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A Parallel Tag Cache for Hardware Managed
Tagged Memory in Multicore Processors
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Abstract—Hardware-managed tagged memory is the dominant way of supporting tags in current processor designs. Most of these
processors reserve a hidden tag partition in the memory dedicated for tags and use a small tag cache (TC) to reduce the extra memory
accesses introduced by the tag partition. Recent research shows that storing tags in a hierarchical tag table (HTT) inside the tag
partition allows efficient compression in a TC, but the use of the HTT causes special data inconsistency issues when multiple related tag
accesses are served simultaneously. How to design a parallel TC for multicore processors remains an open problem. We proposed the
first TC capable of serving multiple tag accesses in parallel. It adopts a two-phase locking procedure to maintain data consistency and
integrates seven techniques, where three are firstly proposed, and two are theoretical concepts materialized into usable solutions for
the first time. Single-core and multicore performance results show that the proposed TC is effective in reducing both the extra amount
of memory accesses to the tag partition and the overhead in execution time. It is important to provide enough number of trackers in
multicore processors while providing extra trackers is beneficial for running HTT/TC ineffective applications.

Index Terms—Tagged memory, hierarchical tag table, tag cache, parallel accesses, search order, two-phase locking, data consistency.
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1 INTRODUCTION

A tag1 is a metadata attached to each data unit. Tagged
memory is a method of supporting metadata processing in
the processor hardware. It is actually an idea dating back to
the early days of computers [1], [2] where tags were usually
used to label the types of the data that they attached to. One
well-known case of tagged memory was the Symbolics Lisp
machines [2] made in the 80’s, where tags were used by the
garbage collector to distinguish addresses from numbers.
In recent years, tagged memory has been adopted as a
viable mechanism to support security related techniques,
including tracking pointer integrity [3], dynamic informa-
tion flow tracking [4], pointer capabilities [5], spatial and
temporal memory safety [6], thwarting cache side-channel
attacks [7], hardware-assisted address sanitizer [8], and even
general-purpose watch-points [9]. The latest commercial
processors begin to utilize tagged memory as well, such as
the SPARC ADI [10], the memory tagging extension (MTE)
implemented in ARMv8.5-A [11] and the Arm Morello
SoC [12] designed for the next-generation Arm devices.

Hardware-managed tagged memory is the dominant
way of supporting tags in current processor designs [5], [7],
[10], [13]–[16]. It expands all data storage elements, from the
processor registers to the physical memory, with a tag field.
Tags stored in this field are managed by the processor hard-
ware and hidden from user-level software (even the kernel).
Fig. 1 shows an exemplary implementation of hardware-
managed tagged memory in a dual-core processor. Cache
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Fig. 1. Hardware-managed tagged memory.

blocks in all cache levels above the memory bus, including
the private level-one (L1) caches and the shared last-level
cache (LLC), are widened to store data along with their tags.

Since the memory is an array of DRAM chips scheduled
by an on-chip memory controller typically shipped as a
hard IP, it cannot be easily widened, and storing tags in
the memory becomes a challenge. It might be possible to
widen the memory if both DRAM chips and the memory
controller are customizable [2]. Otherwise, re-purposing
ECC bits for tags is also viable if just the memory controller
is customizable. However, most processors cannot afford
such non-standard memory. A more prudent alternative
is to keep the memory untouched but reserve a hidden
tag partition dedicated for tags, as depicted in Fig. 1. This
has become the state-of-the-art solution [5], [7], [10]–[16],
but brings a crucial problem: Each LLC memory access is
divided into a data access for the data stored in the normal
memory region and a tag access for the tag stored in the
tag partition. The memory throughput demand is doubled.
To avoid unacceptable overall performance of hardware-
managed tagged memory, both the research community and
the industry have been adopting the idea of “a small tag
cache (TC) sitting between the LLC and the memory.”

Substantial progress has been made recently in designing
such a TC for single-core processors. Assuming a tag is
much smaller than a machine word, a small TC, as shown in
Fig. 1, can serve most of the tag accesses. For the SPEC CPU
2006 benchmark suite [17], it was reported that 94% of the
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TABLE 1
Summary of tag cache related techniques.

Initial Usable Support in Hardware
Name Description Section Idea Solution HDFI [15] CHERI [19] this work

Hierarchical tag table Introduce tag map bits. 3.1 HDFI HDFI ✓ ✓ ✓
Uniformed TC Store blocks of all HTT levels in a shared cache. 3.2 CHERI CHERI × ✓ ✓

Parallel tag accesses Support parallel read/write tag accesses. 5 this work this work × × ✓
Bottom-up search order Search an HTT from TTs. 4.3 this work this work × × ✓

Dynamic search order Dynamically choose the search order. 4.4 this work this work × × ✓
Avoid redundant store Avoid tag writes when tags are untouched. 4.1 CHERI this work × × ✓
Avoid empty accesses Avoid reading/writing empty TC blocks. 4.2 CHERI this work × × ✓

extra tag accesses can be avoided using a 128KB TC [18].
Several recent studies have also explicitly acknowledged
this performance benefit [7], [16], [19], [20] and the recently
released Arm CoreLink CI-700 coherent interconnect [21]
contains an optional TC to support Arm MTE [11]. Fur-
thermore, since most tags are unused (zero by default) or
tagged zero [13], a large proportion of tags cached in a
TC are empty, which waste the precious TC space and can
be avoided by cache compression [22]. According to the
latest search [15], [19], storing tags in a hierarchical tag table
(HTT) [19] in the tag partition allows efficient compression
of the empty cache blocks inside a TC.

However, how to design a parallel TC for multicore
processors remains an open problem. The goal of this work
is to propose the first parallel TC for multicore processors.
Our design is motivated by the following new challenges:
Challenge 1. Severing tag accesses sequentially is unaccept-
able for multicore processors. All existing TCs [15], [18], [19]
are sequential ones. On single-core processors, the tag access
latency is likely hidden because it is shorter than the data
access latency when the access hits in the TC. However,
the amount of parallel tag accesses drastically increases
on multicore processors. The data access latency is almost
unchanged as modern memory controllers are made to serve
multiple in-flight accesses simultaneously [23], but the time
slot available for each tag access shrinks significantly if they
are served sequentially. Performance degrades substantially
when the tag access latency cannot be hidden. Challenge 2.
For the first time, we demonstrate in Section 5.1 that naively
supporting parallel tag accesses in an HTT-adopted TC
introduces data inconsistency issues ultimately resulting
in data corruption. The use of HTT transfers a tag access
from a single access to a tag table into a search of an HTT
by a sequence of TC accesses. There is no straightforward
way to serve multiple tag accesses simultaneously without
considering the interaction between related TC accesses.
Challenge 3. On other hand, we would like to keep using
HTTs in parallel TCs as, otherwise, they would suffer from
significant waste of space.

We have discovered a couple of insights in the process
of resolving these challenges: Insight A, room for further
efficiency improvement. Existing TCs fail to exploit the full
benefit of HTTs. An integration of HTT and six other tech-
niques could enable us to produce an adequately efficient
transactional design of a parallel TC. Insight B, maintaining
consistency by parallelizing transactions. The sequence of
TC accesses fulfilling one tag access is effectively a trans-
action. Severing parallel conflicting transactions is a classic
problem in database systems and we can resolve the con-
sistency issues by reusing the techniques proven effective.

Based on these insights, we propose the first parallel TC
capable of serving multiple tag accesses simultaneously. It
adopts a two-tier tracker structure. Each LLC memory ac-
cess is served by one of multiple tag transaction trackers (1st
tier), which relays the data access directly to the memory
controller and schedules the tag access (transaction) locally
in the TC, which locates the tag in an HTT by a sequence of
TC accesses. Each TC access is offloaded to one of multiple
TC access trackers (2nd tier). Data consistency is maintained
by enforcing a two-phase locking procedure typically used
in database systems [24].

As summarized in Table 1, the proposed TC integrates
seven techniques, where three are firstly proposed, and two
are theoretical concepts materialized into usable solutions
for the first time. Rather than searching an HTT always in a
top-down order, we propose a new bottom-up search order
and show that it can outperform the top-down order in cer-
tain scenarios. A hardware monitor is used to dynamically
choose the optimal search order. It should be noted that,
no viable solution for avoiding redundant store and empty
accesses has ever been proposed. Considerable engineering
work is needed to make them work in a sequential TC, and
supporting them in a parallel TC is painstakingly compli-
cated, as shown in Section 5.1 and 6.

Paper organization: Section 2 reviews the existing TC
designs in the literature. Section 3 provides a thorough
explanation of HTTs, especially its layout both in memory
and in the TC. Based on insight A, Section 4 proposes four
optimization techniques to further improve the efficiency
of the TC. Following insight B, Section 5 demonstrates the
potential consistency issues and presents our solution for
maintaining data consistency. As illustrated in Section 6,
the proposed TC has been implemented into the lowRISC
SoC [25]. The performance of the proposed TC in both
single-core and multicore processors has been evaluated in
Section 7. Finally, the paper is concluded by Section 8. This
TC is open-sourced at:

https://github.com/comparch-security/lowrisc-tag-v0.4

2 RELATED WORK

Historically speaking, there are two ways of storing tags in
the processor’s cache hierarchy: split or merged caching. In
a cache adopting the split caching, tags of all cache blocks
are stored in a separate tag array side-by-side with the data
array [14], while the merged caching expands each cache
block to store data and tags in the same block [5], [15].
The split caching scheme allows the separate tag array to
be compressed for reduced cache space, which would be
a compromising benefit against the merged cache scheme
considering that the majority of data are not tagged or
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tagged zero [13]. However, it is difficult to maintain data
consistency between the data and the tag arrays because
they are accessed separately. This problem is further ex-
aggerated by the need of maintaining cache coherence in
modern multicore processors. As a result, most of nowa-
days hardware-managed tagged memory designs adopt the
merged cache scheme [5], [7], [10]–[12], [15], [16]

A problem raised by the merged caching scheme is the
doubled memory traffic. As described in the introduction,
an extra tag access is issued to fetch tags from the tag
partition reserved in memory. To reduce this overhead on
memory bandwidth, a TC is added between LLC and the
memory controller. Early TCs are traditional set-associated
caches [5], [15]. Although such TCs are effective in reducing
the amount of the extra memory accesses, their sizes are
quite large. It was reported that a 128KB TC was able to
avoid 94% of the tag-incurred memory traffic in a single-
core processor with an LLC of 256KB [15].

HDFI (hardware-assisted data-flow isolation) [15] is the
first tagged memory design adopting an HTT in the tag
partition. For its 512MB memory, 8MB was reserved for a
tag table and an extra 128KB was reserved for a meta tag
table. Each 64B entry in the tag table was linked to 1 bit in
the meta tag table, which was set to 1 if the 64B tag table
entry was non-empty. In the TC, if the corresponding meta
tag table bit was found 0, the tag table entry was not stored
to save cache space. Since the majority of data are tagged
zero, the size of the tag table was significantly reduced.

In HDFI’s TC, entries of the tag table and the meta tag
table were stored in two separate 1KB caches. This static
space partition may lead to inefficient cache utilization, e.g.,
the cache for the tag table may be fully occupied while that
for the meta tag table is almost unused, because applications
may present high spatial and temporal locality in their tag
access pattern. To alleviate such inefficiency, a uniformed
TC was used in an updated CHERI (capability hardware
enhanced RISC instructions) processor [19]. Entries of both
the leaf table (equivalent to HDFI’s tag table) and the root
table (equivalent to HDFI’s meta tag table) were stored in
the same cache. Therefore, space allocation between tables
can adapt to the changes in the tag access pattern.

However, both the TCs implemented in HDFI and
CHERI are sequential ones that serve only one tag access
at a time. As explained in the introduction, this limits their
effectiveness in multicore processors.

3 STORING AND CACHING TAGS USING HTTS

Before introducing our solution for further improving the
efficiency of TCs and maintaining data consistency when
serving tag accesses in parallel, it is necessary to obtain a
thorough understanding of the HTT, especially its layout
both in memory and in the TC. Assuming a small and
fixed sized (t bits) tag is attached to each 64-bit word in
a 64-bit machine, each tag-extended cache block (used by
L1 and L2/LLC) contains 64 bytes of data and 8t bits of
tags. These tags are backed by the memory using a hidden
tag partition typically reversing t/64 of the memory. To
reduce the number of accesses to the tag partition, a TC
is added between the LLC and the memory controller. This
TC is found compressible as most tags are not in use or set
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Fig. 2. Structure of a hierarchical tag table (HTT).

zero [13]. HTT is the state-of-the-art memory layout [15],
[19] for supporting such TC compression scheme. This
section describes the details of the memory and the cache
layouts for storing/caching tags using HTTs.

3.1 Layout in Memory: Hierarchical Tag Table
Let us consider a hardware-managed tagged memory pro-
cessor where the memory size is 1GB, each 64-bit word is
attached with a 2-bit tag and a 3-level HTT is used. The
logical structure of this HTT is shown in Fig. 2a while the
storage layout in memory is depicted in Fig. 2b.

In the 1GB memory, the top 32MB (1024 × 2/64) is
reserved as the hidden tag partition, which is slightly more
than enough to store the tags of the remaining 992MB data
(31 = 992 × 2/64). These tags are stored in a tag table
(TT) which is located at the beginning of the tag partition
(0x3E000000). Each TT entry is 2-byte wide storing the tags
attached to a 64B data (cache) block. The mapping between
a data block and its tags is linear, e.g., the tags attached to
the data block at 0x00000100 is stored in the 4th TT entry
(256/64) located at 0x3E000008.

Besides the tag table, an HTT introduces extra tag map
levels formed in a tree structure, such as the tag map 0 (TM0)
and tag map 1 (TM1) as shown in Fig. 2a. Consecutive TT
entries are grouped into fixed-sized TT nodes, each of which
is g-bit wide. A single bit in TM0, which is also linearly
mapped to TT, is used to record the status of the mapped
TT node (1 for non-empty). Therefore, the 31MB TT needs
a TM0 of (31 × 1024/g) KB. Recalling that TT takes only
31MB of the 32MB tag partition, the higher 1MB space is left
unused as shown in Fig. 2b. TM0 is located at the higher 32×
1024/g KB range of the tag partition. As long as g ≥ 64/t,
the unused space is large enough for storing TM0. As for the
example processor (t = 2, g = 512), TM0 is 62KB located at
0x3fff0000. Similar to TM0, which is used to record the
status of TT, TM1 can be introduced to record the status
of TM0. Using the same node size and the linear mapping,
the 62KB TM0 is grouped into 992 TM0 nodes requiring 992
TM1 bits. The size of TM1 is only 124B. It is stored in the
higher 2KB unused memory located at 0x3fffff80.

The benefit of using an HTT is its natural support for
TC compression. When a TT node is empty, caching the
corresponding TM0 bit rather than the TT node consumes
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significantly less cache space. Of course, TM0 bits are not
cached individually but in cache blocks. In our design,
the size of a node is deliberately set equal to a TC cache
block (64B). Replacing an empty TT node with a TM0
node introduces no space overhead but space reduction as
long as the number of zero bits in this TM0 node is > 1.
Similarly, caching TM1 nodes when some TM0 nodes are
empty can further boost the compression ratio. In addition,
HTT introduces no storage overhead in the memory. As long
as g ≥ 64/t, TM0 can be stored in the unused memory space
left by TT. The same holds true for TM1 as well.

3.2 Layout in Cache: Uniformed Tag Cache
There are two possible methods of storing tags and TM
bits in a TC: separated caches or a single uniformed cache.
Adopting the separate caches method, a separate cache is
used for each HTT level, as depicted on the left-hand side of
Fig. 3. This allows HTT levels to choose different cache sizes,
block sizes and g. For a specialized processor dedicated
for running a small set of targeted applications, the best
storage trade-off can be achieved by choosing the optimal
cache size, block size and g for each level at design time.
However, designers cannot predict the applications running
on a generic processor in advance. A static partition of
the cache space leads to sub-optimal storage trade-off and
unsatisfactory performance for most applications. It would
be better to make the partition dynamically adapt to the tag
access pattern.

A uniformed cache, as shown on the right-hand side of
Fig. 3, provides such flexibility. Blocks from all HTT levels
can be stored in a shared cache as long as they use the
same block size. Consequently, the cache space occupied
by each level is dynamically adjusted by the replace policy
(pseudo-LRU in our TC), effectively adapting to the tag
access pattern as blocks with high locality from all HTT
levels are prioritized. The use of a uniformed cache usually
leads to the same g as well [19]. A cache block is the smallest
data unit managed by the cache. When g is larger than the
block size, multiple blocks are represented by a single TM
bit, requiring extra data consistency maintenance. When g
is smaller than the block size, a cache block is represented
by multiple TM bits, reducing the space efficiency of TM
blocks. As a result, the optimal g is always the block size for
all HTT levels.

3.3 Overall Structure of the Proposed TC
Adopting a uniformed cache, the structure of the proposed
TC is shown in Fig. 4. Blocks of all HTT levels are cached in
the same data array with its cache state (invalid, clean or
dirty) and address tag (ctag) stored in the metadata array.
Painted in different colors, all access types described in this
paper are summarized in Table 2.
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Fig. 4. Block diagram of the proposed TC.

TABLE 2
Summary of access types.

Access Type Description

LLC memory acc. LLC to TC: fetch/writeback a data block and its tags.
Data access TagXact tracker to memory: fetch/writeback the data of

an LLC memory access.
Tag access A transaction scheduled by a TagXact tracker: fetch/

writeback the tags of an LLC memory access.
TC access TagXact to TCAcc trackers: access an HTT block.

TC memory acc. TC to memory: fetch/writeback an HTT block.

An LLC memory access is served by one of the multiple
tag transaction (TagXact) trackers.2 It is divided into a data
access, immediately relayed to the memory controller, and a
tag access to locate the tag in the HTT (cached in the TC) by
a sequence of TC accesses. Let us consider searching a non-
empty tag in a top-down order (from TM1 to TT), the TT
block containing this tag is accessed after its corresponding
TM1 and TM0 blocks are sequentially examined. A tag write
access is more complicated as it may update both TT and
TM blocks after reading them. Two tag accesses become
related when they need to access the same TM blocks,
or even the same TT block. Consequently, a tag access
becomes a transaction, and a parallel TC must guarantee
that transactions are executed atomically [30]: A tag access
must access shared HTT blocks without interfere with other
related tag accesses. A tag access is either fully executed by
updating all HTT blocks requiring changes; otherwise, the
tag access is temporarily blocked, and no block is touched.
Such atomicity is achieved later in Section 5.2 by enforcing a
two-phase locking procedure when multiple HTT blocks are
updated by one tag access. Letting a TagXact tracker directly
schedule TC accesses presents inherent challenges. They are
offloaded to multiple second-tier TC access (TCAcc) trackers.
Since writing back a cache block happens less frequently
than accessing a cache block, a shared writeback unit is used
to handle all writeback requests.

4 FURTHER IMPROVEMENT OF EFFICIENCY

As described by insight A in the introduction, it is chal-
lenging to make a transactional design of a parallel TC
adequately efficient. We present four techniques to improve
the efficiency of a TC in Sections 4.1 to 4.4, respectively.

4.1 Avoid Redundant Store
When a dirty cache block is written back to memory by the
LLC, the attached tags might be clean. It was reported that
50∼90% of all LLC write accesses are with clean tags [19],

2. The term “tracker” is used by the Rocket chip generator [26], [27]
and dates back to the Intel 870 chipset [28]. In practice, a tracker fulfills
the function of a MSHR [29] in generic non-blocking caches.
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Fig. 5. Access a non-empty tag using the top-down order.

[31]. A simple and efficient optimization is to enforce read-
before-write for all tag write accesses; therefore, a tag write
access without modifying any tag can be detected as re-
dundant and reduced to a read access. Since most data
inconsistency issues are due to concurrent TC write accesses,
reducing the amount of tag write brings down both the
occasions needed to block conflicting TC accesses and the
average tag access latency.

4.2 Avoid Empty Access

In an HTT, an empty non-top-level block is always labeled
by its map bit with a zero. This is the reason why an HTT can
be used to compress the TC as storing empty non-top-level
blocks can be avoided. In an ideal scenario, only top-level
blocks and non-empty blocks are stored in the TC.

However, the write-back policy complicates the scenario
with two corner cases: a non-empty block might become
empty due to a tag write, and an empty block is fetched
from memory when it becomes non-empty. The first case
wastes a block space until it is written back and both cases
lead to memory fetch/write of empty blocks. To remove
such unnecessary TC memory accesses, a TC can invalidate
a cache block when it becomes empty and create an empty
cache block without fetching it from memory.

4.3 Search Order

All existing TCs adopting HTTs locate tags using a top-down
search order. As shown in Fig. 5, to access a non-empty tag
in a 3-level HTT, TM1 is accessed first to check the top-level
map bit bTM1. If bTM1 = 1, TM0 is accessed to check whether
bTM0 = 1. Finally, tag is accessed in TT. A total of three TC
accesses are needed for reading a non-empty tag. The top-
down search order is optimal when most tags are empty. In
this case, a significant amount of tag accesses would finish
with just one TC access as bTM1 = 0.

However, top-down might not be the optimal order for
all applications. As shown later in Fig. 14, the memory
accesses of many SPEC CPU 2006 benchmarks are heavily
tagged in our tag use cases, including some of the memory
heavy ones, such as 410.bwaves, 433.milc, 462.libquantum,
and 470.lbm. For these applications, a bottom-up search or-
der might outperform the top-down order as most memory
accesses are attached with non-empty tags.

When the TT block hits, as shown in Fig. 6a, using the
bottom-up order saves 2 TC accesses, i.e. TC accesses 1⃝
and 2⃝ to the TM blocks needed by the top-down order.
Since these TM blocks are not accessed, they can actually
miss in the TC. In other words, using the bottom-up order
potentially save two TC memory accesses. When the TT
block misses in the TC, as shown in Fig. 6b, the numbers
of TC accesses are equal for both orders, but using the
bottom-up order may save one TC memory access if the
TM1 block misses in the TC. Only when both the TT and
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the TM0 blocks misses in the TC, as shown in Fig. 6c, using
the bottom-up search order incurs two extra TC accesses,
i.e., the TC accesses a⃝ and b⃝ to TT and TM0 respectively.

It is important to note that missing blocks are not fetched
from memory when the search is going upwards using the
bottom-up order, i.e., TC accesses a⃝ in Fig. 6b, and a⃝
and b⃝ in Fig. 6c. If these missing blocks are fetched from
memory, the HTT is reduced to a plain tag table, eliminating
all the benefits. As shown in Fig. 7, we can consider the
extra TC read accesses (colored in blue) introduced by the
bottom-up order as speculative reads intended for finishing
a tag access with a short-cut. If all short-cuts fail, the search
falls back to the top-down order. A failed speculative TC
read typically costs only 2∼3 cycles for checking the cache
status in the metadata array. Considering the long memory
access latency, using the bottom-up order is cost-effective
when most tag accesses can finish with a short-cut.

Finally, as indicated by Fig. 7, there exists another search
order for 3-level HTTs, labeled as the middle-up order. In-
troducing a single speculative read to TM0, it is a trade-off
between the bottom-up and the top-down orders.

4.4 Dynamically Select a Search Order at Runtime
As described in Section 4.3, the top-down order is optimal
when most LLC memory accesses are untagged while the
bottom-up search order may outperform it when most LLC
memory accesses are tagged. However, designers cannot
foreknow the applications running on a generic processor.
It would be better to choose a proper search order suitable
to the running application. To achieve this, we have derived
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TABLE 3
Cost of using different search orders.

Category Symbol Bottom-Up Middle-Up Top-Down

TT served STT 0 1 2
TM0 served STM0 1 0 1
TM1 served STM1 2 1 0

Cost of This Order STM0 + 2STM1 STT + STM1 2STT + STM0

a set of functions to estimate the cost of different search
orders. It is then possible for a TC to dynamically choose
the optimal order by implementing these functions in a
hardware monitor.

As shown in Fig. 7, the value of a tag is confirmed only
when one of its map bits (bTM0 or bTM1) is found 0 or the TT
block is accessed. Thanks to the avoidance of empty accesses
as described in Section 4.2, all non-top-level blocks stored in
a TC are non-empty and the block finally accessed to infer
the value of a tag is unique, no matter which search order is
used. For example, when tag = 0, bTM0 = 0, and bTM1 = 1,
the tag is confirmed 0 only after accessing TM0, no matter it
is a bottom-up/middle-up speculative read or a top-down
normal read. The TT block must miss in the TC as it is empty.
Utilizing this uniqueness, we can categorize a tag access by
the block finally accessed: i.e., a tag access is TT served if the
final block is a TT block. Consequently, we can define the
cost of accessing a tag using a specific order as the number
of potentially wasted TC accesses as listed in Table 3. For
simplicity, we further assume the speculative reads for non-
empty and top-level blocks always hit as the miss rate is low.
Take a TM0 served access for example, the middle-up order
introduces no extra TC access as the first block accessed
is the final block. Using the bottom-up order leads to one
wasted TC access to a missing TT block while using the
top-down order wastes a TC access to TM1. In hardware,
the numbers of tag accesses served in each category (STT,
STM0 and STM1) are recorded by three performance counters
(PFCs). Assuming a total of S = STT + STM0 + STM1 tag
accesses are served in a monitor period, the overall cost
C (wasted TC accesses) of a certain search order can be
estimated as the bottom row of Table 3. The optimal search
order for the monitor period must incur the lowest cost,
which is used to derive the order selection criteria:

optimal order =


bottom-up if STT/S > 50%;
top-down if STM1/S > 50%;
middle-up otherwise.

(1)

Assuming the tag access pattern does not change drastically
between consecutive periods, the optimal order of the pre-
vious period is likely a good choice for the current period.

5 MAINTAINING DATA CONSISTENCY

It is crucial to serve multiple tag accesses in parallel for effi-
ciently supporting tagged memory in multicore processors,
however, it is not easy to achieve. Following insight B in
the introduction, we demonstrate the potential consistency
issues when parallel tag accesses are naively served in par-
allel and propose our solution for maintaining consistency.

1

y y 0

t

write TT: tag0 ← 0

write TT: tag1 ← 0WA 1:

WA 0: read TT : hit

read TT : hitblocked by WA0 blocked by WA0

blocked by WA1

1

x

1

00

(a)

0

y0

write TM0: bTM0 ← 0

t

write TT: tag0 ← 0

write TT: tag1 ← yWA 1:

WA 0: read TT : hit

read TT : hitblocked by WA0 blocked by WA0

blocked by WA1

1

x 0

1

0 0

(b)

Fig. 8. Two inconsistent cases caused by two parallel tag write accesses:
(a) persistent or (b) missing bTM0.

5.1 Data Consistency Issues

Unique to TCs adopting HTTs, serving a tag write access
simultaneously with another tag access potentially leads to
inconsistency issues. Any tag update that also updates its
map bits must guarantee that all other related tag accesses
observe both updates at the same time. For simplicity, all
cases demonstrated in this Section are presented in a 2-level
HTT. They become even more complicated in 3-level HTTs.

Serving two related tag write accesses may leave the
HTT with a corrupted tag map bit. In the case depicted in
Fig. 8a, both tag write accesses (WA0 and WA1) want to clear
their tags (tag0: x → 0 and tag1: y → 0), which are the last
two tags stored in the same TT block mapped to bTM0. Recall
that all tag writes must read the block before write to avoid
duplicated write operations (Section 4.1). Assuming WA0
and WA1 finishing reading TT around the same time, both
of them must assume that the TT block would remain non-
empty after their own write operations. As a result, none
of them would proceed further to clear bTM0, leaving it in a
stale and wrong state of 1.

This bTM0 could be mistakenly cleared as well, as shown
in Fig. 8b. In this case, WA0 still wants to clear its tag
(tag0: x→ 0) which is left as the last tag in a TT block while
a parallel WA1 want to initiate a tag (tag1: 0 → y) in the
same block. Let us assume that WA0 and WA1 have finished
reading TT around the same time, and WA0 would clear
its tag (tag0 ← 0) before WA1’s tag initiation (tag1 ← y).
Since WA0 would believe it has cleared the TT block, it
would go further to clear bTM0 unaware of WA1. Finally, the
non-empty tag1 is mistakenly mapped to a zero bTM0. For
both cases, the map bit bTM0 is mistakenly left untouched or
cleared because the parallel and related tag write accesses
are unaware of each other, and finish their accesses based on
potentially outdated observation of the related HTT blocks.

Unfortunately, supporting the avoidance of empty ac-
cesses (Section 4.2) makes the situation more complicated.
As demonstrated in Fig. 9, parallel tag writes may lead to
fetching stale blocks, invalidating non-empty blocks and
double creation of existing blocks. Please note that we
demonstrate only the straight-forward cases while the com-
plicated ones are omitted due to page limit.

When the WA0 in Fig. 8b is allowed to invalidate empty
blocks, the situation is worsened to the one shown in Fig. 9a.
The two TC write accesses of WA0 are replaced with in-
validation operations, which mistakenly invalidate the TM0
block containing bTM0. What is worse, WA1’s TT write access
would find the block missing in the TC. Believing the block
were evicted due to cache replacement, WA1 would fetch
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Fig. 9. Further inconsistent cases caused by avoiding accessing empty
blocks: (a) inconsistent fetch and invalidation, and (b) double creation.
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Fig. 10. Two inconsistent cases caused by parallel read and write
accesses: (a) inconsistent fetch and (b) double creation.

it from memory and initiate the tag (tag1 ← y). However,
the fetched block is stale as the latest copy has just been
invalidated by WA0 without a writeback. The final TT block
might be seriously corrupted.

Another case relating to block creation is shown in
Fig. 9b where both WA0 and WA1 want to initiate two tags
(tag0: 0 → y and tag1: 0 → y) in the same TT block and
mapped by bTM0. After simultaneously reading TM0, both
WA0 and WA1 create a TT block as bTM0 = 0, resulting in
two inconsistent copies of the same TT block.

Serving a tag read access simultaneously with a related
tag write access can cause consistency issues as well. They
can be summarized into two scenarios: (a) a stale block is
fetched from memory due to a late removal of a tag map bit.
and (b) double creation of a block due to an early initiation
of a tag map bit. An example of the first scenario is depicted
in Fig. 10a, where WA0 tries to clear the last remaining tag
(tag0: x → 0) in a TT block while a parallel tag read access
(RA1) tries to read the same TT block. Unfortunately, RA1
reads bTM0 before it is cleared by WA0. Since bTM0 = 1, RA1
proceeds further with a read to the TT block just after it is
invalidated by WA0. As the block misses in the TC, a stale
copy is mistakenly fetched from memory. An example of
the second scenario is illustrated in Fig. 10b. WA0 tries to
initiate a new tag (tag0: 0 → x) in an empty TT block while
a parallel tag read access (RA1) tries to read the same TT
block. If WA0 updates TM0 before TT, RA1 may observe the
prematurely updated bTM0 = 1 and consequently issues an
access to the TT block before WA0 gets a chance to create
it. As a result, RA1 would mistakenly fetch a stale copy
from memory and WA0’s creation would be a duplicated
one. For both scenarios, the culprit is the stale/premature
observation of bTM0 by the parallel RA1.

Lock TM1

Lock TT

Lock TM0

Write & Unlock TM1

Write & Unlock TT

Write & Unlock TM0

lock phase unlock phase

Fig. 11. Update a tag using the two-phase locking procedure.

5.2 Two-Phase Locking

Unlike in database systems where partial transactions can
be safely aborted, updating a HTT block in the TC cannot
be rolled back. A transactional TC must be able to avoid
inconsistency: A tag access is either finished atomically with
all HTT blocks being updated, or it is blocked before making
any update. Our solution is to enforce a conservative two-
phase locking procedure for updating a tag along with its
tag map bits. As shown in Fig. 11, the two-phase locking
procedure contains a lock phase, where all the blocks poten-
tially updated by a tag write are locked in a top-down order,
and an unlock phase, where these blocks are written and
unlocked in a bottom-up order. A locked block cannot be
written or read by any tag access except for the one locking
it. This guarantees that the content of a block is untouched
when a related block is updated. It stops a related tag access
from reading a stale/premature block as well.

The concept of two-phase locking was initially proposed
for resolving conflicting transactions in large-scale relational
database management systems [24]. Assuming a transaction
may modify multiple data entries and related transactions
can occur simultaneously, two-phase locking requires all
data entries to be modified by a transaction are locked by the
transaction before any entry is modified or unlocked. Data
consistency is maintained because locking a new entry after
unlocking any previously locked entry is prohibited. This
strict division between lock and unlock phases ensures no
cyclic dependency in the finished transactions. The system
is therefore consistent. However, two-phase locking does
not guarantee deadlock-free for the unfinished transactions,
because two transactions may mutually wait for the entries
locked by the other in the lock phase.

Since it is difficult in hardware to abort a transaction
once it is started, the proposed transactional TC guarantees
deadlock-free by enforcing a top-down lock order and a
reversed unlock order. Whenever two tag write accesses are
related, they must share the same bTM1 in a 3-level HTT. The
top-down lock order requires the TM1 block containing this
bTM1 to be locked first, which blocks all other related tag
write accesses, effectively serializing the related write ac-
cesses, and ensures that all tag accesses can finish in a finite
duration. Only unrelated tag write accesses are allowed to
proceed in parallel. A bottom-up lock order would work
as well. However, TT and TM0 blocks might be deliber-
ately invalidated without being written back. When a block
misses in the lock phase, it cannot be fetched from memory
without first check the tag map bit. The order effectively
falls back to top-down and the control logic is unnecessarily
complicated. Another problem is the unnecessary blockage
of related tag read accesses. A bottom-up lock order implies
the top-down unlock order which makes TT blocks the last
to unlock. All tag read accesses to this block are blocked
during the whole tag write process. On the contrary, this
TT block is actually never locked using the top-down lock
order. Tag read accesses can proceed in parallel using the
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bottom-up search order.

5.3 Reasoning the Two-Tier Tracker Structure

The proposed TC adopts a two-tier tracker structure where
each LLC memory access is served by one TagXact tracker
and TC accesses are offloaded to TCAcc trackers. Although
letting TagXact trackers handle TC accesses directly may
result in a smaller design, a two-tier structure is more mod-
ular, which normally leads to less design errors. It is also
difficult to achieve the required control flexibility without
the two-tier structure.

TCAcc trackers also help resolve a consistency corner
case. Two related tag write accesses may request to lock
the same TM1 block in the same clock cycle, which leads
to double lock and potential deadlock. If TC accesses are
directly handled by TagXact trackers, the TC needs to detect
whether two (or more) TagXact trackers are requesting the
same block and grant only one of them, which is difficult
to handle with a large number of TagXact trackers. With the
help of TCAcc trackers, it is possible to divide cache sets into
banks and map each bank with a dedicated TCAcc tracker.
This tracker then becomes a serialization point for all TC
accesses to the bank, resolving the corner case, at the cost of
a small conflict rate as unrelated TC accesses may conflict
on the same bank. This also ensures that a TC access always
successfully finishes in a finite duration once it is allocated
to a TCAcc tracker. Note that this banking scheme cannot
resolve the inconsistent cases described in Section 5.1 (e.g.
Fig. 9b) as it cannot enforce a proper TC access order for
related tag accesses.

6 HARDWARE DESIGN

The proposed TC has been implemented into the Rocket
chip generator [27] with some necessary modification in the
core pipeline, cache hierarchy and the on-chip interconnects
to support tags and extra PFCs. The overall structure of the
proposed TC has been discussed in Section 3.3. This section
details the designs of the core components.

A TagXact tracker divides an LLC memory access into a
data access to the memory and a tag access to the local TC.
For an LLC memory write access, the LLC is immediately
acknowledged once the data write access is relayed to the
memory. The associated tag write access proceeds in the
background and the tracker becomes available again once
the access is finished. For an LLC memory read access,
the LLC is acknowledged when both the data and the tag
accesses are finished. If the tag access takes longer time than
the data access, extra memory access latency is introduced.

The tag access is scheduled by a state machine depicted
in Fig. 12, which can be configured to support the dynamic
selection of search orders and different levels of HTT (up
to 3) at synthesis time. For all states, except for IDLE, a TC
access fulfilling a certain command is issued to a TCAcc
tracker. As listed in Table 4, there are eight commands in
total and the possible commands issued by each state is
labeled as a superscript colored in blue.

In a bottom-up search, a tag access starts with a state
transition from IDLE to TTR (IDLE→TTR). In the worst case,
both speculative reads miss (TTRR miss−−→TM0RR miss−−→TM1FR),
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Fig. 12. State machine of the TagXact tracker for a 3-level HTT.

TABLE 4
Available commands for TC accesses.

Description Description

R Speculative read. FR Forced read. Fetch when miss.
C Create a block. L Speculative read and lock.
I Invalidate a block. FL Forced read and lock. Fetch when miss.
U Unlock a block. W Write a block. Fetch when miss.

and the search falls back to the top-down order
with all missing blocks fetched from the memory:
TM1FRFR→TM0FRFR→TTFRFR. The state machine skips
states whenever possible. For example, TM0RR bTM0=1−−−−→TTFR
when TT misses but bTM0=1. Tag accesses immediately
finish whenever a tag is inferred empty for a read, such as
TM0RR bTM0=0−−−−→IDLE and TM1FRR bTM1=0−−−−→IDLE, or whenever

a write is found redundant, such as TTRR tag=tag′−−−−−→IDLE and

TM1FRR bTM1=0 && tag′=0−−−−−−−−−−→IDLE, where tag′ denotes the new
tag. The state transits to TM1L immediately when a write

is confirmed necessary, such as TTRR tag̸=tag′−−−−−→TM1L and

TM1FRR bTM1=0 && tag′ ̸=0−−−−−−−−−−→TM1L.
As described in Section 5.2, a tag, along with its tag

map bits, is written using a two-phase locking procedure.
All related blocks are locked in a top-down order (TM1LFL

→TM0LFL→TTLFL) and written (unlocked) in a bottom-up
order (TTWW→TM0WW→TM1WW). For each TM block, the
tracker checks whether the TM need an update during the
lock phase. If not, the command is reduced to U, which is
significantly faster than W. When a block is to be cleared,
the W command is replaced with a faster I command to
invalidate the block. Similarly, a block is created using C
instead of W when the it is confirmed empty by its TM bit.
Note that this optimization is not applied to the top-level
TM blocks as there is no map bit to back them up. If a TM
bit is found zero in the lock phase, all blocks on lower levels
are empty and FL is reduced to L to avoid fetching them.
Finally, the TT block is not locked in state TTL, because no
other tag write accesses would update the same tag between
TTL and TTW, and leaving the block unlocked allows for
parallel tag read accesses.

When the search order is not bottom-up, tag accesses
starts with different entry states: TM1FRFR for top-down or
TM0RR for middle-up. The TagXact tracker can be statically
configured to support a 2-level HTT or a plain tag table by
removing unnecessary states and commands. For a 2-level
HTT, states TM0R, TM1FR, TM1L and TM1W, along with
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Fig. 13. State machine for of a TCAcc tracker.

commands L for TM0L and I/C for TM0W, are removed. The
top-down order follows the path of the middle-up order.
Reducing the 2-level HTT into a plain tag table results in the
further removal of TTR, TM0FR, TM0L and TM0W, along
with L for TTL and I/C for TTW.

TCAcc trackers are responsible for fulfilling TC accesses
according to the commands issued by TagXact trackers.
The tracker is controlled by a state machine as depicted in
Fig. 13. All TC accesses start by reading the metadata in
state MR to check whether the requested block hits in the
TC. Depending on the command and the cache status, an
access is dispatched on different paths. For a read access
(R/FR/FL), the data array is accessed in DR, if the block
hits in the TC. Otherwise, the block is fetched from memory
in FB, refilled in DWB and recorded to meatadata in MW, if
the read is a forced one (FR/FL). Of course, replacing a dirty
block leads to its writeback in WB. When a speculative read
(R) misses in the TC, the access finishes without fetching
the missing block. For a lock-related access (L/U), a block
is either locked (L) or unlocked (U) in LU without accessing
the data array. LU also serves as a common exiting point for
all TC access, where a response containing the requested tag
(map bit) is assembled. For write accesses (W/C/I), W and C
share the same path. If the block hits in the TC, the tag (map
bit) is updated in a read-before-write process (DR→DWR).
Otherwise, the block is fetched from memory in FB (only for
W), refilled in DWB and recorded to meatadata in MW. The
new tag (map bit) is first written to the fetch buffer in FB and
then refilled to the data array in DWB. Recall that C does not
fetch the missing block. The fetch buffer is simply cleared in
FB. For block invalidation (I), the metadata is cleared in WB
if the block hits in the TC. For all TC writes, the block is
unlocked afterwards in LU. To further reduce latency, all TC
write accesses are early acknowledged in MR.

A vector of lock registers are added to support the L
command. Each register records an address to be locked, a
valid flag and its owner (a TagXact tracker). When a block
is locked by a TCAcc tracker under the request of a TagXact
tracker, a free (invalid) lock register is validated, and filled
with the block address and the requesting TagXact tracker
(owner). Whenever a TagXact tracker issues a TC access,
the address of the requested block is compared with all
valid lock registers in parallel. The access is blocked if a
match is found and the TagXact tracker is not the owner.
A valid lock register is invalidated when the locked block
is unlocked (U) or written (W/C/I) by the lock owner. All
TC accesses pending on this lock are unblocked afterwards.
There should be sufficient number of lock registers to avoid
deadlock. The optimal number is 2m where m is the number
of TagXact trackers. In the worst case when all TagXact
trackers are serving tag write accesses, each tracker would

lock two blocks. A total of 2m lock registers ensures that
a free lock is always available. An optimization is made to
boost the number of parallel tag accesses by shrinking the
lock granularity from a block to a single bit. For the default
configuration listed in Table 5, a TM1 block covers 0.5GB
memory while it is only 1MB for a TM1 bit. Locking by
blocks effectively serialize all tag write accesses (and some
read accesses) in a 0.5GB range of memory while reducing
the granularity to a bit shrinks the range to 1MB, which
significantly reduces the probability for a tag access being
blocked by others. For a 2-level HTT, this range shrinks
further to just 2KB.

A rich set of PFCs have been added to the cache system
(including the TC). The original Rocket chip supports only
a limited set of PFCs for monitoring events in the process-
ing core. Depending on the number of available control
registers, e.g., four in a SiFive U74 core [32], only a small
number of events can be monitored in parallel. We need
much more PFCs for exploring the design space of the TC.
38 PFCs are therefore added to all cache levels from L1 to
TC. They occupies a separate address space accessible by
only three control registers [33]. Multiple PFCs can be read
in a burst and the round trip latency is around 2 to 4 cycles.
Regarding the TC, PFCs monitor events including read, read
miss, write, write miss and writeback in each HTT level, and
record the numbers of tag accesses served by each HTT level
and total TC accesses.

7 PERFORMANCE EVALUATION

The tag-enabled Rocket chip is ported to a Diligent Gensys-
2 FPGA board. However, only one core is implemented
due to the limited resources. To overcome this limitation,
we managed to collect memory traces of the SPEC 2006
benchmark [17] running on a 4-core processor and feed
this trace to a register-transfer level (RTL) simulation of
the TC to evaluate the multicore performance. Table 5 lists
the parameters configurable at synthesis time along with
their default values. The maximal tag size of 8-bit is due to
the use of 64-bit wide memory blocks for the data array.
Larger tags can be supported by using wider memory
blocks. By default, the search order is dynamically chosen at
runtime (o = 3). The area overhead is analyzed in Table 6.
Supporting tagged memory introduces 22.6% extra logic
and 7.2% extra memory where 19.6% and 2.2% of the logic
and the memory are introduced by the TC while the rest
is incurred by supporting tags in the original Rocket chip.
Table 6 reveals also the area of a single TagXact tracker, a
single TCAcc tracker and PFCs. Together they take almost
all the logic of a TC.

7.1 Description of the Tag Use Cases

To evaluate the performance of the proposed TC, three
demonstrative tag use cases exploiting a 2-bit tag per 64-bit
machine word are added to the GNU GCC compiler used to
compile the SPEC 2006 benchmark. Since the use cases uti-
lize tags in different memory regions (code, stack and heap),
they share the same 2-bit tag. Fig. 14 reveals the breakdown
of (tagged and non-tagged) memory regions and the total
size of the occupied memory by each program. The tagged
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TABLE 5
Parameters available at synthesis time.

Name Default Constraint Description

B 64 ≥ 8 TC block size in bytes.
S 32 ≥ 4 Number of sets.
W 4 ≥ 2 Number of ways.
t 2 [1 : 8] Tag bits per every 64-bit word.
l 3 [1 : 3] Levels of HTT (plain tag table if l = 1).
o 3 [0 : 3] Search order: 0, top-down; 1, bottom-up;

2, middle-up; 3, dynamic.
m 2 ≥ 1 Number of TagXact trackers.
c 2 2’s power Number of TCAcc trackers.

TABLE 6
Breakdown of area overhead.

Slice Overhead RAM Block Overhead

Rocket-Chip 16177 — 160 —

Rocket-Chip (tagged) 19841 22.6% 171.5 7.2%
Tag Cache (8KB) 3170 19.6% 3.5 2.2%
A TagXact Tracker 654 4.0% 0 0%
A TCAcc Tracker 786 4.9% 0 0%
PFC 607 3.8% 0 0%

workload is relatively heavy as over 50% memory accesses
are tagged for most benchmarks.

Tag call/return instructions: All indirect call/return in-
structions are tagged and untagged call/return raises ex-
ception at runtime. Although not a widely used defense, it
demonstrates the possibility of tagging code in read-only
pages, which is a rare feature in most tagged memory
designs. It can be used to thwart direct code injection,
derive data tags and raise precise exceptions for control-flow
checking. The call and return instructions are identified by
the linker and stored in binary using an extra section. The
loader is modified to initialize the instruction tags before
setting the code pages read-only.

Tag return addresses (RAs) on stack: This is a commonly
utilized defense. When calling a function, RA is automati-
cally tagged by the processor. This tag follows RA where
ever it goes, either register or stack. An exception is raised
if an untagged RA is used by a return. Tags on stack are
explicitly cleared when the stack frame is released to avoid
replay attacks. Hardware is responsible for tag generation,
forwarding and checking while the compiler inserts extra
tag removal operations in the function epilogue.

Tag the live data space in heap: The memory allocator
is revised to tag the allocated data space and clear tags
when it is released. This can be used to detect some forms
of use-after-free attacks and potentially accelerate garbage
collection algorithms, although such a tagging scheme is
extremely heavy. For programs acquiring large data space at
runtime, such as 410.bwaves, 401.bzip2 and 433.milc, almost
all memory accesses are tagged as revealed in Fig. 14. As a
result, the tag workload evaluated in this paper is much
heavier than all of the previous evaluations [15], [19].

7.2 Single-Core Evaluation (FPGA)

For the evaluation of the single-core Rocket chip running on
FPGA, the processor runs at 60MHz and is configured with
two 32KB L1 caches, one 512KB LLC (L2) and a 8KB TC. The
1GB off-chip memory runs at 800MHz. We have successfully
run 21 out of the 29 SPEC CPU 2006 benchmarks. Each
benchmark case has been run for 10G instructions.
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Fig. 15. Memory accesses PKI and CPI overhead (curve).

Fig. 15 shows the memory accesses per kilo instructions
(PKI) and clock per instruction (CPI) overhead of running
the tagged benchmark. The heavy use of tags in heap
slightly increases the amount of L2 memory accesses, such
as the heap-heavy cases 410.bwaves and 433.milc. Using a
TC reduces the amount of TC memory accesses from 100%
to 12.7% of the data accesses and the CPI overhead is around
2.97%. For most benchmarks, the CPI overhead is lower than
4%. The only two benchmarks suffering large CPI overhead
are 433.milc and 471.omnetpp. Further investigation shows
that they are the only benchmarks where >75% tag accesses
are served by TT blocks while the average is only 47%.
471.omnetpp even suffers from the highest TT miss rate of
91.6%. Observable from Fig. 15, they generate the highest
amount of TC memory accesses. They are the two cases
where TC is ineffective due to the lack of locality in tag
access pattern. For other benchmarks, the tiny 8KB TC is
already efficient enough.

Fig. 16a demonstrates the reduced TC memory accesses
by using an HTT, and the performance impact of using
different HTT levels (l) and search orders (o). Introducing
TMs besides a plain tag table has significantly reduced the
amount of TC memory accesses from 5.0 to 2.7 accesses PKI.
Most reduction comes from the reduced memory read for TT
blocks while the amount of memory accesses to TM blocks
(HTT’s overhead) is marginal. The choices on HTT levels
and search orders have nearly no effect on the amount of
memory accesses but their impact on the CPI overhead is
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noticeable. Compared with using a plain tag table (l = 1),
using extra TMs (l > 1) reduces CPI by ∼2.5%. The bottom-
up search order (o = 1) outperforms other orders regardless
of the number of HTT levels. The CPI overhead is reduced
by 3% for both 2 and 3-level HTTs.

We have extracted the numbers of tag accesses served by
(as defined in Section 4.4) and TC read accesses (hit or non-
speculative) to each HTT levels, as presented in Fig. 16b.
73% of the tag accesses become TM0 served when using a 2-
level HTT, while 82% of the those TM0 served become TM1
served when the level increases to three. Since the memory
space covered by a cache block increases with the HTT
level, the total amount of TC memory accesses is therefore
reduced. The choice on search order has no impact on the
proportion of tag accesses served by each level. What it
actually affects is the amount of TC accesses to each HTT
level. For both 2 and 3-level HTTs, the bottom-up order
incurs the minimal numbers of TC read accesses, which is
the reason for its lowest CPI.

Interestingly, dynamically choosing search order does
not achieve the lowest CPI. For both 2 and 3-level HTTs,
using the dynamic search order (o = 3) results in a sub-
optimal CPI 0.5% higher than the optimal. Fig. 17 shows
the numbers of TC read accesses to each HTT level and
the CPI overhead of using different search orders for the
memory heavy benchmarks also with high CPI overhead
(>2%). The result shows that the choice of search order has
a noticeable impact on CPI only when the TC read accesses
to TT retain a large portion of total accesses, i.e. 433.milc
and 471.omnetpp, indicating ineffective use of TM blocks.
For 471.omnetpp, using dynamic search order with a 3-
level HTT, (l, o) = (3, 3), still achieves similar CPI with
the optimal case of (l, o) = (2, 1). 433.milc is the only
case where dynamic search order leads to substantial CPI
rise. Following investigation also shows that the memory
access pattern varies frequently that the dynamic search
order fails to follow the pattern changes. Nevertheless, the
multicore evaluation presented in the next section shows
that dynamic search order does adapt to various memory
accessing patterns and provide concrete CPI reduction.

7.3 Multicore Evaluation (Simulation)
Supporting parallel tag accesses is one of the major ben-
efits of the proposed TC. Since our FPGA board is only
large enough for a single-core processor, we evaluate the
multicore performance using a trace-based RTL simulation.
A trace of the LLC memory accesses issued by four SPEC
benchmark cases running on a 4-core processor (32KB L1s
per core and a shared 2MB LLC) is collected using the
Spike RISC-V simulator [34] with a latency-aware cache
model [35]. Each trace entry records one LLC memory
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access, including the memory address, the attached tag,
read/write and the estimated allowable latency. This trace is
fed to a RTL simulation of the TC linked with a behavioral
memory model to estimate the prolonged execution time.
Instead of targeting an FPGA system where the core is sig-
nificantly slower than the memory, the simulation is scaled
to target an ASIC chip where the memory access latency is
much longer than LLC access latency. Since the generated
trace almost fills up our hard drive, we cannot run the same
amount of instructions with the FPGA run. For each test,
a trace is collected still from running 10G instructions per
core, but the RTL simulation collects results from only 5G
cycles after 5G warm-up cycles.

Fig. 18 compares the results from the FPGA and the
simulation runs. For most benchmarks, the amount of
memory accesses and CPI match closely between the two.
The CPI differences are within 0.5 cycle. The simulation
run produces slightly lower CPI than the FPGA run be-
cause the Spike simulator is inaccurate in simulating the
conflicts happening on a pipelined core, leading to over-
optimistic issuing of memory accesses. The trend is reversed
for memory heavy benchmarks as the core frequency is
scaled to target an ASIC chip, where the long memory
access latency has a larger impact on CPI than in the
FPGA run. Some benchmarks show larger than average
differences, such as 433.milc, 437.leslie3d, 459.GemsFDTD
and 462.libquantum. Since the simulation run executes only
a portion of the instructions finished by the FPGA run,
e.g., 3.3G for 437.leslie3d and 1.7G for 462.libquantum, they
show different results as different ranges of instructions are
executed. 433.milc and 459.GemsFDTD also shows frequent
variation on their memory access pattern. Nevertheless, the
overall result of the simulation run is still consistent and can
be used to evaluate the performance of a TC.

Several combinations of benchmark cases have been
evaluated using a 64KB TC configured with eight
TagXact and eight TCAcc trackers, (m, c) = (8, 8).
Three representative combinations have been identified.
Combination A, memory heavy and HTT effective cases:
410.bwaves, 437.leslie3d, 459.GemsFDTD and 470.lbm.
Combination B, memory heavy cases with one HTT inef-
fective case: 459.GemsFDTD, 462.libquantum, 471.omnetpp
and 483.xalancbmk. Combination C, memory light cases
with two HTT ineffective cases: 403.gcc.input4, 403.gcc.input6,
433.milc.input0 and 471.omnetpp.

Most benchmark combinations behave similar to com-
bination A as shown in Fig. 19a. Since a large proportion
of tag accesses are served by TM blocks, HTT is effective
in reducing the number of cached TT blocks, leading to
significant drop in both TC memory accesses and CPI.
All benchmark cases are memory heavy in combination A.
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Fig. 19. 4-core performance with different levels and search orders (bar:
tag access (left), TC read access (middle), total TC read access (right);
curve: normalized CPI based on plain; x-axis: (l, o)).

Collectively they produce both the highest tag accesses of
38 per kilo cycles (PKC), and the highest TC accesses of 90
PKC. Using HTTs reduces CPI by ∼1.5% compared with a
plain tag table. Top-down is the optimal search order for a
2-level HTT while it is middle-up for a 3-level HTT. Unlike
the FPGA run, the dynamic search order successfully choose
the optimal order for both 2 and 3-level HTTs.

Combination B and C are the abnormal cases identified
in our evaluation. Instead of reducing CPI, using an HTT
prolongs it when one or more HTT ineffective benchmark
cases, i.e. 433.milc and 471.omnetpp, runs along with others.
As shown in Fig. 19b, using an HTT instead of a plain
tag table increases CPI by ∼1.9% when 471.omnetpp is
included in combination B. It gets worse when combination
C includes two HTT ineffective cases. CPI rises by ∼2.5% as
shown in Fig. 19c. Although the amounts of tag/TC accesses
of both combinations are lower than combination A, the
proportion of TM served tag accesses shrinks significantly in
combination B and becomes almost invisible in combination
C, which directly causes the prolonged CPI. This result
shows that HTT is not universally beneficial. When one
or more HTT ineffective application runs on a multicore
processor, dynamically disabling HTT might be a good
choice.3 Nevertheless, the dynamic search order successfully
chooses the optimal search order for both combinations.

However, HTT ineffectiveness alone does not seem to
explain everything. Although 471.omnetpp is HTT ineffec-
tive, using an HTT still reduces CPI by 0.12% in the single-
core FPGA run. We believe another cause is the exhausted
TagXact and TCAcc trackers. The default numbers of track-
ers, (m, c) = (8, 8), are simply scaled from the single-core
configuration of (2, 2). However, concurrent applications
may issue burst memory accesses around the same time,
stressing the TC with a massive amount of tag accesses.
Additional trackers may help alleviate the impact. Fig. 20
shows the result of rerunning combination B using suit-
able search orders with extra trackers, (m, c) = (16, 16).

3. This can be potentially supported by our design as the TagXact
state machine is already configurable at synthesis-time.
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All tag/TC accesses figures remain the same but the CPI
overhead drops to just 0.27%. The number of trackers has a
significant performance impact on multicore processors.

Fig. 21 reveals the CPI reduction with the increasing
number of trackers. The number of HTT levels is almost
irrelevant to CPI when the dynamic search order is used. By
increasing the number of trackers, CPI drops substantially
and it is most visible for combination A. A strictly sequential
TC, (m, c) = (1, 1), incurs a 200% CPI overhead. It drops
to just 2% when the numbers of trackers are increased to
(8, 4). Introducing extra trackers earns marginal improve-
ment, indicating that (8, 4) is sufficient. The HTT ineffective
combinations, i.e., combination B and C, gain less, but still
significant, CPI drop compared with combination A. Inter-
estingly, (8, 4) is not enough to harvest the full benefit. By
increasing trackers from (1, 1) to (16, 16), the CPI overheads
of combination B and C are reduced from 206% and 97%
to 10.8% and 7.6%, respectively. It is also observable that
adding more TagXact trackers without companion TCAcc
trackers becomes fruitless after (8, 8). Overall, it is important
to provide enough trackers and providing extra trackers is
beneficial for running HTT/TC ineffective applications.4

7.4 Comparing with existing TCs

The TC of CHERI [19] is currently the most advanced in
existing designs. It has several differences compared with
our TC. It attaches a 1-bit tag to each 256-bit data and a TC
block is 128-byte wide. LLC memory accesses are claimed
bypassing the TC without being tracked, while the TC
sequentially access tags in the meantime.5 This is equivalent
to (m, c) = (∞, 1) in our design. CHERI’s TC is fixed to
use the top-down order in a 2-level HTT, (l, o) = (2, 0). The
avoidance of both redundant store and empty accesses was
not implemented. We ignore CHERI’s preference on tag and
cache block sizes as it is specialized for CHERI only. An
equivalent TC using our design is configured to match all

4. Our TC is not limited to 4-cores. Running combinations B and
C on 8-cores incurs only 4% CPI overhead comparing with running
combination B on 4-cores. Also, as a TC can be considered as a cache
attached a memory controller, its bandwidth should scale with the
memory controller rather than the number of processing cores.

5. It was not described in [19] how tags and the data returned from
memory are later combined, especially when a tag access finishes late.
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other differences: (l, o,m, c) = (2, 0, 2, 1) for the single-core
FPGA run and (2, 0, 16, 1) for the 4-core simulation run.
The avoidance of redundant store and empty accesses is
manually disabled.

Fig. 22 shows the amount of TC memory accesses of
CHERI against our TCs using 2 or 3 levels of HTTs. Our TCs
clearly outperform CHERI. The lack of avoiding redundant
store and empty accesses leads to significant amount of TC
memory accesses. CHERI incurs 164% extra TC memory
accesses by average, or 49 times in the worst case, i.e.,
456.hmmer. The marginal differences between 2-level and
3-level HTT configurations indicate that the choice on HTT
levels is irrelevant when the search order is dynamic, against
CHERI’s suggestion [19]. CHERI’s CPI is around 2.592 by
average, while it is 2.551 and 2.550 for our 3-level and 2-level
TCs, respectively, leading to a 1.6% overhead on CHERI.

Fig. 23 reveals CHERI’s performance on a 4-core pro-
cessor against our default TC with three tracker config-
urations, (m, c) = (8, 4), (8, 8) and (16, 16). CPI results
are normalized using CHERI as the baseline. Since top-
down is the optimal search order for a 2-level HTT (as
shown in Fig. 19), CHERI’s TC performs similarly with our
TCs in the number of TC read accesses and incurs slightly
less TC accesses than ours TC for combination B and C.
However, our TCs outperform CHERI in CPI performance
by large margins. CHERI’s CPI overhead is 9.4%, 46% and
28% for combination A, B and C, respectively. When our
TC is configured to (m, c) = (8, 4), the seemingly sufficient
configuration for combination A, CPI overhead is reduced
by 79%, 66% and 58% against CHERI for combination A, B
and C, respectively. When the numbers of trackers increase
to (16, 16), CPI overhead is further reduced by another 2%,
10% and 14% for combination A, B and C, respectively.

HDFI [15] is the first design adopting a 3-level HTT in
its TC. The cache space is statically allocated to each HTT
level. Both TT and TM0 take half of the cache space while
all of TM1 is stored in registers. It is a sequential TC fixed to
the top-down order, and lack of the avoidance of redundant
store for TT and empty accesses for both TT and TM0. Com-
paring with CHERI’s TC, the statically allocated cache space
is the major drawback, and we would like to evaluate its
impact. We have reproduced HDFI’s TC in our simulation
model and compared it with our default TC. To make a fair
comparison, the cache and memory sizes of HDFI have been
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Fig. 24. Comparison with HDFI.

proportionally increased, while our TC is made sequential
with the corresponding avoidance optimizations disabled.
Fig. 24 demonstrates the amount of TC memory accesses of
both TCs. Out of the 21 benchmark cases, 19 incur extra TC
memory accesses using HDFI’s TC. HDFI’s average memory
overhead is around 155% compared with our default TC
while 456.hmmer achieves the worst overhead of 29.7 times.

8 CONCLUSION

In this paper, we proposed the first TC capable of serving
multiple tag accesses in parallel, which is crucial for sup-
porting tagged memory in multicore processors. The TC
adopts a 2 or 3-level HTT which is searched by an order
dynamically decided according to the tag access pattern.
A two-phase locking procedure is used to ensure data
consistency when serving related tag accesses in parallel.
The proposed TC integrates seven techniques, where three
are firstly proposed, and two are theoretical concepts mate-
rialized into usable solutions for the first time. Performance
evaluation shows that the CPI overhead for single-core
processors is just 2.97% while it is around 2% when four TC
effective applications running on a 4-core processor. Even
when some applications are TC ineffective, CPI overhead
can be reduced to 7∼10% by adding trackers.
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