemoryL1s
A: Acquire

A: Read

B0 misses in L1

L1 writes back B1

B: Probe

D: RData

B0 misses in LLC,
LLC replaces B1 (dirty) C: Release

E: Finish
E: Finish

C: Write & WData LLC evicts B1

LLC reads B0

Memory returns B0 D: Grant
LLC returns B0

D: Grant
LLC confirms B1

LLC finishes
L1 finishes

tim
e

Fig. 5. An exemplary LLC transaction using the Tilelink channels.

6

g0,25g0

a

g1

g5

a31

0

g0,24

a30

g0,23

a29

g0,1

a7

g0,0

a6

u0

u1

u5

Fig. 6. Implementation of the key selector hk().

(hasher 0 and 1 in Fig. 4) to produce the randomized cache
set indices beforehand. During a remap, the functions of
these hashers are regenerated by the remapper, which also
schedules the relocation of all cache blocks with the help
of two swappers added in the directory and the banked store,
respectively. A detector is responsible for triggering remaps
based on cache states collected by the PFC. Both periodical
and attack triggered remaps are implemented.

5.2 Hash Function

The internal structure of the proposed hasher, comprising a
key selector, a set randomizer, and a key table, has already been
depicted in Fig. 2 (Section 4.2). In each cycle, it produces a
randomized cache set index s according to the input address
a using a key table storing 64 10-bit keys (assuming a 1024-
set LLC). As shown in Fig. 6, similar to Intel’s complex
addressing scheme [29], the hash function hk() can be
described as:

u = hk(a,G) (8)

where u is the 6-bit index for choosing a random key in
the key table and G is a vector containing six independent
generation factors {g0 . . . g5}. The i-th bit of u is generated
from a using gi as follows:

ui = (a6 · gi,0)⊕ (a7 · gi,1)⊕ · · · ⊕ (a31 · gi,25) (9)

Only the higher 26 bits of a are used in the generation
omitting the lower 6-bit block offset. The random generation
factor gi is also 26 bits wide. Implemented in combinational
circuit, the key selector consumes a tiny portion of a cycle.

Using a key randomly chosen by the key selector from
the register-implemented key table K, the randomized
cache set index s is produced by the set randomizer hs()
as depicted in Fig. 7. Following the methodology described
in [30] for designing high-performance non-cryptographic
hash functions, this hasher is composed of multiple lin-
ear XOR stages and non-linear S-box stages connected by
randomly shuffled interconnects. The final 10-bit cache set
index (s) is produced by overlapping the 36-bit output (o):
si = oi⊕ oi+10⊕ oi+20⊕ oi+30. Each XOR stage implements
a sparse and invertible matrix multiplication using 2-input
and 3-input XOR gates. The non-linear S-box stage includes
an array of AOI222 gates each mixing three consecutive
bits. Denoting an S-box stage as “t” and three consecutive
XOR stages as “x3”, a 9-stage tx3tx3t hash function is found
performing sufficiently effective in the generalized unifor-
mity test, the avalanche test and the universality test [30].
In layman’s words, this hash function statistically ensures
that the hashed outputs are uniformly distributed, one flip
on any input bit leads to random flips on ∼50% output bits,
and changing the key k results in a fresh new hash function.

S
-b

ox
 sta

g
e

X
O

R
 sta

g
e

X
O

R
 sta

g
e

X
O

R
 sta

g
e

S
-b

ox
 sta

g
e

26

10
k

a

t x x x t
s0

s1

s2

s8

s9

o[35:0]

Fig. 7. Implementation of the set randomizer hs().

Hasher 0

Remapper

a

sold

remap & sold < phead

remap & !(sold < phead)

snew sretry

s0

1

Hasher 1
select

update

Fig. 8. Generating the randomized cache set index using two hashers.

The whole hasher is implemented in pure combinational
circuit and fast enough to finish in one cycle.

As a part of a remap, the whole hasher is regenerated
to produce a new mapping for cache set indices. To be
specific, the vector of generation factors G controlling the
key selector hk() and the key table K are refilled with
independently generated random numbers. The update of
G ensures that any pair of addresses using the same key in
the previous remap period would likely use different keys,
while the update of K replaces hs() with a new one.

5.3 Cache Set Randomization

This section explains how cache blocks are addressed in the
LLC using the hashers described in Section 5.2. A pair of
hashers are shared by all requesting channels on the L1
side, i.e. channels A, C and X, as shown in Fig. 4. They
are placed before the channel input modules; therefore, the
randomized cache set index of an incoming message is
made available and stored inside the message before it is
processed by the channel input module. This also asserts the
minimum modification to the original message processing
logic as most of it is unaware of the change in cache indices.

Instead of one, two hashers are used to support uninter-
rupted operation during remaps, as explained in Fig. 8. In
normal operation when no remap is active (remap = false),
one of the hashers, selected by the remapper, generates the
randomized cache index using the current (old) mapping
(s ← sold). Meanwhile, the unused hasher is proactively
updated by the remapper to prepare a new mapping for the
next remap period. When a remap is triggered (remap =
true), two indices are generated by both hashers simultane-
ously: sold using the old mapping and snew using the new
mapping. snew is chosen when the cache set pointed by sold
is already remapped (sold < phead, see Section 5.4), indicat-
ing sold is invalid. Otherwise, sold is chosen by default. As
explained in Section 5.4, cache blocks in unremapped sets
may have already been relocated using the new mapping
due to the multi-step relocation. If a block is found missing
using sold, it might be relocated and should be found again
using snew. For this reason, snew is also stored in the message
as sretry, allowing the scheduler to reissue a failed request
back to the input module using sretry as index. The detailed
reasoning of these conditions will be revisited in Section 5.4
after the remap logic is explained.

7

A B C D
E F G H
I J K L
M N O P
Q R S T

phead

ptar

MSHRs
meta

swap

A B C D
E F G H
I J K L
M N O P
Q R S T

MSHRs

A C D
E F G H
I J K L
M N O P
Q R S T

MSHRs

B

A C D
E F G H
I J K L
M N O P
Q R S T

MSHRs

ptar B

A C D
E F G H
I J L
M N O P
Q R S T

MSHRs
B

ptar K

A C D
E F G H
I J B L
M N O P
Q R S T

MSHRs

ptar K

phead

ptar

phead

ptar

phead

phead

ptar

ptar
pheadphead

A
CD

E G

H
I

J

B

L
N

O

P
Q R S T

MSHRs

K

M

phead

ptarphead

ptar

A
CD
E

G

H
I

J

B

L
N

O

PQ
R

S T

MSHRs

K

Mphead

ptar

ptar

A
CD
E

G

H
I

J

B

L
N

O

PQ S T

MSHRs

K

M

ptar

(a) (b) (c)

(d)(e)(f)

(g) (h) (i)

remap starts first
metadata swap

following
metadata swap

following
data swap

first
data

 swap

relocation
chain

chain
ends

with an
empty
cache
way

chain
ends with
eviction

Starts a new chain

F FF

Fig. 9. General procedure of remapping a 5-set 4-way cache: (a) normal
operation when remap is inactive, (b) starting a remap, (c) the first
metadata swap, (d) the first data swap, the following (e) metadata swap
and (f) data swap on a relocation chain, a relocation chain ending by (g)
swapping the final block with an empty cache way or (h) evicting the final
block as it is relocated to a fully occupied and remapped set, (i) starting
a new relocation chain. The move of metadata (data) is colored in red
(blue) arrows. The block chosen to be relocated next is highlighted in
green. All remapped blocks are shadowed in gray.

5.4 Cache Remapping
A remap is triggered by the detector and scheduled by the
remapper. This section describes the internal logic of the
remapper while the detector is discussed in Section 5.5.

5.4.1 General Description
A remap is a multi-cycle procedure adopting the multi-step
relocation described in Section 4.3. All blocks are sequen-
tially remapped (relocated to a new cache set) by multiple
relocation chains, each of which is a chain of block swaps
triggered by the relocation of an unremapped cache block.
This starting block of a new relocation chain is always
chosen from the unremapped cache set with the smallest
index. A relocation chain finishes when one of two desig-
nated ending conditions is satisfied. We will shortly present
the two conditions. A swap buffer, which is just capable of
storing one cache block along with its metadata, is added
to temporarily store the cache block being relocated. The
buffered block can be addressed as an extra way added
to the new cache set (similar to a victim cache). Several
global variables are added as well, including remap denoting
a remap is active, a phead pointer identifying the starting set
of the current relocation chain and a ptar pointer labeling the
set currently being relocated. The metadata associated with
each cache block is extended to store the full (26 bits of)
address because the cache set index is no longer a segment
of the address. A remap-id bit is also added to the metadata
denoting whether a block is remapped.

Fig. 9 describes the general procedure of a remap. If the
remap is inactive, the cache operates normally, and both

phead and ptar point to the end of the cache as depicted
in Fig. 9a. Once a remap is triggered, as shown in Fig. 9b.
both pointers are retargeted to point at cache set 0, as it will
be the first to be remapped, and the (empty) block stored in
the swap buffer is set as remapped by toggling its remap-id
bit. The remap procedure proceeds in multiple relocation
chains. The first relocation chain starts with a randomly
selected unremapped block (block B in Fig. 9b) in cache
set 0. This block is swapped with the empty block stored
in the swap buffer in two steps: a metadata swap (Fig. 9c)
and a data swap (Fig. 9d). Instead of letting the remapper
write the directory directly (using an extra write port), a
missing state handling register (MSHR) is borrowed for this
operation. In the metadata swap, the metadata of the swap
buffer is first moved to an MSHR acquired by the remapper
and then the metadata of block B is copied into the swap
buffer. Later in the data swap, shown in Fig. 9d, the MSHR
writes the metadata of the original swap buffer (although
empty for the first metadata swap of a relocation chain) into
the place of block B as a normal metadata update operation.
Meanwhile, the data of block B and the swap buffer are
swapped. Assuming cache set 2 is the new set for block
B identified by the remapper, the swap buffer is assigned to
this set along with ptar. The relocation chain follows on with
swapping block B with a randomly selected unremapped
block in cache set 2. Let’s say block K. This swap is similarly
executed by a metadata swap (Fig. 9e) followed by a data
swap (Fig. 9f). Afterwards, block K is temporarily stored in
the swap buffer waiting to be relocated (to cache set 3) by
the second swap of the current relocation chain.

This chain of swaps in the current relocation chain
continues until one of two possible ending conditions ap-
pears: One ending condition occurs when the block in the
swap buffer is relocated to an empty cache way in a fully
remapped cache set. An example is illustrated in Fig. 9g,
where block F is relocated to the remaining empty way
of the fully remapped cache set 0. Consequently, the swap
buffer becomes empty and the current relocation chain ends.
Both phead and ptar progress to the next cache set, and a
block is randomly chosen to start a new relocation chain.
The other ending condition occurs when the block in the
swap buffer is relocated to a fully remapped set with no
empty way. An example is demonstrated in Fig. 9h, where
block R is relocated to the fully remapped and occupied
cache set 3. Instead of enforcing a swap, block R is evicted
to clear up the swap buffer. Pointer ptar returns to the cache
set pointed by phead, and a block is randomly chosen to
start a new relocation chain, as in Fig. 9i. For both ending
scenarios, if the cache set pointed by ptar is already fully
remapped, both phead and ptar progress to the next cache
set until all cache sets are remapped, when the remap is
consequently finished.

Four optimizations have been applied to the design:
The first one is to maximize the reuse of existing logic. In
the swap of metadata, an MSHR is borrowed for writing
metadata to the directory rather than introducing a new
write port. When a block is evicted at the end of a relocation
chain, the eviction is done by issuing a flush operation
to channel X by the remapper. The second one is to swap
metadata and data separately. This allows the data swap to
operate asynchronously in the background, reducing the

8

IDLE

PtUpd

MetaSwp

DataSwp

Evict

remap

phead < S

phead = S

 3 !tar_old
& !tar_ept & !swp_ept

 1 tar_old OR
 2 !tar_old & tar_ept & !swp_ept

 4 !tar_old &
swp_ept

0

Fig. 10. State machine of the remapper

overall remap latency. The third one is to make the swap
buffer addressable. The cache block temporarily stored in the
swap buffer is considered remapped. It takes part in the
way matching logic of the new (relocated) cache set as an
extended way, so that cache accesses to this block from
the inner L1 caches are not interrupted during the swap,
reducing impact on normal cache accesses. The final one is
to deprioritize the remapper’s requests to MSHR and channel X,
which also reduces impact on normal cache accesses.

Finally, let us return to the issue of choosing the cache set
index during an active remap, as described in Section 5.3.
Two indices, sold and snew, are simultaneously produced
using both the old and the new mappings (Fig. 8). When
sold < phead, s← snew because the cache set pointed by sold
has already been remapped and the requested block must be
stored in the new cache set pointed by snew. Otherwise, the
requested block might still be stored in the cache set pointed
by sold. In this case, s ← sold as the old cache set should be
checked first. However, some blocks in this set may have
been relocated due to multi-step relocation, e.g., block K is
relocated to from set 2 to set 3 as shown in Fig. 9g. This is
why snew is still provided as a retry index sretry just in case
that the new cache set needs to be checked as well.

5.4.2 Remapper
As depicted in Fig. 4, the remapper is the central controller of
the remap procedure while the actual swap of metadata and
data is offloaded to the two swappers added in the directory
(for metadata) and the banked store (for data), respectively.

The state machine of the remapper is described in Fig. 10.
The state is IDLE when remap is inactive (Fig. 9a). When
a remap is triggered (remap ← true), the state transits to
PtUpd where phead and ptar are updated. There are five
different scenarios for updating these pointers. The initial
entering from IDLE is scenario 0⃝, where phead and ptar are
both reset to 0 (Fig. 9b), starting the first relocation chain.
The remaining four scenarios depend on the information
collected in the next state MetaSwp.

A block relocation process starts with state MetaSwp,
where the metadata swapper inspects the state of the cache
set pointed by ptar, chooses an unremapped block (if any) in
this set, and swaps the block’s metadata with the one stored
in the swap buffer. The detailed operation is soon explained
in Section 5.4.3. Afterwards, states of both the cache set and
the swap buffer are returned to the remapper for deciding
the next operation. There are four different scenarios:

1⃝ tar old = true: MetaSwp → DataSwp. The cache
set has unremapped blocks as indicated by tar old. As an
example shown in Fig. 9e, cache set 2 has unremapped
blocks. The unremapped block K is chosen, whose metadata

IDLE

RdSet

RdMeta

Resp
1 2

3 4

WtMeta

WtSwp

(a) Metadata

IDLE

RdData

WtData

Resp

WtSwp

tar_ept

swp_ept

!swp_ept

!tar_ept

!tar_ept

tar_ept

(b) Data

Fig. 11. State machines of (a) the metadata and (b) the data swappers.

is swapped with the block B stored in the swap buffer. The
data swapper is consequently scheduled to swap the data.

2⃝ !tar old & tar ept & !swp ept: MetaSwp → DataSwp.
The cache set is fully remapped but with empty ways
(tar ept) while a block is stored in the swap buffer (!swp ept).
As an example shown in Fig. 9g, cache set 0 are remapped
but there is an empty way. The block F stored in the swap
buffer is therefore swapped into this way. Similar to 1⃝, the
data swapper is scheduled to swap the data.

3⃝ !tar old & !tar ept & !swp ept: MetaSwp→ Evict. The
cache set is fully remapped and fully occupied. The block
stored in the swap buffer is therefore evicted. As an example
shown in Fig. 9h, the block R in the swap buffer is relocated
to cache set 3, which is fully remapped and fully occupied.
A flush operation is issued to channel X to evict R.

4⃝ !tar old & swp ept: MetaSwp → PtUpd. This is a
corner case. The cache set if fully remapped while the swap
buffer is empty. Nothing waits to be done on this set and
both pointers (phead and ptar) progress to the next set.

These scenarios also decide how pointers are updated
later in state PtUpd: For scenario 1⃝, ptar ← snew as the
relocation chain continues on relocating the block stored in
the swap buffer. Scenarios 2⃝ and 3⃝ are the two ending
conditions for a relocation chain. ptar← phead to start a new
chain. Finally for the corner case 4⃝, both pointers progress
to the next cache set by phead++; ptar ← phead. When all
cache sets are remapped (phead = S), the remap is finished.
The state returns to IDLE and remap← false.

5.4.3 Metadata and Data Swappers

The metadata swapper follows a state machine depicted in
Fig. 11a. On receiving a request from the remapper, the state
transits from IDLE to RdSet, where the swapper acquires
the state (unremapped blocks and empty ways) of the cache
set pointed by ptar. Depending on the state, the metadata
swapper proceeds differently according to the four scenarios
described in Section 5.4.2. A metadata swap is needed for
scenarios 1⃝ and 2⃝. The metadata of a chosen block is
first read and latched in the swapper in state RdMeta. An
MSHR is then being acquired through the remapper in state
WtMeta to schedule a write of the metadata stored in the
swap buffer to the chosen block in the cache set. Once an
MSHR is allocated, the previously latched metadata is then
written to the swap buffer in state WtSwp. For scenarios 3⃝
and 4⃝, metadata swap is bypassed as it is not needed. In
all scenarios, the swapper returns to IDLE after forwarding
the state of the cache set to the remapper in state Resp.

Data swaps are fulfilled by the data swapper following
the state machine depicted in Fig. 11b. A swap starts when
a request is received from the remapper in state IDLE. If the
block to be swapped is non-empty (!tar ept), it is latched to
a local store to make a room in state RdData. Then the block

9

stored in the swap buffer is moved to this block in state
WtData if the swap buffer is non-empty (!swp ept). Finally,
the locally latched block is written to the swap buffer in
state WtSwp. The remapper is informed in state Resp and
the swapper returns to IDLE afterwards.

5.5 Attack Detection
The detector in Fig. 4 monitors the cache states and triggers
remaps when one of its detection criteria is met. The current
detector implements two detection criteria but more could
be added in the future. One is a passive criterion which
triggers a remap when the number of evictions overpasses a
predefined threshold. As described in Section 4.3, it limits
the time window available to attackers for finding and
exploiting eviction sets. Setting the threshold to 10 evictions
per cache block (EV10) was found sufficient to thwart the
CT algorithm [10]. This criterion is easy to implement. The
number of evictions is constantly monitored by the PFC
module. The detector notifies the remapper whenever enough
evictions are recorded from the last remap.

The other one is an active criterion which triggers a
remap when an attack is detected in action using the de-
tection algorithm described in Section 4.4. The hardware
implementation needs to resolve three issues: (a) monitoring
the number of evictions on each cache set, (b) the calculation
of the Z-Score for each cache set according to Equation 6,
and (c) the calculation of the accumulated weighted score
according to Equation 7.

Issue (a): The number of evictions on each cache set
is recorded by two SRAMs E and E′. Both SRAMs are
initially zeroed, and E[i] increases by one when a block
is evicted from cache set i. When the current monitoring
period finishes with enough amount of cache accesses, E[i]
is used in the Z-Score calculation as ei. Since reading SRAM
E takes time, evictions of the new monitoring period are
recorded in E′ to avoid interference. The two SRAMs swap
places after Z-Scores are calculated and E is zeroed.

Issue (b): Instead of directly calculating the Z-Score,
∑

e
and

∑
e2 are first accumulated by a scan of SRAM E.

∑
e

is averaged into ē for Equation 7 while
∑

e2 is used for
producing the reverted square-root-mean (q):

q =
1√∑

e2

S−1

(10)

Since S is typically a 2’s power and S ≫ 1,
∑

e2/(S − 1) is
approximated to right shifting

∑
e2 by log2 S bits, e.g., 10

bits for a 1024-set LLC. The calculation of q needs a square
root and a division operator, both of which are successively
approximated by the multiplicative iteration [31] described
in Algorithm 1. This is not the most advanced algorithm
but adequate enough for our purpose. Since the detection
algorithm can tolerate certain level of noise, the calculation
of Z-Scores does not require full precision. The multiplica-
tive iteration method allows us to easily control the width
(<j,k> in Algorithm 1) of the calculated result. When q
becomes available, Z-Scores can be calculated according
to Equation 6 by scanning SRAM E for a second time:
zi = ei · q.

Issue (C): The accumulated weighted scores y are calcu-
lated during the second round of scan of SRAM E as well.

Input: a: fix<n,m>; op: ’/’ or ’√ ’.
Output: b: fix<j,k>.
function b← op(a)

b = 0
t = (op == ’/’) ? 1.0 : a
for i = j+k-1 : 0 do

b[i] = 1’b1
c = (op == ’/’) ? (b * a) : (b * b)
b[i] = (c > t) ? 1’b0 : 1’b1

end
return b

end
Algorithm 1: Approximate square root or division (fix denotes
fixed-point real number).

The score from the previous monitoring period y[t − 1] is
stored in an SRAM Y (zeroed after a remap). yi[t − 1] is
fetched from Y[i] at the same time when zi is calculated.
When all variables on the right-hand side of Equation 7
become available, yi[t] is calculated and written back to E[i]
for the next period. If yi[t] is larger than the pre-defined
detection threshold h (set to 5 in [10]), an attack is detected
and a remap is thus triggered.

Considering a 1024-set 16-way LLC, the precision
of SRAM recorded variables is chosen as follows: ei:
fix<5,0>; yi: fix<3,10>. A 5-bit unsigned integer is wide
enough for ei as the evictions recorded on one cache set
is bounded by 2W using a proper monitoring period. As
for yi, it is capped to 8.0 as any value larger than 5.0
triggers a remap. A wide fractional part is kept for main-
taining high precision in the EMA calculation (Equation 7).
The precision of the intermediate variables is chosen as
follows: ē: fix<5,10>; e2: fix<20,0>; q: fix<5,10>; zi:
fix<10,20>; (ei− ē): signed fix<6,10>. Full precision
is maintained for ē, e2 and zi. The reverted square-root-
mean q has both its integer and fractional parts truncated
but only the fractional part suffers from marginal precision
loss. Nearly all variables are positive and is recorded as
unsigned except for (ei − ē), which might be negative and
is kept signed as a way for noise cancellation. The final
accumulated weighted score yi is almost always positive.
When it is indeed negative, |yi| is tiny and approximated
to 0. yi is therefore recorded unsigned and truncated to
fix<3,10>. The overall calculation latency for all cache sets
is around 8S cycles, eight cycles per cache set on average.

Fig. 12 presents a graphic illustration of the estimation
error incurred by the hardware implementation of the ac-
tive detector. Samples of the eviction distribution over 20
consecutive monitoring periods are collected by running the
GE algorithm on a 1024-set 16-way LLC and fed to a perfect
C++ model along with an RTL simulation of the hardware
detector. The estimated accumulated weighted scores yi are
shown in Fig. 12a and 12b for the C++ model and the
hardware implementation, respectively. When the score on a
set rises near or pass the threshold (colored in dark blue), it
is detected and a remap is triggered. The results presented in
both figures are almost identical. Further proved by Fig. 12c,
the (absolute) error between the two is less than 0.006,
negligible as it is only 0.12% of the threshold.

6 PERFORMANCE EVALUATION

The randomized set-associative cache has been imple-
mented into the shared LLC (L2) of the Rocket-Chip proces-

10

12
34
56
78
91011121314151617181920

0 250 500 750 1000
cache set

sa
m

pl
e

0

2

4

6

score

(a) Full precision C++ Model

12
34
56
78
91011121314151617181920

0 250 500 750 1000
cache set

sa
m

pl
e

0

2

4

6

score

(b) Hardware implementation

12
34
56
78
91011121314151617181920

0 250 500 750 1000
cache set

sa
m

pl
e

0.000

0.002

0.004

0.006

error

(c) Error incurred by hardware (height ×100)

Fig. 12. Estimation error (c) of the accumulated weight score yi between
the C++ model (a) and the hardware implementation (b).

sor [17] open-sourced in the Chipyard project [18]. A dual-
core Rocket-Chip (32KB PLRU L1-I and L1-D, 1MB 1024-set
16-way PLRU L2) has been ported to a Digilent Genesys-2
FPGA board. The processing cores run at 75MHz while the
off-chip memory (1GB) runs at 900MHz. The system boots
into a Linux kernel (ver. 5.11.0) using busybox and openSBI.
Both the SPEC CPU 2006 benchmark and demonstrative at-
tacks are compiled using GNU GCC (ver. 9.2.0). To evaluate
the overhead in ASIC designs, the processor has also been
synthesized by a commercial tool using the Nangate 45nm
open cell library [32], with the area and power of RAMs
estimated by CACTI 6.5 [33].

A number of remap related PFCs are added to the
LLC along with a new PFC reading interface. The origi-
nal Rocket-Chip supports a range of PFCs monitoring the
processing core and the main coherent bus. However, only
a small number (four on SiFive’s U740 [34]) of events can
be monitored in parallel. Since we need much more parallel
PFCs to evaluate the performance of different randomiza-
tion techniques, a separate PFC interconnect and counter
system has been added to make all PFCs run in parallel and
accessible by only three extra control registers [35].

6.1 Consistency Between Spike and FPGA Results
The performance of the randomized caches presented in [10]
was collected using the Spike [36] instruction level simulator
with a behavioral cache model [13], while it is collected from
a Rocket-Chip processor running on FPGA in this paper.
We would like to assess the consistency between the two
as a way to show that the conclusions presented in [10]
are reasonable. Fig. 13 depicts the misses per K instructions
(MPKI) of running the SPEC CPU 2006 benchmark on both
platforms.2 MPKI of the statically randomized LLC (static)
shows similar trends on both Spike and FPGA while it is
smaller on the latter. Programs were run in a bare-metal

2. Only benchmarks successful on both platforms are shown. On
Spike, 21 out of the 29 benchmarks run successfully due to the limit
support of syscalls of running SPEC in the bare-metal mode. As for
FPGA, 429.mcf and 434.zeusmp fail due to lack of memory.

 0
 5

 10
 15
 20
 25
 30

S
p

ik
e
 M

P
K

I static EV10

 0
 5

 10
 15
 20
 25
 30

400.perlbench

401.bzip2
403.gcc
410.bw

aves

416.gam
ess

433.m
ilc

436.cactusAD
M

437.leslie3d

444.nam
d

445.gobm
k

450.soplex
454.calculix
456.hm

m
er

458.sjeng
459.G

em
sFD

TD

462.libquantum

464.h264ref

471.om
netpp

473.astar
m

ean

FP
G

A
 M

P
K

I non-random static EV10

Fig. 13. Misses per K instructions (MPKI) of running SPEC CPU 2006
(100G instructions) on both Spike (static and EV10) and FPGA (non-
random, static and EV10).

TABLE 2
Success rate of fast algorithms under different defenses (each test is
repeated by 1000 times, detector threshold h = 5.0, DT1/4: calculate

Z-Score after one or four accesses per cache set).

Detector Combination

Alg. Static EV10 DT4 DT1 EV10+DT4 EV10+DT1

GE 97.2% ∼0.0% ∼0.0% ∼0.0% ∼0.0% ∼0.0%
PPP 20.4% 13.3% ∼0.0% ∼0.0% ∼0.0% ∼0.0%
CT 14.8% ∼0.0% ∼0.0% ∼0.0% ∼0.0% ∼0.0%
CT-fast 13.9% 2.5% 1.0% 0.1% 0.3% ∼0.0%
W+W 17.4% 11.7% ∼0.0% ∼0.0% ∼0.0% ∼0.0%

mode on Spike without the full OS support (file I/O served
by host) while a Linux kernel boots and runs in the back-
ground on FPGA. Since PFC’s record of instruction counts
kernel as well, the overall memory throughput is brought
down, which is easily noticeable for the memory heavy
benchmarks. The only significant discrepancy appears on
450.soplex, presenting a substantially low MPKI on FPGA.
Further investigation shows that 450.soplex (194KB/s) is
one of the most I/O heavy benchmarks [37], where the
impact of the different ways in serving file accesses is the
most visible. Periodically remap (EV10) results in marginal
overhead for the average MPKI on both platforms. Consid-
ering the reasonable discrepancies, the results are consistent.
Fig. 13 also demonstrates the MPKI of a Rocket-Chip proces-
sor utilizing a non-randomized LLC (non-random). Instead
of incurring extra cache misses, cache randomization (static)
actually reduces MPKI by∼1%, as some benchmarks benefit
slightly from the reduced conflict misses due to the random-
ization across cache sets.

6.2 Strength of Defense
To demonstrate the strength of randomized caches against
the fast eviction set search algorithms described in Section 2,
we have ported all of them to Rocket-Chip except for the
optimized PPP [20] as it targets only skewed caches.

The result is revealed in Table 2. When the LLC is
statically randomized without dynamic remapping, all al-
gorithms work as expected. GE presents the highest success
rate thanks to its iterative structure and strong tolerance to
noise. As described in Section 4.3 and [10], cyclic remapping
per every 10 evictions per block (EV10) is specially designed
to thwart CT and limit the window available for attackers to
utilize the potentially found eviction sets. By applying EV10,
GE and the original CT fail to work. The success rates of all
other algorithms drop significantly but they still survive.

Both PPP and the optimized CT variants (CT-fast and
W+W) incur unbalanced amount of evictions on the targeted
cache set, which is prone to be observed by the active

11

0.00010

0.00100

0.01000

0.10000

1.00000

 0 1 2 3 4 5 6 7 8S
u
cc

e
ss

 R
a
te

 (
lo

g
sc

a
le

)

Maximal Number of Extra Addresses

static
EV10
DT4
DT1

EV10+DT4
EV10+DT1

(a) Threshold h = 5.0

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 3 4 5 6 7 8 9 10 11

S
u
cc

e
ss

 R
a
te

Detector Threshold h

(b) Eight extra addresses

Fig. 14. The success rate of CT-fast with various number of extra
addresses (a) and different detect threshold (b). (each test is repeated
by 10K times).

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 0 1 2 3 4 5 6 7 8

N
u
m

b
e
r

o
f

R
e
m

a
p

s

Maximal Number of Extra Addresses

DT4 h = 3.5
DT1 h = 5.5

Fig. 15. Number of remaps triggered by running 1000 rounds of CT-fast.

detector described in Section 4.4. Nearly all algorithms cease
to work when an active detector acts alone. CT-fast is the
only survivor but its success rate drops to 1.0% when the
monitoring period is four accesses per cache set (DT4) and
further down to just 0.1% by reducing the period to one
access per cache set (DT1). Although this result seems good
enough, we believe EV10 is still necessary as it acts as a
fail-safe way to limit the available time window even if
eviction sets are still found by a future unknown algorithm.
In addition, combining EV10 with active detection crashes
the remaining survival chance of CT-fast. The success rate
decreases to 0.3% with EV10+DT4 and nil with EV10+DT1.

CT-fast seems to be the most indomitable algorithm. The
one analyzed in Table 2 is the basic form where each test col-
lects only W addresses and fails if a postmortem test finding
that they do not form an eviction set. As indicated by [21],
extending the search for extra addresses when postmortem
tests fail significantly increases the success rate. Fig. 14a
demonstrates the strength of various detector combinations
against the full-blown CT-fast algorithm with 0 (basic form)
to 8 extra addresses. Without dynamic remapping (static),
the success rate is raised to 61% by 8 extra addresses.
EV10 alone only reduces the success rate but fails to stop
it. The active detector (h = 5) is still effective, because
the postmortem test can be considered as a utilization of
the eviction set, which unavoidably asserts extra amount
of eviction to the target cache set and makes the attack
exposed. DT4 is able to reduce the success rate to ∼1.3%
while applying EV10+DT1 presses it to ∼0.01%. Fig. 14b
further reveals the drop of success rate when reducing the
detector threshold h for EV10+DT4 and EV10+DT1. The
result shows that EV10-DT1 is strong against the full-blown
CT-fast algorithm. The success rate is merely 0.2% when h is
set to as high as 11. When h is reduced to 5.5 for EV10+DT1,
CT-fast ceases to work. Similarly, EV10-DT4 is also effective
when h = 3.5. Non-skewed set-associative caches can be
sufficiently strengthened against all fast algorithms, includ-
ing the full-blown CT-fast.

To analyze the rate of false-positive and false-negative
errors during active attacks, Fig. 15 reveals the number of
remaps triggered by DT4 or DT1 during 1000 rounds of CT-
fast with various number of extra addresses. It is shown
that 850∼1250 remaps are triggered by DT1 while it is

TABLE 3
FPGA area breakdown at 75MHz.

Slice Percent Overhead RAM Percent

O
ri

gi
na

l

Rocket-Chip 24287 354.5
LLC 3114 12.8% 272.5 76.7%
Channels 802 3.30% 0
MSHRs 823 3.39% 0
Request Queue 183 0.75% 0
Banked Store 1099 4.53% 256 71.9%
Directory 392 1.61% 16.5 4.63%

R
an

do
m

Rocket-Chip 28115 15.8% 356
LLC 5609 20.0% 80.1% 274 77.0%
Channels 1076 3.83% 34.2% 0
MSHRs 910 3.24% 10.6% 0
Request Queue 311 1.11% 69.9% 0
Banked Store 1641 5.84% 49.3% 256 71.9%
Directory 540 1.92% 37.8% 16.5 4.63%
Hasher 526 1.87% 0
Detector 362 1.29% 1.5 0.42%
Remapper 66 0.23% 0
PFC 485 1.73% 0

2500∼3600 by DT4. DT4 leads to significant amount of false-
positive errors. The monitoring window of DT4 is four times
wide the window of DT1, which makes DT4 more sensitive
to noise caused by non-representative but uneven cache
evictions than DT1. However, a wider monitoring window
makes it more difficult for any attack to evade detection by
intentionally prolonging the search. Compared with false-
positive errors, false-negative error is more important. It
seems that 15% of the attacks evade from DT1. However,
the success rate of CT-fast without remapping is only 13.9%
(Table 2), most of the seemingly evasive attacks actually fail
to find eviction sets and, therefore, do not trigger the DT1
detector. The real false-negative rate is far smaller.

6.3 Performance Overhead
The area overhead is illustrated in Table 3 and Table 4
for FPGA and ASIC, respectively. Unlike the 22% storage
(RAM) overhead incurred by MIRAGE [11], only 1.9% of
extra storage is introduced to the LLC in our (ASIC) imple-
mentation. Cache randomization leads to some observable
overhead in logic area, which is not evaluated by any other
designs due to the lack of hardware implementation and
is therefore significantly under-estimated, as discussed in
Section 3. In FPGA, the logic area of the dual-core Rocket-
Chip rises by 15.8%, while the LLC is increased by 80.1%.
When both logic and RAM area is considered together in
ASIC, the area of the Rocket-Chip rises by 2.84%, where the
area of the LLC increases by 3.34%. We argue this area over-
head is reasonably small. The single-issue in-order Rocket
core is tiny compared with a high-performance out-of-the-
order (OoO) core. According to the area ratio and geometry
information provided in [38], [39], the area ratio between a
Rocket core and a six-issue BOOM OoO core is estimated
around 1:17. The overall area overhead is therefore reduced
to only 0.6%. The area of the LLC in the original Rocket is
also under-estimated, because it is a shared L2 cache with
only basic coherence support. There is no private L2 as in
Intel processors, no performance counter and no hardware
prefetcher. Considering all these reasons, the area overhead
of randomizing a traditional set-associative LLC in high-
performance OoO processors is marginal.

For the circuit speed, the original Rocket can run up to
79.4MHz and 162.1MHz on FPGA and ASIC, respectively,

12

TABLE 4
Breakdown of ASIC post-synthesis area (kµm2) at 150MHz.

Logic RAM Total Percent Overhead

O
ri

gi
na

l

Rocket-Chip 755.9 4713 5469
LLC 106.2 4175 4282 78.3%
Channels 64.86 0 64.86 1.19%
MSHRs 8.287 0 8.287 0.15%
Request Queue 16.79 0 16.79 0.30%
Banked Store 7.544 3991 3999 73.1%
Directory 3.480 184.4 187.9 3.44%

R
an

do
m

Rocket-Chip 833.7 4790 5624 2.84%
LLC 171.4 4253 4425 78.7% 3.34%
Channels 68.39 0 68.39 1.22% 5.44%
MSHRs 11.98 0 11.98 0.21% 44.60%
Request Queue 22.74 0 22.74 0.40% 35.45%
Banked Store 14.12 3991 4005 71.2% 0.16%
Directory 6.154 240.9 247.0 4.39% 31.49%
Hasher 16.71 0 16.71 0.30%
Detector 10.56 21.21 31.78 0.56%
Remapper 0.750 0 0.750 0.01%
PFC 9.528 0 9.528 0.17%

while it is 80MHz and 160.8Mhz for the randomized one
on FPGA and ASIC, respectively. The critical path in the
original Rocket starts from the channel input modules in
the LLC to the directory. According to Fig. 4, the hasher is
added between the original input modules and the modules
that are pushed forward. As a result, it acts as a manual
retiming on the critical path which borrows a small amount
of time from the newly added cycle by the hasher. The
maximal frequency of the FPGA implementation is slightly
improved. As on ASIC, the extra logic introduced into the
LLC increases the wire density. The wire load model is
therefore stressed, resulting in a tiny frequency drop. The
hasher latency is around 4.91ns on ASIC when the clock
period is set at 6.20ns.

Fig. 16 demonstrates the runtime performance overhead
of running SPEC CPU 2006 benchmark on the randomized
Rocket-Chip on FPGA. Note that all remaps triggered by
the detectors are false-positive errors as there is no active
attack. EV10+DT4 and EV10+DT1 incur marginal overhead
on the average MPKI of 0.80% and 1.11%, respectively, and
EV10 actually reduces MPKI by 0.11%. A remap is triggered
by EV10 when high amount of evictions are caused by
a memory access pattern showing low temporal locality.
The active detector (DT4 and DT1) triggers a remap when
the mapping of cache sets is uneven and one cache set
suffers from high level of conflict misses. In both scenarios,
a remap asserts low performance overhead and may help
regenerate a balanced mapping capable of reducing conflict
misses, e.g., high remapping rate does not raise MPKI for
403.gcc, 437.leslie3d, and 471.omnetpp. EV10, EV10+DT4
and EV10+DT1 lead to a tiny rise of average CPI by 0.49%,
0.70% and 0.89%, respectively. The major contributor here
is the extra one cycle latency added to the LLC, which
itself incurs a 0.4∼0.8% CPI increase. Remaps do not always
result in CPI overhead as they may produce in a good
mapping which reduces cache miss rate. As an example,
the CPI of 450.soplex actually reduces. Comparing between
DT4 and DT1, although less remaps are triggered by DT1, it
leads to slightly higher MPKI and CPI.

The power overhead is slightly higher than MPKI and
CPI. For all benchmark cases and detector combinations, the
power overhead against the non-randomized case ranges
from 1% to 4%, as shown in Fig. 16, while the average over-

-0.1
-0.05

 0
 0.05
 0.1

 0.15
 0.2

 0.25 1
.0

9

M
P
K

I
O

v
e
rh

e
a
d

EV10 EV10+DT4 EV10+DT1

 0
 50

 100
 150
 200
 250
 300

R
P
G

I

EV10 EV10+DT4 EV10+DT1 DT Remap

-0.01
 0

 0.01
 0.02
 0.03
 0.04
 0.05

C
P
I
O

v
e
rh

e
a
d

EV10 EV10+DT4 EV10+DT1

 0

 0.01

 0.02

 0.03

 0.04

400.perlbench

401.bzip2
403.gcc
410.bw

aves

416.gam
ess

433.m
ilc

435.grom
acs

436.cactusAD
M

437.leslie3d

444.nam
d

445.gobm
k

447.dealII
450.soplex
453.povray
454.calculix

456.hm
m

er

458.sjeng
459.G

em
sFD

TD

462.libquantum

464.h264ref

465.tonto
470.lbm
471.om

netpp

473.astar
481.w

rf
482.sphinx3

483.xalancbm
k

m
ean

Po
w

e
r

O
v
e
rh

e
a
d

EV10 EV10+DT4 EV10+DT1

Fig. 16. Performance overhead of running SPEC CPU 2006 bench-
mark. MPKI overhead, CPI overhead and power overhead use the non-
randomized Rocket as the baseline. All results, including the remap per
G instructions (RPGI), are collected from running 10G instructions. The
detector threshold is set to 3.5 and 5.5 for DT4 and DT1, respectively.

 1550

 1600

 1650

 1700

 0 100 200 300 400 500 600

Po
w

e
r

(m
W

)

Time (ms)

Fig. 17. The power peaks due to remap per 100ms.

head is around 2.1%. Although active attack detection and
dynamic remapping are computation intense operations
incurring extra power consumption, they are minor con-
tributors for the overall power overhead. As an evidence,
Fig. 17 reveals the runtime power curve when a Rocket core
is constantly writing memory while the LLC is remapped
at 10 Hz. The clearly visible power peaks are caused by the
remap operations, which always finish in 2ms and incur ex-
tra energy of 200µJ. The average remap frequency is around
1.83Hz, resulting in a trivial power overhead of 0.023%. A
power analysis has been done for the randomized LLC on
ASIC. LLC traces are collected from running SPEC CPU 2006
on Spike and fed into a post-synthesis simulation, which
provides the switching activities for power estimation. The
power of the the non-randomized LLC is 1.34W, where logic
and RAM consume 15mW and 1.32W, respectively. For the
randomized LLC, the power of logic and RAM rises by 55%
and 1.9%, respectively. The overall power overhead is small,
only around 2.5%.

It is also important to evaluate the performance over-
head of running parallel applications on multicore proces-
sors. Due to the limited resource, we can put only two
cores on a single FPGA. Instead, we have configured the
same Spike simulator used in [10] with four cores and
simultaneously run four out of six representative cases
chosen from the SPEC CPU 2006 benchmark. Using non-
randomized Rocket as the baseline, the MPKI overhead
is demonstrated in Fig. 18. For all detector combinations,

-0.015
-0.01

-0.005
 0

 0.005
 0.01

 0.015
 0.02

ABD
F

ABD
E

ABEF
AD

EF
BD

EF
ABCD
ABCE
ABCF
ACD

E
BCD

E
ACD

F
BCD

F
ACEF
BCEF
CD

EF
m

ean

0
.0

7
7

A: 400.perlbench.input2 B: 403.gcc.input3
C: 429.mcf.input0 D: 450.soplex.input1
E: 462.libquantum.input0 F: 471.omnetpp.input0

M
P
K

I
O

v
e
rh

e
a
d

EV10 EV10+DT4 EV10+DT1

Fig. 18. MPKI overhead when running four SPEC CPU 2006 bench-
marks simultaneously on a 4-core Spike simulator. The combinations of
benchmarks are ordered by the average MPKI, from the lowest (ABDF,
3.54) on the left to the highest (CDEF, 25.22) on the right.

13

the average MPKI overhead is trivial (within ±0.2%), and
this overhead is more consistent for the memory heavier
benchmark combinations on the right. According to the
results presented in Fig. 16, we strongly believe that the
performance overhead of cache randomization on multicore
processors is still marginal, similar with the performance
overhead on the dual-core Rocket-Chip tested on FPGA.

7 DISCUSSION

New randomized cache designs: Since the introduction of ran-
domized LLC (CEASER [7]), several randomized caches
have been proposed by the research community. Most of
them are randomized skewed caches while none has been
adopted commercially. CEASER-S [8] and ScatterCache [9]
significantly increases the difficulty of finding eviction sets
by introducing cache skews, but still fail to stop attackers
from finding small but still useful partial eviction sets [10],
[14]. MIRAGE [11] eliminates the attacker-controlled as-
sociativity evictions by over-providing meta and multi-
stepped Cuckoo relocation, but asserts heavy area and
runtime performance overhead. As a trade-off, Chameleon
cache [15] enforces a single relocation for all evicted blocks
using a victim cache. The performance overhead could
still be substantial as it is equivalent to remap using an
intolerable short period of ACC1.

New cache attacks: Recent conflict-based cache attacks
begin to adopt accurate manipulation of the cache replace-
ment state. Prime+Scope [21] significantly raises the speed
of traditional Prime+Probe attacks by presetting a selected
block in an eviction set to the eviction candidate before
triggering the victim to access the cache set. Consequently,
the victim access can be detected by re-accessing the se-
lected block rather than the whole eviction set. Similarly,
Reload+Refresh [40] presets the victim’s block to the evic-
tion candidate; therefore, victim’s access is stealthily observ-
able by checking whether the victim’s block is still the evic-
tion candidate (not if accessed). During the manipulation of
the cache replacement state, both attacks unavoidably assert
a large amount of accesses (evictions) to the targeted cache
set, which is exactly the pattern monitored by our active
detector. Occupancy attacks [41] are a new type of cache
attack which does not targeting a certain cache set but the
whole LLC. A recent attack is able to build a stochastic
channel [42] on randomized skewed caches by priming
a small number of cache sets. Since these attacks control
the amount rather than the location of the incurred cache
conflicts, cache randomization is ineffective while cache
partitioning is the preferred defense. Supporting way-based
cache partitioning, such as Intel CAT, is inefficient due to
the reduced number of ways in each partition. Instead, a
recent addition to ScatterCache supports encryption based
cache set partition [16]. As for our implementation, way-
based cache partitioning is naturally supported as the set-
associative layout is untouched.

Attack detection: Runtime detection of cache side-channel
attacks using PFCs [43], [44] has shown to be effective to
detect persistent attacks. The concentration of cache accesses
on the target cache sets during the exploitation phase has
long been discovered [43]. Recent hardware detectors with
set level granularity begins to utilize this pattern [45]. To the

best of our knowledge, we are the first to exploit the unique
set distribution of cache evictions during the preparation
phase of an attack (the search for eviction sets).

8 CONCLUSION

For the first time, a dynamically randomized set-associative
cache has been implemented in the LLC of a Linux capa-
ble multicore processor. By randomizing the mapping of
addresses to cache sets, periodically remapping the cache
layout, and triggering extra remaps when cache attacks are
detected in action, the set-associative LLC has been suffi-
ciently strengthened to thwart all existing fast algorithms
for searching eviction sets. The added cache randomization
incurs only marginal runtime performance overhead.

ACKNOWLEDGEMENT

This work was partially supported by the National Natural
Science Foundation of China under grant No. 61802402
and 62172406, the CAS Pioneer Hundred Talents Program.
Any opinions, findings, conclusions, and recommendations
expressed in this paper are those of the authors and do not
necessarily reflect the views of the funding parties.

REFERENCES

[1] M. Yan, B. Gopireddy, T. Shull, and J. Torrellas, “Secure hierarchy-
aware cache replacement policy (SHARP): Defending against
cache-based side channel attacks,” in Proc. Int’l Symp. Comput.
Archit., 2017, pp. 347–360.

[2] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in Proc. IEEE Symp. Security and
Privacy, May 2015.

[3] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$A: A shared cache
attack that works across cores and defies VM sandboxing – and its
application to AES,” in Proc. Symp. Security and Privacy, May 2015,
pp. 591–604.

[4] D. Genkin, L. Pachmanov, E. Tromer, and Y. Yarom, “Drive-by key-
extraction cache attacks from portable code,” in Proc. Int’l Conf.
Applied Cryptography and Network Security, 2018, pp. 83–102.

[5] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A remote
software-induced fault attack in JavaScript,” in Proc. Int’l Conf.
Detection of Intrusions and Malware, and Vulnerability Assessment,
2016, pp. 300–321.

[6] M. Hähnel, W. Cui, and M. Peinado, “High-resolution side chan-
nels for untrusted operating systems,” in Proc. USENIX Annu.
Technical Conf., 2017, pp. 299–312.

[7] M. K. Qureshi, “CEASER: Mitigating conflict-based cache attacks
via encrypted-address and remapping,” in Proc. IEEE/ACM Int’l
Symp. Microarch., 2018, pp. 775–787.

[8] ——, “New attacks and defense for encrypted-address cache,” in
Proc. Int’l Symp. Comput. Archit., 2019, pp. 360–371.

[9] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and
S. Mangard, “ScatterCache: Thwarting cache attacks via cache set
randomization,” in Proc. Security Symp., 2019, pp. 675–692.

[10] W. Song, B. Li, Z. Xue, Z. Li, W. Wang, and P. Liu, “Randomized
last-level caches are still vulnerable to cache side-channel attacks!
But we can fix it,” in Proc. IEEE Symp. Security and Privacy, May
2021, pp. 955–969.

[11] G. Saileshwar and M. Qureshi, “MIRAGE: Mitigating conflict-
based cache attacks with a practical fully-associative design,” in
Proc. USENIX Security Symp., Aug. 2021, pp. 1379–1396.

[12] P. Vila, B. Köpf, and J. Morales, “Theory and practice of finding
eviction sets,” in Proc. IEEE Symp. Security and Privacy, 2019.

[13] W. Song and P. Liu, “Dynamically finding minimal eviction sets
can be quicker than you think for side-channel attacks against
the LLC,” in Proc. Int’l Symp. Research in Attacks, Intrusions and
Defenses, 2019, pp. 427–442.

[14] T. Bourgeat, J. Drean, Y. Yang, L. Tsai, J. Emer, and M. Yan, “CaSA:
End-to-end quantitative security analysis of randomly mapped
caches,” in Proc. IEEE/ACM Int’l Symp. Microarch., Oct. 2020.

14

[15] T. Unterluggauer, A. Harris, S. Constable, F. Liu, and C. Rozas,
“Chameleon cache: Approximating fully associative caches with
random replacement to prevent contention-based cache attacks,”
in Proc. Int’l Symp. Secure and Private Exec. Environ. Design, 2022.

[16] L. Giner, S. Steinegger, A. Purnal, M. Eichlseder, T. Unterluggauer
et al., “Scatter and split securely: Defeating cache contention and
occupancy attacks,” in Proc. Symp. on Security and Privacy, 2023.

[17] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin
et al., “The Rocket chip generator,” EECS Department, University
of California, Berkeley, Tech. Rep. UCB/EECS-2016-17, Apr. 2016.

[18] A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar et al.,
“Chipyard: Integrated design, simulation, and implementation
framework for custom SoCs,” IEEE Micro, vol. 40, no. 4, pp. 10–21,
2020.

[19] A. Purnal and I. Verbauwhede, “Advanced profiling for proba-
bilistic Prime+Probe attacks and covert channels in ScatterCache,”
CoRR, 2019, abs/1908.03383.

[20] A. Purnal, L. Giner, D. Gruss, and I. Verbauwhede, “Systematic
analysis of randomization-based protected cache architectures,”
in Proc. IEEE Symp. Security and Privacy, May 2021, pp. 987–1002.

[21] A. Purnal, F. Turan, and I. Verbauwhede, “Prime+Scope: Over-
coming the observer effect for high-precision cache contention at-
tacks,” in Proc. ACM SIGSAC Conf. Comput. and Commun. Security,
Nov. 2021, pp. 2906–2920.

[22] J. P. Thoma and T. Güneysu, “Write me and I’ll tell you secrets
— write-after-write effects on Intel CPUs,” in Proc. Int’l Symp. on
Research in Attacks, Intrusions and Defenses, Oct. 2022.

[23] A. Seznec, “A case for two-way skewed-associative caches,” in
Proc. Annu. Int’l Symp. Comput. Archit., May 1993, pp. 169–178.

[24] A. Jaleel, K. B. Theobald, S. C. Steely Jr., and J. S. Emer, “High per-
formance cache replacement using re-reference interval prediction
(RRIP),” in Proc. Int’l Symp. Comput. Archit., Jun. 2010, pp. 60–71.

[25] R. Bodduna, V. Ganesan, P. SLPSK, K. Veezhinathan, and C. Re-
beiro, “BRUTUS: Refuting the security claims of the cache timing
randomization countermeasure proposed in CEASER,” IEEE Com-
put. Archit. Letters, vol. 19, no. 1, pp. 9–12, Jan. 2020.

[26] M. Sugiyama, “2.5: Transformation of random variables,” in Intro-
duction to Statistical Machine Learning, Boston, 2016, pp. 22–23.

[27] J. S. Hunter, “The exponentially weighted moving average,” Jour-
nal of Quality Technology, vol. 18, no. 4, pp. 203–210, 1986.

[28] SiFive, Inc., “block-inclusivecache-sifive,” Apr. 2021, https://
github.com/sifive/block-inclusivecache-sifive.

[29] C. Maurice, N. L. Scouarnec, C. Neumann, O. Heen, and A. Fran-
cillon, “Reverse engineering Intel last-level cache complex ad-
dressing using performance counters,” in Proc. Int’l Symp. Research
in Attacks, Intrusions, and Defenses, Nov. 2015, pp. 48–65.

[30] N. Hua, E. Norige, S. Kumar, and B. Lynch, “Non-crypto hardware
hash functions for high performance networking ASICs,” in Proc.
ACM/IEEE Symp. Archit. for Networking and Commun. Systems, Oct.
2011, pp. 156–166.

[31] G. Metze, “Minimal square rooting,” IEEE Trans. Elec. Computers,
vol. EC-14, no. 2, pp. 181–185, 1965.

[32] Nangate, “45nm open cell library,” California, USA, 2008.
[33] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Op-

timizing NUCA organizations and wiring alternatives for large
caches with CACTI 6.0,” in Proc. IEEE/ACM Int’l Symp. Microarch.,
Dec. 2007, pp. 3–14.

[34] SiFive, Inc., “SiFive FU740-C000 manual v1p6,” Jan. 2022.
[35] Z. Xue, D. Xie, and W. Song, “Hardware performance counter

based on RISC-V,” Computer Systems & Applications, vol. 30, no. 11,
pp. 3–10, 2021, (in Chinese).

[36] A. Waterman, S. Johnson, C.-M. Chao, Y. Chen, Y. Lee et al., “Spike
RISC-V ISA simulator,” https://github.com/riscv/riscv-isa-sim.

[37] D. Ye, J. Ray, and D. R. Kaeli, “Characterization of file I/O activity
for SPEC CPU2006,” SIGARCH Comput. Archit. News, vol. 35, no. 1,
pp. 112–117, 2007.

[38] C. Celio, D. A. Patterson, and K. Asanović, “The berkeley out-of-
order machine (BOOM): An industry-competitive, synthesizable,
parameterized RISC-V processor,” EECS Department, UC Berke-
ley, Tech. Rep. UCB/EECS-2015-167, Jun. 2015.

[39] Y. Xu, Z. Yu, D. Tang, G. Chen, L. Chen et al., “Towards developing
high performance RISC-V processors using agile methodology,” in
Proc. IEEE/ACM Int’l Symp. Microarch., Oct. 2022, pp. 1178–1199.

[40] S. Briongos, P. Malagón, J. M. Moya, and T. Eisenbarth,
“RELOAD+REFRESH: abusing cache replacement policies to per-
form stealthy cache attacks,” in Proc. USENIX Security Symp., Aug.
2020, pp. 1967–1984.

[41] A. Shusterman, L. Kang, Y. Haskal, Y. Meltser, P. Mittal et al., “Ro-
bust website fingerprinting through the cache occupancy chan-
nel,” in Proc. USENIX Security Symp., Aug. 2019, pp. 639–656.

[42] T. Verma, A. Anastasopoulos, and T. M. Austin, “These aren’t
the caches you’re looking for: Stochastic channels on randomized
caches,” in Proc. IEEE Int’l Symp. Secure and Private Execution
Environ. Design, Sep. 2022, pp. 37–48.

[43] Y. Zhang and M. K. Reiter, “Düppel: Retrofitting commodity
operating systems to mitigate cache side channels in the cloud,”
in Proc. Conf. Comput. and Commun. Security, 2013, pp. 827—-838.

[44] J. Chen and G. Venkataramani, “CC-Hunter: Uncovering covert
timing channels on shared processor hardware,” in Proc.
IEEE/ACM Int’l Symp. Microarch., 2014, pp. 216–228.

[45] A. Harris, S. Wei, P. Sahu, P. Kumar, T. M. Austin, and M. Ti-
wari, “Cyclone: Detecting contention-based cache information
leaks through cyclic interference,” in Proc. IEEE/ACM Int’l Symp.
Microarch., 2019, pp. 57–72.

Wei Song is an Associate Professor at the In-
stitute of Information Engineering, CAS. He re-
ceived his Ph.D. from the University of Manch-
ester, and had worked as a postdoctoral re-
searcher in the University of Manchester and the
University of Cambridge. His current research fo-
cuses on the security enhancement of computer
architectures, such as the defenses for cache
side channel and control-flow hijacking attacks.

Zihan Xue is a Ph.D. student at the Institute
of Information Engineering, CAS. He received
BE and ME degree from Southwest Jiaotong
University and had worked as assistant engineer
at CRSC Research & Design Institute Group
Co., Ltd. His current research focuses on secure
computer architectures.

Jinchi Han received his B.S. degree from Shan-
dong University in 2022. He is currently pursuing
a Master degree at the Institute of Information
Engineering, CAS. His current research focuses
on secure computer architectures.

Zhenzhen Li received her B.S. in Electronic
Science and Technology from University of In-
formation Engineering, China and received her
M.S. in Electronic and Information Engineering
from Beijing University of Posts and Telecommu-
nications, China. She is currently working toward
a Ph.D. degree in computer architecture at the
Institute of Information Engineering, CAS. Her
interests focus on computer security, such as the
security analysis of cache side channel attacks.

Peng Liu received his BS and MS degrees from
the University of Science and Technology of
China, and his PhD from George Mason Univer-
sity in 1999. Dr. Liu is the Raymond G. Tronzo,
MD Professor of Cybersecurity, and Director of
the Cyber Security Lab at Penn State University.
His research interests are in all areas of com-
puter security. He has published over 350 techni-
cal papers. He has served on over 100 program
committees and reviewed papers for numerous
journals. He is currently the Co-Editor-in-Chief of

Journal of Computer Security.

