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Control-flow integrity (CFI) is a general method for preventing code-reuse attacks, which utilize benign code
sequences to achieve arbitrary code execution. CFI ensures that the execution of a program follows the edges
of its predefined static Control-Flow Graph: any deviation that constitutes a CFI violation terminates the ap-
plication. Despite decades of research effort, there are still several implementation challenges in efficiently
protecting the control flow of function returns (Return-Oriented Programming attacks). The set of valid re-
turn addresses of frequently called functions can be large and thus an attacker could bend the backward-
edge CFI by modifying an indirect branch target to another within the valid return set. This article proposes
RAGuard, an efficient and user-transparent hardware-based approach to prevent Return-Oreiented Program-
ming attacks. RAGuard binds a message authentication code (MAC) to each return address to protect its
integrity. To guarantee the security of the MAC and reduce runtime overhead: RAGuard (1) computes the

This article is an extension of the conference paper “RAGuard: A hardware based mechanism for backward-edge
control-flow integrity,” which appeared in the Proceedings of the International Conference on Computing Frontiers 2017
(CF’17) [61]. This submission improves the original mechanism by: (1) Raising the bar for brute-force attacks: We
compute the RAMAC by encrypting the signature of the return address with AES-128 to raise the complexity of brute
force attacks to 2128; (2) Evaluating on a real implementation: We implement RAGuard on the open-source LEON3
processor to evaluate the runtime overhead due to AES-128 latency. Then we evaluate the performance and area overhead
of RAGuard based on the Modelsim SE 10.2c simulator and Xilinx Vivado Design Suite, respectively; (3) Optimizing based

on leaf functions: The RAGuard hardware dynamically identifies the leaf functions to skip unnecessary RAMAC load
and store operations, thereby reducing RAGuard’s performance overhead.
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MAC by encrypting the signature of a return address with AES-128, (2) develops a key management mod-
ule based on a Physical Unclonable Function (PUF) and a True Random Number Generator (TRNG), and (3)
uses a dedicated register to reduce MACs’ load and store operations of leaf functions. We have evaluated our
mechanism based on the open-source LEON3 processor and the results show that RAGuard incurs acceptable
performance overhead and occupies reasonable area.

CCS Concepts: • Security and privacy → Key management; Artificial immune systems; Embedded

systems security; Hardware-based security protocols;

Additional Key Words and Phrases: Code-reuse attacks, return-oriented programming attacks, message au-
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1 INTRODUCTION

Code-reuse attacks exploit memory corruption vulnerabilities in modern software by re-purposing
existing codes to a malicious end [57]. Such attacks are widespread: They have been reported on
x86, ARM, SPARC, PowerPC, and Atmel AVR architectures [18, 45, 54], and they certainly take
place on countless others. One typical example of a code-reuse attack employs a return-into-libc

technique that allows the attacker to execute libc functions via buffer overflow attacks. More
complex approaches effect arbitrary computations by redirecting program control flow and chain-
ing small fragments of benign code (called gadgets). Return Oriented Programming (ROP) [45] is
another typical code-reuse attack that utilizes gadgets ending with a ret instruction to hijack the
backward-edge control flow.1

Control-flow integrity (CFI) is a general approach for preventing such code-reuse attacks. It re-
stricts control transfers along the edges of a program’s predefined Control-Flow Graph (CFG) [1].
The CFG is constructed by statically analyzing a program’s source code or binary, but this stati-
cally constructed CFG is normally an over-approximation of the valid runtime target addresses for
indirect branches, including indirect call, jump, and ret instructions. This is a particular problem
for returns from frequently called functions that might have many valid target addresses [25]. Lim-
ited context information makes this backward-edge CFI vulnerable to bending in which attackers
make a program return to a different address within the set of valid target addresses [6].

Shadow stacks are essential mechanisms for guaranteeing backward-edge CFI [1, 6, 8, 10, 19, 27,
44]. A shadow stack keeps track of called functions by storing the return addresses in a dedicated
and protected memory region [22]. However, this approach still suffers from several challenges:
(1) a software shadow stack needs extra memory protection [34, 38] and is vulnerable to memory
disclosure attacks [9, 21, 26, 42]; (2) a hardware shadow stack relies on the OS to save and restore
its contents during context switches and stack overflows [10, 12, 19, 35, 59]; and (3) the implemen-
tation of the shadow stack must handle corner cases such as setjmp/longjmp, which might lead to
false positives [6, 16, 19, 43, 44, 59].

This article describes RAGaurd, an efficient and user-transparent hardware mechanism for
backward-edge CFI. RAGuard guarantees the integrity of the stored return addresses. The major
contributions of this work are:

1Forward-edge control flow represents transfers caused by indirect jumps and function calls. Backward-edge control flow
represents transfers caused by return instructions.
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Fig. 1. Stack frame and related operations.

• We design a backward-edge control-flow integrity mechanism RAGuard that raises attack
complexity to 2128. RAGuard binds every return address with a message authentication code
(called an RAMAC and pronounced R-A-mac) and verifies the integrity of the return address
automatically. It guarantees the security of its mechanism by computing the RAMAC with
AES-128 and implementing a key management module based on a Physical Unclonable
Function (PUF) and a True Random Number Generator (TRNG).

• We demonstrate an implementation of RAGuard on the open-source LEON3 processor,
which we use to evaluate runtime overheads due to AES-128 latency. We evaluate RA-
Guard’s performance and area overhead via the Modelsim SE 10.2c simulator and Xilinx
Vivado Design Suite, respectively.

• We develop an optimization method based on leaf functions. By monitoring the call-ret in-
struction sequences, RAGuard dynamically identifies each leaf function and compares the
return address of the leaf with the stored one. Our evaluation shows that our optimized RA-
Guard mechanism incurs negligible performance overhead for application with high per-
centage (above 70%) of leaf functions.

The rest of this article is organized as follows. Section 2 provides a background introduction.
Section 3 explains the threat model and the design goal. Section 4 describes our proposed RAGuard
mechanism. Section 5 presents our proposed hardware solution in details and analyzes the eval-
uation results. Section 6 analyzes and compares related work in terms of both performance and
effectiveness. Finally, Section 7 concludes this work.

2 BACKGROUND

Before describing RAGuard in detail, we introduce necessary background on CFI enforcement.

2.1 Stack Frames

Program stacks store information about active subroutines. As Figure 1(a) shows, arguments are
pushed onto the stack before calling a function. The actual call instruction then pushes the return
address, i.e., the address of the instruction immediately following the call. The function prologue
(shown in Figure 1(b)) pushes the previous stack frame base pointer (BP) onto the stack and allo-
cates space for the called function’s local variables by adjusting the stack pointer (SP). The func-
tion arguments, return address, previous BP, and local variables comprise its stack frame. When a
function returns, the function epilogue (shown in Figure 1(c)) restores the SP and pops the return
address from the stack. Finally, control flow is redirected to the return address.

The return address is stored in the stack frame during the call, which introduces a vulnerability:
Attackers can redirect control flow by overwriting this original return address. For an example,
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Fig. 2. An ROP attack example.

Fig. 3. A CFI [1] example.

attackers can exploit a buffer overflow vulnerability to overwrite the return address and thus hijack
control flow.

2.2 ROP Attacks

Backward-edge CFI is a general defense against return-oriented programming (ROP) code reuse
attacks [16]. ROP attacks hijack control flow by using gadgets (code segments ending with a ret

instruction [45]). Figure 2 shows an example in which the adversary initially locates the payload
(a number of return addresses and necessary data in the red dotted box) in the application’s stack
or heap (Step 1). The adversary launches an ROP attack by leveraging buffer overflow or use-
after-free vulnerabilities to overwrite the return address A (Step 2) [53]. The control flow is then
hijacked, i.w., it is illegally transferred to gadget 1 (Step 3). This gadget 1 changes the stack pointer
(%esp in x86 architectures) to the beginning of the payload (Step 4) and redirects the control flow
to the next gadget by executing a ret instruction (Step 5). These gadgets are then executed one by
one until the system is compromised.

2.3 Control-Flow Integrity

Abadi et al. [1] introduced CFI by instrumenting software with runtime label checks. Figure 3
shows an example of CFI. There are two kinds of control-flow transitions in this example. The
first is the function pointer foo_ptr, which holds the address function foo. The second is the
function return of foo. The former is an example of forward-edge control flow and the latter is
backward-edge control flow. To protect the forward-edge control flow, CFI inserts a label (e.g., the
prefetchnta instruction in Figure 3) before the function entry and a check before the indirect
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function call instruction. Backward-edge control flow integrity is generally implemented via a
protected shadow stack that ensures that each ret instruction returns only to its call site [1, 6].

Such software-based instrumentation with shadow stacks introduces high-performance over-
heads [1, 13]. Researchers proposed coarse-grained CFI approaches to alleviate this problem [60,
62]. These coarse-grained CFI approaches, such as avoiding shadow stacks, have better perfor-
mance [6], but they are not secure enough to thwart some recent attacks [6, 7, 9]. Thus, recent
research focuses on implementing fine-grained CFI [25, 52, 54]. Tice et al. [54] enforce fine-grained
forward-edge control-flow integrity in GCC and LLVM. The compiler inserts a check before ev-
ery call to verify that the destination is within a jump table recording the valid targets for indi-
rect calls [20]. For the state-of-the-art CFI mechanisms, the average runtime overhead is 4.0% for
forward-edge control-flow integrity [54] and 9.7% for backward-edge control-flow integrity [13].

Hardware-based CFI approaches [5, 8, 16, 17, 52] incur lower performance overheads than soft-
ware approaches. Intel now provides an interface to its hardware solutions via an augmented
Instruction Set Architecture (ISA) [10]. Budiu et al. [5] introduce new CFI instructions and a CFI
label register to enforce label checks on indirect branches. Since a subroutine could be called by
different routines, the compiler inserts the same label at each possible call site. This allows the
attacker to bend the backward-edge control-flow [6]. Davi et al. [16, 17] address this problem by
decoupling source and destination labels and enforcing CFI based on label status. Specifically, they
allocate a different label to every function. When a function is called, its label is activated. They
enforce backward-edge CFI by restricting each ret instruction to be to an active function.

3 THREAT MODEL AND DESIGN GOALS

Here, we focus primarily on ROP attacks by remote adversaries against user-space applications
We assume that forward-edge CFI has been efficiently enforced by previous solutions and that an
adversary can exploit memory corruption vulnerabilities to launch ROP attacks. We assume that
adversaries have no control over the operating system kernel, which ensures that its services, such
as Data Execution Prevention (DEP) and Address Space Layout Randomization (ASLR), cannot be
subverted. The DEP mechanism prevents adversaries from modifying code regions or mapping
data regions as executable. The ASLR mechanism ensures that stack space is randomly allocated.
We assume the loaded program is benign but may contain memory safety errors. Adversaries could
conduct side-channel attacks to get the application memory layout, and they could leverage the
memory errors to read arbitrary application code. This would give them full control over the pro-
gram’s stack and heap. For example, adversaries may keep forking malicious processes to collect
the return addresses and their corresponding RAMACs.

To overcome the shortcomings of previous mechanisms, RAGuard needs the following
properties.

• P1 Security: The RAMAC computation and verification should be completely isolated from
software, and the encryption key should never leave the chip.

• P2 User-transparency: Developers should not need to design programs differently to
make use of RAGuard.

• P3 Low cost: RAGuard should cause no substantial increase in chip area or manufacturing
complexity.

4 RAGUARD MECHANISM

Our RAGuard mechanism guarantees backward-edge CFI by verifying the integrity of return ad-
dresses. Figure 4 shows the traditional versus RAGuard stack layouts. RAGuard binds an RAMAC
to each stored return address. The RAMAC is computed automatically and solely by hardware,
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Fig. 4. Comparison between (a) the traditional stack layout and (b) the RAGuard stack layout.

without any support from the OS. When a function is called, an RAMAC is stored directly on the
program stack with the corresponding return address. When the function returns, the RAMAC of
the return address is loaded from the program stack and verified (property P1).

RAGuard has the following advantages over shadow stacks. Shadow stacks track called func-
tions as raw data, and thus they must be stored in protected or dedicated memory regions to
prevent information leakage attacks. The OS must save and restore each process’s shadow stack
contents during context switches and must handle stack overflow. In contrast, RAGuard guaran-
tees the integrity of a return address by checking its RAMAC. Since the (encrypted) RAMACs are
treated as normal local variables, RAGuard is much more flexible and secure than a shadow stack.

Informally, a MAC consists of three algorithms: a key generation algorithm, a signing algorithm,
and a verifying algorithm. Realizing the benefits of RAGuard requires answering the following
questions. (i) How do we generate a key such that the key management is completely isolated
from software (Section 4.1)? (ii) How do we compute an RAMAC such that it can be used to verify
the integrity of return addresses (Section 4.2)? (iii) How do we modify the processor architecture
to support the signing and verifying algorithms (Section 4.3)? (iv) How do we implement RAGuard
with acceptable performance overheads (Section 4.4)?

4.1 Key Management Based on a PUF and a TRNG

An RAGuard key should be generated when the process is forked. To completely isolate key man-
agement from software, a key should never leave the hardware to be read by software. However,
it is challenging to generate the key when the process is scheduled to run again. The properties
of Physical Unclonable Functions (PUFs)—reliability, uniqueness, and unclonability [4, 24]—make
them appealing for RAGuard key management. Reliability comes from the fact that a PUF consis-
tently generates the same response to a given challenge.2 This property guarantees that the same
key is recovered when the process is scheduled to run again. Uniqueness means that the key from
different PUFs (i.e., chips) are never the same. As PUFs exploit the uncontrollable variations in the
fabrication process, they are practically impossible to duplicate.

The PUF is used to generate the encryption key when a process is newly forked or rescheduled
to run (property P1). Long response latency increases the cost of context switching.3 Thus, the
response time of the PUF is critical to our RAGuard mechanism. The cost of a process switch
varies significantly among processors and operating systems [14], but it usually takes about 1–
200ms [36, 63]. Table 1 lists several candidate PUFs. All incur little context switch time and area

2For PUF, an input and its corresponding output are called as a challenge-response pair.
3In this work, a context switch means process switching only. The cost of context switching is the time spent in the OS to
put one process to sleep and to wake another to run.
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Table 1. Candidates for the PUF Module

Structure Response latency Area overhead
err-PUF1 [58] cell error rate distribution of

STT-RAM
2.32µs 2.9 × 102µm2

Bitline PUF [28] SRAM with modified
wordline drivers

64 memory writes and one
memory read2

2,048GE3

MECCA PUF [33] SRAM with a programmable
delay generator

two memory writes and one
memory read

20GE4

LR-PUF5 [32] arbiter PUF with
reconfiguration control logic

1,069 clock cycles (about 1 µs
at 1GHz)

6,974GE

VIA PUF [30] via holes between two metal
layers

one memory read nearly zero6

1The response latency and area overhead are evaluated within a 45nm technology.
2For a 256-column by 256-row SRAM with a 5ns cycle time, the response latency is 512 write memory operations and
1 memory read operation (2.6µs) [28].
3Bitline PUF’s area overhead amounts to a single flip-flop and two logic gates (eight Gate Equivalents (GE)) per row of
SRAM. The area overhead is estimated based on a 256×256 SRAM array.
4MECCA PUF’s area overhead is a programmable delay generator whose area is estimated based on four duty cycles.
5LR-PUF is run with an 80-bit challenge line and 64-bit response line.
6VIA PUF requires dedicated reading circuits.

Fig. 5. Key management based on PUF and TRNG.

overhead. However, err-PUF [58], Bitline PUF [28], and MECCA PUF [33] must modify the memory
control logic. In contrast, LR-PUF [32] and VIA-PUF [30] can be integrated into the system as IP
(intellectual property) cores. We prefer the latter option, as it adds almost no area overhead and
can be implemented without bit error [30] (property P3).

RAGuard’s current key-management implementation uses the process ID (PID) as the process
characteristic for the PUF challenge. If the PUF response is used directly as the key for the current
process, then attackers may fork a large number of processes to collect return addresses and their
corresponding RAMACs for later use. An attacker may perform replay attacks on a process with
the anticipated PID by replacing the return address at location x with a collected return address
at the same location. We deploy two mechanisms to prevent replay attacks. First, stack space is
randomly allocated at runtime. This makes it more difficult for the attacker to replace the return
address with a collected return address. The relationship between PID and the encryption key is
configured during the power-up process. As shown in Figure 5, we use a True Random Number
Generator (TRNG) [50, 56] to generate the initial value (int_val) during power-up. int_val is valid
throughout the runtime. When a process is launched or scheduled to run, its PID is used for the
PUF challenge. The key for the current process (p_key) is generated by XORing the PUF response
(p_key’) with the initial value. van der Leest et al. implement a TRNG based on an SRAM [56],
which is available in most Integrated Circuits (ICs). Thus, a TRNG could be implemented with
almost no area overhead (property P3). In 64-bit architectures, the maximum PID number is 0 ×
400,000 (4,194,303) [14], which can be represented in 22 bits. The inputs and outputs of the PUF
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Table 2. Open Projects of Pipelined AES Implementations

Project # LUTs # BRAMs Latency
Muehlberghuber [40] 8,319 — 12 cycles
Hsing [29] 1,686 59 21 cycles
Das [15] 3,314 38 32 cycles
Strömbergson [51] 3,155 — 46 cycles

module are 32 and 128 bits, respectively. Since the input width is larger than that of PIDs, we can
include more process-specific information in the future.

4.2 RAMAC Computation

To verify the integrity of a return address, the RAMAC should define the signature (or context) of
the return address. As claimed in CCFI [39], this signature contains the the return address (RA)
itself and the stack pointer (SP). The former is the key information that the MAC verifies. The latter
gives the position of the return address in the program stack. Including the SP in the signature
ensures that an attacker cannot swap return addresses by simply copying a return address along
with its MAC (property P1).

First, we derive the signature (SIG) of the return address,

SIG = RA| |SP , (1)

where | | denotes concatenation. The RAMAC is computed as the hash value of SIG,

RAMAC = HASHK (SIG ), (2)

where HASHK is a hardware cryptographic hash function (property P1). The AES-CMAC [47]
authentication algorithm is based on a Cipher-based Message Authentication Code (CMAC) with
AES-128 [41] and is used to implement the cryptographic hash function. As the key generated
by PUF corresponds to the PID, attackers cannot swap a return address of one process with one
of another. In 32-bit architectures, the signatures are 64 bits. The length of the signatures is less
than the block length (128 bits) of AES-128. We pad the signatures with a bit string to bring
length up to the block length [47]. Here, the bit string is a single “1” followed by 63 “0”s. In 64-bit
architectures, the signature length equals the block length, and there is no need for adjustment.

Since the RAMAC is stored on the program stack along with the return address, its width should
be the same as the return address (64 bits in 32-bit systems), which gives us

RAMAC32 = RAMAC[31 : 0]. (3)

Likewise, 128-bit RAMACs are represented as

RAMAC64 = RAMAC[63 : 0]. (4)

AES can be implemented in software or hardware, with the latter providing more physical se-
curity and higher speed. AES architectural designs are driven by system requirements in terms of
latency, resources, and frequency. Table 2 lists four open-source pipelined AES implementations.
The results shown are from implementations on a Xilinx Artix-7 XC7A100T-csg324-1 FPGA de-
vice. We choose these open-source projects to study the impact of AES latency on our hardware
mechanism.4 We discuss their impact on performance in Section 5.2.

4RAGuard works in parallel with the processor pipeline, and so the frequency of the AES design is also critical. AES can be
implemented at high frequencies. For example, the design of Muehlberghuber [40], which is synthesized with 65nm CMOS
technology can run above 600MHz. Sub-pipelining techniques can also be employed to increase operational frequency [46].
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Fig. 6. Extended instruction semantics to support RAMAC.

4.3 Baseline Design

RAGuard introduces two dedicated registers—ramac_c and ramac_v5—and extends the semantics
of the call and the ret instructions to perform the RAMAC computation and verification, respec-
tively. Figure 6 shows how RAGuard extends the semantics of the original call and ret instructions
such that these two instructions access ramac_c and ramac_v implicitly.

call: In addition to pushing the return address on the stack and transferring control to the target
function, RAGuard computes the RAMAC of the return address and stores it in ramac_c. Then the
computed value is pushed on the stack next to the return address.

ret: In addition to popping the return address off the stack and adjusting %esp, RAGuard loads
the RAMAC from the stack into ramac_v. RAGuard recomputes the RAMAC for the popped return
address and compares it with the oldest one in ramac_v. A mismatch indicates that either the
popped return address or the RAMAC was modified by attackers, and RAGuard raises an exception.

These new registers are invisible to software. As parts of the atomic operation of the call

and the ret instructions, they introduce no OS modification and only marginal hardware cost.
Thus, our RAGuard mechanism is transparent to program developers (property P2). However,
pushing the RAMAC on the program stack breaks the relative positions of the frame pointer and
parameters. RAGuard therefore needs a compiler patch to allocate address space appropriately.

4.4 Optimization Based on Leaf Functions

We next analyze the impact of our RAGuard mechanism on different execution sequences of func-
tion calls. We identify several opportunities to avoid unnecessary RAMAC store and load opera-
tions.

As shown in Figure 7(a), function sort2() calls function sort(), then function sort() calls
function lt(). Functions like lt(), which does not make further calls, are called leaf functions [2].
The number “1” represents the return address of function sort(), the number “2” represents the
return address of function lt(). For RAGuard, the RAMAC operations corresponding to the call

and ret instructions are shown in Figure 7(b). When a call instruction is detected, RAGuard com-
putes the RAMAC of the return address (C-1 and C-2) and stores the RAMAC on the stack (S-1 and
S-2). When a ret instruction is detected, RAGuard loads the RAMAC of return address from the
stack (L-1 and L-2) and verifies the integrity of the return address (V-1 and V-2). The RAMAC of
return address “2” is stored on the stack (S-2) and then loaded from the stack (L-2) sequentially. In

5The ramac_v register is implemented as a First-In-First-Out (FIFO) buffer that decouples the pipeline and RAMAC
verification.
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Fig. 7. Example program fragment and an outline of the execution sequences of the call and the ret instruc-

tions.

this situation, we could save the return address of the leaf-function call on the chip and verify its
integrity by comparing it with the saved return address directly. Consequently, the RAMAC store
(S-2) and load (L-2) for can be avoided. We thus introduce a dedicated register that is invisible to
software to save the latest return address.

A similar optimization based on leaf functions has been reported in CCFI [39], which relies on
the compiler to statically identify leaf functions. However, the hardware pipeline cannot identify
a leaf function when it is called, and the RAMAC may not be fully generated when the call
instruction completes. To deal with these challenges, we defer storing the RAMACs until functions
are verified to be non-leaf functions. As shown in Figure 7(c), a function is not a leaf function if
there is no ret executed in between its corresponding call and the immediate following call. The
RAMAC of such a non-leaf function is stored on the stack when this following call is executed.

To determine the likely impact of these optimizations, we extract the leaf function calls of the
C and C++ benchmarks from SPEC CPU2006 [49]. We instrument the function entry and exit
points [64] and ran the benchmarks on an Intel machine to collect runtime profiling information.
Table 3 shows the percentage of leaf function calls. Most of the benchmarks (12 of 19) contain up
to 70% leaf calls. Leaf calls account for half of the calls in the remaining benchmarks (7 of 19).
Five benchmarks have over 95% leaf calls. These results indicate that optimizing for leaf functions
could save most of the RAMAC load/store operations.

4.5 Handling setjmp() and longjmp()

RAGuard correctly handles setjmp()/longjmp() functions. setjmp() stores the context infor-
mation for a predefined location into a jump buffer (jmp_buf). Then longjmp() uses the saved
context information to quickly return execution to the predefined location. To correctly handle
these calls, we rewrite the setjmp() and longjmp() functions as shown in Figure 8. setjmp()
gets the RAMAC from the stack and saves it to the jmp_buf. When longjmp() is about to return,
the RAMAC is moved from jmp_buf to the RAMAC_v register. The hardware detects the update of
the RAMAC_v register and verifies the target of the jmp instruction as it does the ret instruction.

5 IMPLEMENTATION AND EVALUATION

We implement the RAGuard mechanism on the open-source LEON3 processor [23]. We evaluate its
performance and area overhead based on the Modelsim SE 10.2c simulator and the Xilinx Vivado
Design Suite, respectively. Finally, we analyze the security of our RAGuard mechanism.
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Table 3. Percentage of Leaf Function Calls

Applications # Total Function Calls # Leaf Functions Calls Fraction

400.perlbench 181,974 101,991 56.0%
401.bzip2 9,536,770 9,165,288 96.1%
403.gcc 96,520,855 53,349,059 55.2%
429.mcf 87,399,945 84,274,221 96.4%
445.gobmk 1,608,123 960,508 59.7%
456.hmmer 63,255,863 31,703,700 50.1%
458.sjeng 66,572,836 50,622,855 76.0%
462.libquantum 639,881 485,511 75.9%
464.h264ref 78,762,299 70,579,741 89.6%
471.omnetpp 165,078,087 93,292,028 56.5%
473.astar 681,047,522 566,481,863 83.2%
483.xalancbmk 125,204,873 96,046,228 76.7%
433.milc 196,131,289 195,858,156 99.8%
444.namd 219,233,757 218,436,801 99.6%
447.dealII 514,340,741 261,184,875 50.8%
450.soplex 2,532,788 2,048,022 50.9%
453.povray 166,991,701 122,737,149 73.4%
470.lbm 81 77 95.1%
481.sphinx 21,973,395 15,876,815 72.2%

Fig. 8. Rewritten setjmp() and longjmp(). functions.
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Fig. 9. Our RAGuard mechanism is implemented in a LEON3 (SPARC) processor, which uses a seven-stage

pipeline (Instruction Fetch (FE), Decode (DE), Register Access (RA), Execute (EX), Memory (ME), Exception

(XC), and Write (WR)). We add an RAMAC generator module (raguard, inside the dashed blue box) and

associated data paths (denoted as dotted blue lines) to the LEON3 pipeline.

Fig. 10. The state machine of raguard_ctrl module includes: RAGuard control stage (s_raguard_ctrl), encryp-

tion key update stage (s_puf), RAMAC generation stage (s_aes), and RAMAC load/store stage (s_lsuq).

5.1 Details of RAGuard

LEON3, which is distributed by the European Space Research and Technology Centre, is a synthe-
sizable 32-bit processor compliant with the SPARC V8 architecture. It implements a single-issue
instruction pipeline with seven stages, as shown in Figure 9. We add a hardware RAMAC compu-
tation and verification module raguard to the iu3 module. The structure of raguard is illustrated
inside the dashed box of Figure 9. The raguard module contains the following components: ra-

guard_ctrl, key_manager, AES-128, and lsuq (the load-store update queue). The added data paths
are denoted by dotted blue lines. To facilitate the RAMAC computation, we also add three registers
(p_inf, p_key, and ramac_c) and two FIFOs (ramac_v and sig). The raguard_ctrl module monitors
instructions at the decode stage (DE), and maintains a state machine to control RAMAC computa-
tion and verification. The state machine is shown in Figure 10.
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When a process is scheduled to run, the OS process ID (PID)6 is reset. At the same time, the value
of register p_inf is automatically updated. The raguard_ctrl module sends a process encryption key
update command (pkey.update) to the key_manager, and its status becomes s_puf. The key_manager

module uses the new value of the p_inf register as its input, and its output is stored in the p_key

register. When the process encryption key is finished updating, the key_manager sends a response
(pkey.update_done) back to the raguard_ctrl module.

When a call instruction enters the decode stage, a command is sent to the AES-128 module
to compute the RAMAC (call.mac_generate), and the status of the raguard_ctrl module becomes
s_aes. After receiving this command, the AES-128 module uses the signature of the return address
as its input to compute the RAMAC (Equations (1–4)). When the RAMAC is ready, the raguard_ctrl

module sends the RAMAC (call.mac_store) to the lsuq (load store update queue) module. Then the
call instruction is executed (call.mac_submit).

When a ret instruction enters the decode stage, the raguard_ctrl module sends a command to load
the RAMAC (ret.mac_load) to the lsuq module. The RAMAC is loaded from the program stack and
stored in the ramac_v FIFO. Meanwhile, the ret instruction pops the return address from the pro-
gram stack in the exception stage. The raguard_ctrl module then stores the signature of the loaded
return address into the sig FIFO (ret.sig_store). When the AES-128 module is free and the sig FIFO is
not empty, the raguard_ctrl module sends an RAMAC calculation command (ret.mac_generate) to
the AES-128 module (ret.mac_generate). After receiving the RAMAC calculation command, AES-

128 recomputes the RAMAC of that return address and compares it to the oldest one in the ramac_v

FIFO (ret.mac_verify). If there is a mismatch, then an exception is raised, and execution is trans-
ferred to the exception handler.

Although our proof of concept RAGuard implementation uses a single-issue processor, RA-
Guard can be naturally applied to superscalar and simultaneous multithreading (SMT) proces-
sors. For superscalar processors, only one process is active at a time. The mac_generate commands
(call.mac_generate and ret.mac_generate) from different pipelines use the same encryption key.
We can implement the RAGuard mechanism in a similar way to the LEON3. The raguard module
can be shared between the pipelines directly. For SMT processors, more than one process run on
the processor core at a time. The mac_generate commands from different hardware threads use
different encryption keys. The AES-128 cannot process mac_generate commands from different
processes at the same time. The raguard_ctrl module may employ a round-robin scheduler to as-
sign time slices of AES-128 to the hardware threads. More than one AES-128 module may be used
to accelerate RAMAC computation.

5.2 Runtime Overhead

The percentages of leaf functions and the call frequencies per 1K instructions in our bench-
marks are illustrated in Figure 11. Table 4 gives the details of the experimental setup. To eval-
uate RAGuard’s performance overhead, workloads are loaded to the DRAM. The entry point is
0x4000_0000 and the stack pointer is set to 0x47FF_FFFF. Since we did not modify the compiler,
the RAMACs are stored at shadow locations to guarantee the correct execution. In other words,
the RAMACs are stored in a separate location in DRAM, instead of on the stack as Figure 4 shows.
For example, if the return address is 0x47FF_FE04, the RAMAC is stored at 0x45FF_FE04 during

6To reduce the software overhead of TLB maintenance, the Address Space Identifier (ASID) is used to identify pages associ-
ated with a specific process. The hardware can monitor changes to the ASID and decide whether there is a context switch.
For Intel 64 and IA-32 architectures, the current ASID (also called the Process-Context Identifier (PCID)) is the value of bits
11:0 of CR3 [31]. For the LEON3, the context number is the corresponding ASID [48].
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Fig. 11. (a) Percentage of leaf functions and (b) call frequency per 1K instructions for the six benchmarks.

Table 4. Experimental Setup

LEON3 CPU 7 stage, single issue
I-cache 16KB 4-set, 4KB/way, 32B/line
D-cache 16KB 4-set, 4KB/way, 32B/line
DRAM 128MB DDR2 (0x4000_0000 0x47FF_FFFF)

Compiler sparc-elf-4.4.2
Workload bitcount, Dhrystone, CoreMark, stringsearch, CRC32
Simulator Modelsim SE 10.2c
Synthesis Tool Xilinx Vivado Design Suite

Fig. 12. Runtime overhead of different implementations.

evaluation. Meanwhile, to analyze the effect of AES latency on performance, we integrate the four
AES implementations (shown in Table 2) into our projects.

Figure 12 shows the runtime overhead normalized to the baseline, i.e., the original LEON3 pro-
cessor from Cobham Gaisler [23]. The RAGuard case represents the design described in Section 4.3,
and the optimized case represents the RAGuard design with leaf-function optimization described
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Table 5. Increased Hold Time in Cycles for D-Cache, I-Cache, and RAMAC

Increased HDcache (cycles) Increased HI cache (cycles) Increased HRAMAC (cycles)

RAGuard case Optimized case RAGuard case Optimized case RAGuard case Optimized case

bitcount

12 12,565 9,592 120 67 835 171

21 12,501 9,603 −13 −196 958 402

32 12,685 9,770 198 192 2,146 829

46 12,423 9,658 118 167 2,976 1,406

Dhrystone

12 27,431 593 53 152 2,188 71

21 23,560 589 46 36 6,027 1,048

32 20,566 587 94 42 14,432 2,287

46 19,417 455 −56 −41 16,025 3,868

CoreMark

12 8,693 312 −4 97 350 36

21 8,608 312 −133 92 2,931 67

32 8,533 310 115 −11 6,568 140

46 8,593 305 −56 82 7,993 251

basicmath

12 1,332 233 92 26 142 32

21 1,323 233 91 20 166 54

32 1,314 261 50 44 293 148

46 1,315 261 3 41 457 275

string

12 2,955 218 58 4 179 30

21 2,924 218 94 8 172 40

32 2,930 218 75 −1 184 95

46 2,978 211 0 −10 197 217

CRC32

12 1,209 223 120 125 139 34

21 1,203 223 108 119 178 45

32 1,198 220 79 105 262 74

46 1,307 216 204 80 411 130

in Section 4.4. The numbers on the x axis denote the latencies of the AES implementations in
Table 2. As expected, our optimization mechanism efficiently reduces RAGuard’s runtime over-
head. For the AES with a latency of 12 cycles, RAGuard incurs 8.3% performance overhead, on
average. Its worst-case degradation is 24.3% for Dhrystone. The optimized RAGuard incurs almost
no performance degradation except for bitcount, which has a much lower percentage (49.9%) of
leaf function calls than the other benchmarks.

The relatively large degradations for the basic (unoptimized) RAGuard are not surprising. Since
we extend the semantics of the call and ret instructions to insert the RAMAC operations, there is
more contention on the bus, causing extra pipeline stalls. For LEON3, the delay consists of three
parts: D-cache hold time (HDcache ), I-cache hold time (HI cache ), and RAMAC hold time (HRAMAC ).
When D-cache, I-cache, and raguard_ctrl cannot submit their command immediately, they stall the
pipeline. Table 5 shows the increases in the number of cycles spent in each type. The I-cache hold
time is increased little by our hardware mechanism, but it substantially increases the D-cache hold
time, especially for bitcount and Dhrystone. It is notable that the the RAMAC hold time is much
smaller than the extra D-cache hold time. That means the RAMAC computation and verification
degrade performance very little when the AES latency is small. Thus, the large drop in performance
for basic RAGuard is due to the sharply increased D-cache hold time. In contrast, the optimized
RAGuard sharply decreases the extra D-cache hold time, except for bitcount. This shows that
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Fig. 13. D-cache miss per thousand instructions.

Table 6. RAGuard Area

# LUTs as Logic # LUTs as Memory # LUT FF Pairs # Total

Original LEON3 processor 10,150 76 2,335 12,561

raguard_ctrl 473 0 150 623

AES-128 (Muehlberghuber [40]) 6,866 0 1,453 8,319

our optimization can effectively reduce the performance overheads for applications with many
leaf function calls.

The sharply increased D-cache hold time for the unoptimized RAGuard is due to the high D-
cache miss rate. As shown in Figure 13, the D-cache misses per thousand instructions (MPKI)
increases substantially, especially for Dhrystone. This is corroborated by Figure 11(b), where
Dhrystone has the highest call frequency. The increased misses may be due to our not storing
the RAMAC with the corresponding return address on the program stack for these experiments
If we were to modify the compiler to store the RAMAC directly with the corresponding return
address, then performance will be further improved. As our optimization mechanism saves most
of the load/store operations, the optimized RAGuard shows similar MPKI values to those of the
original LEON3 processor. The only exception is bitcount, which has 49.9% leaf-function calls.

The long latency of the AES used in RAGuard slightly increases the performance overhead. As
shown in Figure 12, the average performance degradation of RAGuard increases from 8.2% to 10.1%
when the AES latency increases from 12 to 46 cycles. The average performance degradation of the
optimized RAGuard increases from 1.9% to 2.6% when the AES latency increases from 12 cycles
to 46 cycles. The optimized RAGuard incurs negligible performance overhead for application with
higher percentage (above 70%) of leaf functions.

5.3 Resource Overhead

We synthesize and implement our RAGuard prototype with Xilinx Vivado HLx 2016.2 [57].
The required FPGA resources are shown in Table 6. The second row shows the resources used
by the unmodified LEON3 processor. The extra resources needed by our RAGuard mechanism
comprise three parts: raguard_ctrl, AES-128,7 and key_manager (or PUF). The resource overheads

7We choose the biggest AES implementation from Table 2.
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of the former two are shown in the third and fourth rows, respectively, and the resource overhead
of the PUF is estimated in Table 1. The raguard_ctrl module requires 623 extra LUTs/FFs, which
is only 4.96% of the baseline. AES-128 consumes more FPGA resources (8,319 LUTs/FFs). The total
FPGA resources required by RAGuard (8,942 LUTs/FFs) amount to a little more than half (58.9%)
of those required by the original Xilinx MIGv7 memory controller (15,178 LUT/FF) (property P3).

5.4 Security Analysis

We restrict our discussion to attacks that leverage backward control-flow edges, such as ROP at-
tacks. Note that RAGuard security also relies on the complexity of the RAMAC computation. In
ROP attacks, the adversary overwrites return addresses on the stack and locates payloads in the
application’s heap/stack (as shown in Figure 2). Malicious return addresses in the payload may
redirect control flow to arbitrary locations, unintended call sites, or even valid potential call sites
within the CFG [6]. In the first case, attackers must compute the RAMACs for their dummy re-
turn addresses. In the latter two cases, attackers might carry out splicing attacks by constructing
payloads with the existing return address and the corresponding RAMAC. This approach violates
our RAMAC verification, as well: if a return address and its corresponding RAMAC are inserted
into another location, the stack pointer of the new location disagrees with the RAMAC. Hence,
attackers must also recompute the RAMACs for their malicious return addresses.

As noted in Section 4.2, the RAMAC is computed with AES-128, which encrypts the signature of
the return address. A PUF module dynamically updates the encryption key on context switches.
Since the encryption key never leaves the hardware and the p_key register is only accessed by
hardware, adversaries cannot obtain the encryption key to produce a valid RAMAC. Moreover,
the p_key register is updated at runtime, which makes the RAMAC less vulnerable to brute-force
attacks.

Attackers may fork a large number of processes to collect return address and RAMAC pairs for
a specific PID. When the PID is reused, the attackers could conduct replay attacks by replacing the
return address at location x with a collected return addresses at the same location.

6 RELATED WORK

6.1 Using Shadow Stacks

Shadow stacks are considered to be an essential mechanism for the security of CFI [1, 6, 10]. They
usually work by keeping a copy of the return address when a function is called. When the function
returns, it uses the return address stored on the shadow stack to ensure integrity. Although shadow
stacks enforce strong backward-edge CFI policy, they present several implementation challenges.
First, the effectiveness of the shadow stack relies on its integrity. The shadow stack must be iso-
lated against the software it protects. Information hiding is often used to secure software shadow
stacks [13, 34, 38] with acceptable performance overhead. Unfortunately, these shadow stacks are
vulnerable to information leakage attacks [9, 21, 42]. Hardware-assisted shadow stacks [22, 35,
43] copy the return addresses into a dedicated memory region. Intel recently introduced Control-
Flow Enforcement Technology (CET) [10], in which hardware-based shadow stacks verify return
addresses. Furthermore, CET provides indirect branch tracking to validate forward CFI edges. Such
indirect branch tracking complements our RAGuard mechanism. Both mechanisms rely on the OS
to save and restore the contents of shadow stack on context switches and stack overflows [22, 43,
59].

The use of setjmp()/longjmp() violates call and ret matching. setjmp() saves the current ex-
ecution environment into a platform-specific data structure (jmp_buf). Then longjmp() restores
that saved program state to continue execution after the setjmp(), allowing functions to unwind
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multiple stack frames. To deal with this corner case, StackGhost [22] walks back through the pro-
gram’s stack to find the corresponding setjmp() and manipulates the shadow stack accordingly.
Smashguard [43] pops return addresses off the shadow stack until a match is found or the shadow
stack is empty. Davi et al. [16, 17] design a hardware shadow stack variant that allocates a different
label to every function. When a function is called, its label is activated. They enforce backward-
edge CFI by restricting each ret instruction to return to an active function. Their approach tracks
called functions by their label status instead of the first-in, last-out principle. In doing this, they
avoid having to do anything special to correctly handle mismatches between calls and rets.

In contrast to these prior efforts, RAGuard uses RAMACs to verify the integrity of return ad-
dresses, rather than tracking the return addresses precisely using a shadow stack. While these
prior efforts require dedicated memory and require that the OS handle process context switches
and stack overflows, RAGuard relies on cryptography to verify the integrity of return addresses.
RAGuard can also correctly handle mismatches between call and ret instructions by rewriting
the setjmp() and longjmp() functions (as shown in Figure 8).

6.2 Using a Reversible Transform of the Return Address

A reversible transform can be used to prevent attackers from overwriting the stored return address
with a legal value. When the return address needs to be stored, a reversible transform is applied to
it and the result is stored on the stack instead. When the return address is popped from the stack,
the reverse transform is applied to it before it is used. If attackers do not know the transform or
the key to the transform, then they cannot overwrite the return address with their intended value.

StackGhost [22] applies XOR encryption to the return address value. As this approach is pro-
posed based on the SPARC architecture, the transform is used whenever a register window over-
flow or underflow occurs. Similarly, PointGuard [11] XORs a key with every pointer that is loaded
from or stored to memory. Unfortunately, both of approaches are susceptible to information leak-
age attacks. The XOR key can be inferred if attackers can read the transformed return address off
the stack.

To prevent information leakage attacks, Tuck et al. [55] protect the return address with cryptog-
raphy implemented in hardware. When the return address is loaded back, it is decrypted with the
inverse function before being used. However, this approach is susceptible to ROP attacks. Attack-
ers may swap a return address stored in one memory address with a pointer stored in a different
memory address.

6.3 Using MACs with Return Addresses

To prevent attacks from swapping one return address with another, a message authentication code
(MAC) can be bound to the return address. StackGuard [12] is the first work to employ this ap-
proach. It places a predefined secure value on the program stack next to a return address. The se-
cure value could be a string terminator or a randomly generated number. When a function returns,
the secure value is verified by the function epilogue to make sure it has remained intact. However,
applying StackGuard directly to enforce backward-edge CFI does not work for two reasons. First,
attackers could overwrite the secure value and the address of StackGuard’s (software) security
handler [37]. We therefore suggest generating and verifying the secure value automatically in
hardware. Second, the secure value contains nothing about the return address, and attackers can
obtain it via brute force attacks [3].

Cryptographic CFI (CCFI) [39] uses MACs instead of a predefined secure value to efficiently
provide CFI protection. CCFI’s MACs are implemented as a single block of AES applied to the sig-
nature of the pointer. Because CCFI randomly generates the AES key at program initiation, it also
needs the OS to save and restore the MAC key during context switches. CCFI incurs non-negligible
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performance overheads, even though it takes advantage of cryptographic CPU instructions
(AES.NI). In contrast, RAGuard uses a novel key management method based on PUFs to isolate
key management from software, and it improves the performance of backward-edge CFI with a
hardware AES-128 function. Furthermore, CCFI relies on the compiler to statically identify leaf
functions to reduce the cost of protecting return addresses. Instead, RAGuard proposes a dynamic
hardware-based approach to avoid unnecessary store and load operations.

7 CONCLUSIONS

This work presents RAGuard, an efficient, user-transparent hardware mechanism for backward-
edge Control Flow Integrity. RAGuard binds each return address with an RAMAC to guarantee its
integrity on the program stack. Since the security of the RAMAC is guaranteed by a PUF module
and a hardware cryptographic hash function, the RAMAC can be stored directly on the program
stack. By dynamically avoiding storing the RAMAC for leaf functions, our optimized RAGuard
incurs negligible performance overheads for application with higher percentages (above 70%) of
leaf function calls. If the RAMAC is stored directly with the corresponding return address, then
performance will be further improved, including for applications with few leaf function calls.
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