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Abstract—Cache randomization has been proposed as an effec-
tive defense against conflict-based cache attacks. Mirage and
Chameleon are two of the state-of-the-art randomized last-
level caches achieving a strong defense. However, they rely on
techniques intrusive to the traditional cache structure, such as
cache skews, over-provided metadata space, and separated data
storage, and prohibit the use of the LRU replacement policy.
Mirage incurs 22% extra area and 21% extra power. When
running memory heavy applications, Chameleon consumes
significant dynamic power due to its high relocation rate.

This paper proposes to mitigate conflict-based cache at
tacks using sequential associativity. The proposed SeqAss cache
retains the set-associative structure and supports LRU. It
achieves a defense as strong as Mirage. Instead of raising cache
miss rate, SeqAss actually reduces it by 11.4%. Its area and
power overhead is 28.8% and 22.1%, respectively, lower than
Mirage. When running memory heavy applications, it incurs
∼50% lower dynamic power overhead compared to Mirage
and Chameleon.

1. Introduction

Modern processors adopt a multi-level cache hierarchy
to reduce the impact of long memory access latency. Each
processing core contains one or two levels of small private
caches while a large last-level cache (LLC) is shared be-
tween cores. To reduce the amount of on-chip communica-
tion required for maintaining cache coherence, an LLC usu-
ally keeps a copy for all the data stored in private caches [1],
[2]; therefore, cache blocks belonging to different cores
(processes) may be stored in the same LLC cache set. A
cache conflict occurs when a newly fetched cache block is
inserted to a fully occupied LLC cache set. One of the stored
LLC cache blocks is chosen and evicted to make room. To
maintain the inclusive relationship with private caches, the
copies of the evicted block stored in all private caches, also
called the inclusion victim [1], are forcefully purged in the
eviction process. This type of backwards purging enables
attackers to launch conflict-based cache attacks targeting the
LLC, because they can precisely infer a victim’s access to

a specific data by making the data an inclusion victim and
purging it using malicious LLC conflicts.

Cache randomization [3] has been proposed as an effec-
tive defense against such attacks. By randomizing the map-
ping between addresses and cache set indices [3], [4], [5]
(random mapping), inserting newly fetched cache blocks at
randomly selected cache sets [4], [6], [7] (random insertion),
and evicting seemly random cache blocks when cache con-
flict occurs [8], [9] (indirect eviction), cache randomization
endeavors to prevent attackers from collecting congruent
addresses1, deterministically occupying target cache sets, or
precisely monitoring the victim’s accesses on target cache
sets. The arm race between attackers and cache defenses is
constantly evolving. Only random mapping and random in-
sertion were commonly applied on the early designs of ran-
domized caches [4], [6], and attackers were used to be able
to search congruent addresses using fast algorithms [10],
[11], [12], [13] and launch persistent attacks [14]. Later,
they failed to do so on the recently proposed Mirage [9]
and Chameleon [8] caches. Both adopt indirect eviction
to prevent attackers from collecting congruent addresses.
Mirage further eliminates associative evictions by over-
providing metadata space [9], making it almost impossible
for attackers to deterministically occupy target cache sets.

As more advanced defense techniques are adopted, the
cost of enforcing cache randomization gradually increases.
Early randomized cache proposals rely on frequent cache
remaps [3], [15] to reduce the time window available for
attackers, but it leads to increased cache misses and reduced
IPC (instruction per clock) [3], [16] as 10 ∼ 50% data
cached in the LLC are unnecessarily evicted during each
remap. Skewed cache [4] is adopted by most randomized
caches for enforcing random insertion, but it reduces the
efficiency of replacement policies and complicates the LLC
control logic [15]. Chameleon achieves indirect eviction
by swapping the conflicted cache blocks pushed into the
victim cache (VC) [8] back to the main cache array, but
this swap incurs significant power overhead. In addition,
all existing caches implementing indirect eviction [8], [9]

1. Addresses mapped to the same cache set with a target address [10].



enforce the random replacement policy rather than the least
recent used (LRU) replacement policy. Finally, the over-
provided metadata space and separated data storage used
in Mirage incur 22% extra area and 21% extra power [9],
which make Mirage unlikely to be adopted by future pro-
cessor designs [17].

This paper would like to investigate the possibility of
designing a randomized cache achieving a strong defense
without most of the aforementioned overhead. To be spe-
cific, the proposed randomized cache is expected to achieve:

• A defense comparable to that provided by Mirage.
• Reducing cache misses rather than increasing it.
• Significantly reduced area and power overhead com-

pared to Mirage and Chameleon.
• Preserving the LRU replacement policy and traditional

set-associative structure without using cache skews.
Our idea is to apply sequential associativity [18] on a

traditional set-associative cache and implement all the re-
quired randomization techniques on it. The intuition behind
this idea is as follows: (a) Applying random mapping and
sequential associativity on a set-associative cache would
form a basic randomized cache which is inherently area-
economical and cache-miss-reducing. (b) Although this de-
sign is still vulnerable to Evict+Time, it can be hardened
without losing its inherent benefits. (c) Although this design
consumes high dynamic power, it can be reduced in a
practical way.

We name the new randomized cache as the SeqAss
cache. It achieves a strong defense comparable to Mirage.
Instead of degrading run-time performance, it reduces cache
misses by 11.4%. Its area and power overhead is 28.8%
and 22.1%, respectively, lower than Mirage. When running
memory heavy applications, it incurs ∼50% lower dynamic
power overhead compared to Mirage and Chameleon.

The artifact of this paper is available at https://doi.org/
10.5281/zenodo.17248489.

2. Background

This section introduces the necessary background re-
quired for understanding this paper. Starting with a sum-
mary of the conflict-based cache side-channel attacks, we
analyze the key techniques proposed and utilized by existing
randomized caches, describe the extra attacks considered in
the design of SeqAss, and finally introduce the concept of
sequential associativity.

2.1. Conflict-Based Attacks

Conflict-based cache side-channel attacks occur when an
attacker can deterministically occupy one or several cache
sets shared with her victim and utilize this advantage to
monitor the victim’s accesses to these target cache sets.
Depending on the way of monitoring such accesses, most at-
tacks can be classified into two categories: Prime+Probe and
Evict+Time attacks [19]. Prime+Probe infers victim’s access
by probing attacker’s own cache blocks while Evict+Time
does so by measuring victim’s execution time.
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Figure 1. A randomized skewed cache with 2 skews over 4 ways.
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Figure 2. A Mirage cache with 2 skews over 6 ways of metadata (50%
over-provided) and a separated 4-way data storage.

Generally speaking, the success of an attack depends
on the effectiveness and the precision of the following four
capabilities acquired by the attacker: Sharing: An attacker
can access a cache set shared with her victim. Controlling:
An attacker can control a cache set by either priming it with
a sufficient number of congruent addresses or determinis-
tically evict the victim’s data from the cache set. Monitoring:
An attacker can infer whether her victim has accessed the
cache set by probing her own blocks or measuring the
victim’s access latency. Implication: An attacker can infer
sensitive information by monitoring her victim’s access.

2.2. Key Techniques Used in Cache Randomization

Table 1 summarizes the key techniques utilized in exist-
ing randomized caches, including random mapping, random
insertion, indirect eviction, and re-randomization.

Random mapping is the basis for all randomized cache
proposals. As shown in Figure 1, this is normally done
by calculating the cache set for an incoming cache block
using a cryptographic cipher [3]. This reduces attackers’
capability to control and monitor cache sets by forcing
them to search congruent addresses at runtime. It also
limits attacker’s implication capability as cache set indices
no longer leak address bits. However, attackers still can
collect congruent addresses using fast search algorithms,
such as Group-Elimination [4], [10], [20], Prime-Prune-and-
Probe (PPP) [11], [12], Conflict-Testing (CT) [4], [13], CT
with Probe+Prune (CTPP) [21], Prune+PlumTree [22], and
Write+Write [23].

Random insertion further reduces attackers’ capability of
controlling and monitoring cache sets [4], [6]. Also shown in

https://doi.org/10.5281/zenodo.17248489
https://doi.org/10.5281/zenodo.17248489


TABLE 1. SUMMARY OF THE KEY TECHNIQUES USED IN EXISTING RANDOMIZED CACHES.

Technique Benefit Implementation Overhead

Random
Mapping

Force attackers to search con-
gruent addresses at runtime. Index Randomization

Extra cache access latency of 1 ∼ 5 cycles. Extra bits for
storing the full address tag in metadate [3].

Random
Insertion

Reduced efficiency and
increased noise in priming
a cache set. Attackers either
need extra congruent addresses
to control a cache set or suffer
from reduced attack precision.

Skewed caches (CEASER-S [4],
ScatterCache [6], Chameleon [8])

Reduced efficiency for the replacement policies and compli-
cated cache control logic.

Parallel Index Mappings
(PhantomCache [7])

Area overhead due to extra LLC banks. Increased power and
control complexity due to simultaneous accesses to all banks.

Load balance (Mirage [9]) Large storage overhead due to the over-provided metadata.

Indirect
Eviction

Prevent attackers from identify-
ing congruent addresses through
cache evictions.

Global eviction using separate data
storage (Mirage)

Extra storage for bidirectional pointers between metadata and
data. Increased cache misses due to random replacement.

VC and cache block relocation
(Chameleon)

Increased power due to extra block relocation per each cache
eviction. Increased cache misses due to random replacement.

Re-Ran-
domization

Limit attack window by nullify-
ing all congruent addresses al-
ready collected by the attacker.

Single-step remap [4] Unnecessarily evict ∼50% cache blocks in each remap.

Multi-step relocation [15] Unnecessarily evict ∼10% cache blocks in each remap.

victim cache
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Figure 3. A Chameleon cache with 2 skews and a 3-way VC.

Figure 1, incoming cache blocks are inserted into randomly
selected cache skews. Since it is extremely difficult to find
fully congruent addresses,2 attackers instead use a large
number of partially congruent addresses to prime cache
sets or evict victim’s data, which leads to low success rate
and undesirable disturbance to other unrelated cache sets.
Mirage makes it more difficult by introducing load balance.
As shown in Figure 2, extra (unused) ways are added to
the metadata, which allows Mirage to estimate the level of
conflict by counting occupied ways in each cache set and
insert cache blocks into the less conflicted ones. This makes
priming a cache set extremely difficult to achieve.

Although random insertion is effective in preventing
cache sets to be primed, it cannot stop attackers from
collecting congruent addresses from cache evictions, be-
cause the address evicting, or being evicted by, the target
address is always congruent with the target address.3 To

2. A fully congruent address shares the same cache set with the target in
all cache skews, while a partially congruent one shares the same cache set
in at least one but not all skews [11], [15]. The probability that a random
address is fully congruent with the target is 1/SP [4], where S, P are the
numbers of cache sets and skew partitions. It becomes extremely difficult
to find fully congruent address in caches with a large number of cache sets
and multiple cache skews.

3. Since attackers rarely collect fully congruent addresses in randomized
caches adopting random insertion, we no longer differentiate fully and par-
tially congruent addresses in this paper. All congruent addresses collected
on caches adopting random insertion are assumed partially congruent.

prevent attackers from doing so, indirect eviction is adopted
in Mirage and Chameleon by either enforcing a globally
random replacement with the help of a separate data storage
(Figure 2) or relocating the cache blocks in the VC back to
the main cache array through a swap, as shown in Figure 3.
Either way, the cache block evicted by a cache conflict is
no longer congruent with the address causing the conflict.
Currently, enforcing indirect eviction on all cache evictions
is the only defense technique capable of fully thwarting CT.

In random caches without enforcing indirect eviction,
attackers may gradually collect a large number of congruent
addresses. Therefore, these caches must periodically re-
randomize the random mapping by re-keying the ciphers,
which effectively nullify the congruent addresses collected
previously. Each re-key is immediately followed with a
remap, where all cache blocks are relocated to their new
cache sets based on the re-randomized mapping. However,
10 ∼ 50% cache blocks might be unnecessarily evicted due
to the conflicts incurred by the remap [15].

Some of the key techniques cause structural disrup-
tion to the traditional set-associative cache structure. A
majority of existing randomized caches [4], [6], [8], [9]
adopt skewed cache structure to enforce random insertion,
although skewed cache is not utilized in the caches of
any modern processor, to our best knowledge. The perfor-
mance benefit of skewed cache comes from its increased
cache associativity [24]. However, such benefit diminishes
in caches already with high associativity, such as LLCs [4].
In addition, skewed cache reduces the efficiency of the
performance-oriented replacement policies, such as LRU
and re-reference interval prediction (RRIP) [25], and com-
plicates the metadata access control logic as all cache skews
are looked up simultaneously for each cache access. It
becomes even more disruptive in Mirage due to its over-
provided metadata space and separated data storage, which
effectively dismantle and restructure a traditional cache into
two affiliated caches connected by pointers.

All the aforementioned key techniques incur perfor-
mance overhead as well. The cipher used for the ran-



dom mapping typically prolongs the cache latency for
3∼5 cycles, although it can be reduced to just 1 cycle if
a non-cryptographic hash algorithm is used instead [16].
Chameleon relies on cache block relocation for implement-
ing indirect eviction, but the extra cache operations required
to relocate cache blocks incur power overhead and consume
extra cache bandwidth. The over-provided metadata space
and separated data storage in Mirage incur ∼20% storage
and power overhead [9]. Cache re-randomization leads to
unnecessary data loss during each remap.

The increased cache miss rate due to the use of random
replacement policy deserves a special notice. According to
our estimation, replacing the LRU policy with a random one
on a traditional set-associative cache leads to 5 ∼ 20% extra
cache misses for memory heavy applications.4 However, a
number of randomized caches, including both Chameleon
and Mirage, enforce the use of random replacement policy.

2.3. Extra Attacks Considered in This Paper

We consider two extra types of attack in the design
of SeqAss. One is prefetch related attacks [27]. When a
cache block is prefetched into the LLC, it is placed on the
eviction candidate position to avoid cache pollution [27].
The block would be promoted only if it is later re-accessed.
This feature is recently found exploitable for speeding up
the CT algorithm, by prefetching rather than accessing the
target address chosen by the attacker (Algorithm 2 in [27]).
As reported in [27], CT-prefetch successfully reduces 80%
search time on Intel Skylake and Kaby Lake processors.

Prefetch can be used to significantly speed up
Prime+Probe as well [27]. Instead of priming the whole
cache set, the attacker simply prefetches a single congruent
address as it would be put at the eviction candidate position,
exactly what Prime+Scope [13] achieves using thousands
of cycles. The probe is also simplified as only one address
needs to be probed. On randomized skewed caches, the at-
tacker still needs to prime by prefetching multiple congruent
addresses to ensure one of them is inserted into the target
cache set, but this number is significantly lower than priming
the whole cache set.

As described in the introduction, SeqAss supports the
LRU replacement policy along with the described feature
implemented on Intel processors and must resolve the extra
vulnerability brought by LRU. Chameleon and Mirage are
immune as they enforce random replacement policy.

The other one is the Write+Write (W+W) algorithm for
searching congruent addresses [23]. W+W is special in its
way of identifying congruent addresses. It is discovered that
the write access latency is slightly prolonged when the write
access operates simultaneously with another write accessing
a congruent address. The probable cause is a hardware

4. Executing the SPEC CPU 2017 benchmark [26] on a baseline cache
described in Table 3 of Section 5, we find that the average LLC miss
rate increases 2.83% when the LRU replacement policy is replaced with a
random one. However, this overhead increases to 6.5% when counting only
those benchmark cases asserting higher than 1 access per 1K instructions
to the DRAM, with 519.lbm incurs the highest MPKI overhead of 20.3%.
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Figure 4. A predicative sequential associative cache.

conflict inside the LLC as the two parallel write accesses
compete for the same cache set. Since the timing different
cause by this conflict is small (∼10 cycles), W+W suffers
from a low level of accuracy. It needs to repeatedly test an
address 30 times before deciding whether it is congruent.

Despite the low accuracy, it is important to notice that
the timing difference is not caused by an LLC miss but
a hardware conflict, which widely exists in hardware in
various forms. This type of timing differences was consid-
ered too small to be detected until the discovery of W+W.
More importantly, enforcing indirect eviction has no impact
on search algorithms relying on such conflicts. Without a
thorough timing analysis on the hardware implementation,
no cache can be ruled out from W+W or a similar search
algorithm yet to be discovered. However, almost all of the
existing randomized caches are only proposals without full
hardware implementation. For this reason, this paper takes
a conservative approach by assuming that all randomized
caches, including SeqAss, are potentially vulnerable to algo-
rithms similar to W+W, although the exact search algorithm
is unknown, and it is likely to be extremely slow and
inaccurate. Therefore, attackers can slowly collect congruent
address on all randomized caches, and thwarting existing
search algorithms is no longer sufficient. SeqAss is designed
to diminish the usefulness of congruent addresses.

2.4. Sequential Associativity

Sequential associativity [18], [28], [29] was originally
proposed to reduce the miss rate of direct-mapped caches
and make them behave like 2-way associative caches.
Figure 4 illustrates a predicative sequential associative
cache [18], which optimizes sequential associativity with a
predictor. The cache is directly mapped using two mapping
functions. The predictor is a table recording the mapping
function used by cache blocks stored in the cache. For an
access request, the cache produces two indices using both
mapping functions and checks the cache block pointed by
the predictor in its first trial. If the first check fails, the
other cache block is checked subsequently. The requested
cache block misses only when both checks fail. After this
missing cache block is fetched from memory, it is stored
using mapping 0. The cache block occupying the place
is relocated using mapping 1, which consequently evicts
the cache block originally stored at the relocated location.
Since a cache block can be stored in two locations and the
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relocation process helps retain the cache blocks with good
temporal locality, the directly mapped predicative sequential
associative cache achieves a similar performance with a 2-
way associative cache. [18]

3. Threat Model

We assume the attacker and her victim run simultane-
ously on separate address spaces. The attacker launches
conflict-based cache side-channel attacks targeting the in-
clusive LLC. The attacker has deciphered the virtual-to-
physical address mapping and has the full design of the
hardware. Since no data is shared between the attacker and
her victim, the attacker cannot access data belonging to
her victim. The attacker can access an unlimited number
of random addresses and measure time spans using high-
precision timers [30]. We also assume the attacker may
have successfully collected a certain number of congruent
addresses in a persistent attack using an unknown search
algorithm similar to W+W. Conflict-based attacks targeting
inner cache levels, such as L1 [30], reuse-based attacks, such
as Flush+Reload [31], and cache occupation attacks [32]
are out of the scope of this paper. Conflict-based LLC
side-channels have recently been utilzied in attacks on
confidential computings, but existing attacks [33] still rely
on a deterministic mapping of cache index and fail on a
randomized LLC.

4. Design of the SeqAss Randomized Cache

This section applies sequential associativity to set-
associative caches and optimizes it for both security and
performance. The proposed SeqAss cache is depicted in
Figure 5, and the techniques utilized in SeqAss are summa-
rized by Table 2. The original structure of the predicative
sequential associative cache is repurposed to a randomized
set-associative cache by replacing the two mapping func-
tions with two non-linear ciphers. In addition, several design
features are either newly proposed or retrofitted to enhance
defense, and reduce cache misses and power overhead: a
load balanced insertion scheme to enhance random inser-
tion, enforcing partial relocation rather than full relocation
to save power, using conflict counters to estimate conflict
levels with a tiny area footprint, an evict buffer to detect
active search algorithms, and a on-demand remap scheme
to reduce data loss caused by remaps. All the randomization

techniques described in Table 1 have been implemented.
Without incurring significant performance overhead, SeqAss
preserves the set-associative structure and the LRU replace-
ment policy, while reduces both cache misses and memory
accesses.

4.1. Load Balanced Insertion

As depicted in Figure 5, two ciphers5 are used to cal-
culate two random cache sets (colored in blue and green)
in parallel for each incoming cache block (colored in red).
Instead of statically selecting one cache set as defined in the
original sequential associativity [18], SeqAss implements a
load balanced insertion scheme which selects the cache set
with the lower level of conflict. Each cache set is attached
with a conflict counter, which estimates the conflict level of
the cache set by counting the number of recent conflicts.
Assuming the conflict level of the green cache set is lower
than that of the red one, the incoming cache block is inserted
into the green cache set, as shown in Figure 5. When too
many cache blocks are squeezed into a single cache set, the
rising number of cache conflicts pushes up its conflict level,
and following cache blocks are diverted to other cache sets.

The value of a conflict counter increases by one when
a conflict occurs on its monitored cache set. It is designed
as a 3-bit saturated counter, as later shown in Algorithm 2,
and gradually decays by factors untouchable by attackers
to avoid being manipulated. The width of the counter af-
fects the defense strength. Wider counters result in more
balanced insertion and stronger defense, but incur higher
area overhead. Our evaluation in Section 5.1 demonstrates
that using 3-bit counters provides a defense comparable to
Mirage while widening the counters to 4-bit would make
SeqAss stronger than Mirage.

As shown in Algorithm 1, all counters decay sequentially
by a hardware-controlled index d (line 2, 3). When a reloca-
tion occurs (described soon in Section 4.2), the counter mon-
itoring the relocation destination cache set also decays by
one (line 4). If an attacker can manipulate the decay process,
e.g. speeding up the decay for certain cache sets, she may
get favorable advantage in triggering conflicts on these sets.
Since the hardware-controlled index d is inherently ignorant
to access pattern, and the relocation destination cache set is
chosen by the random mapping and evenly distributed to all
cache sets, Algorithm 1 is effective in fixing the relocation
rate, i.e. the ratio of relocations to evictions, ignorant to
access patterns. As later shown in Figure 15d, the relocation
rates of running different SPEC 2017 benchmark cases
concentrate around 15.6% with a small standard deviation
of 0.77%, while the various SPEC 2017 benchmark cases
present widely different memory access patterns. This is a
good indication that the relocation process, under the control
of the decay process, maintains a good randomness and is
difficult to be affected by specific access patterns. Without

5. This paper does not discuss the implementation of these ciphers or
their impact on IPC as this has been carefully discussed in [9], [16] Either
a multi-cycle cipher [36] or a single-cycle hasher [16] would be OK.



TABLE 2. TECHNIQUES UTILIZED IN THE SEQASS CACHE.

Technique Initial Idea Security Benefits Performance Benefits Other Note

Sequential Associativity [28] Implement random mapping
and random insertion.

Reduce cache misses due to in-
creased cache associativity.

Used for defense for the first
time.

Load Balanced Insertion Mirage [9] Weaken Evict+Time. Reduce cache misses by balancing
the distribution of cache blocks.

Significantly lower area over-
head than Mirage.

Partial Relocation [28] Defeat Prime+Probe and fur-
ther weaken Evict+Time.

Reduce cache misses by re-balancing
the distribution of cache blocks.

Use partial relocation to reduce
power overhead.

Conflict Counter This work Enable load balanced inser-
tion and partial relocation.

Identify cache sets with a high con-
flict level.

Key technique to enable load
balance with low area overhead.

Evict Buffer [34] Trigger on-demand remaps
and slow down CT-prefetch. Reduce memory accesses. A directly mapped buffer signif-

icantly smaller than that in [34].

On-Demand Remap SP2021 [15] Limit the congruent addresses
collected by attackers.

Reduce cache misses by re-balancing
the distribution of cache blocks.

Use postponed remap [35] to
further reduce data loss.

Algorithm 1: Decay of the Conflict Counters
Input: r, whether to relocate a block;
Input: t, the relocation destination cache set.
Input: CL[], the conflict counters for all cache sets.

1 function decay(r, t,CL) // triggered by cache conflicts
2 d = (d + 1) % S // d is a hardware-controlled index
3 if CL[d] > 0 then CL[d]-- // decay cache set d
4 if r and CL[t] > 0 then
5 CL[t]-- // decay relocated cache sets
6 end
7 end

a method to maliciously affect the relocation rate, the only
way left to manipulate the decay process is to introduce
random cache evictions, causing unfavorable noise to all
attacks.

Load balanced insertion is a strong defense technique.
It significantly increases the difficulty in occupying a target
cache set or precisely evicting a victim’s cache block, where
the latter is a key requirement for Evict+Time attacks.
Without load balanced insertion, such as in CEASER-S, a
congruent address has a 50% chance to be inserted to the
correct cache set sharing with the target address. When load
balanced is enforced, even if an attacker has collected a large
number of congruent addresses (cache blocks), accessing
them would unavoidably raise the conflict level of the target
cache set, which diverts following addresses to other cache
sets and in turn reduces the probability of successfully
inserting attacker’s cache blocks into the target cache set to
almost 0%. As shown in Figure 6, this load balanced inser-
tion increases the number of congruent addresses required
to evict a victim’s cache block by ∼31 times comparing
to a 2-skew CEASER-S. In addition, we can consider that
randomizing the original sequential associative cache results
in a cache equivalent to a CEASER-S cache supporting
the full relocation. This added full relocation indeed pushes
up the number of congruent addresses to ∼1000 according
to Figure 6. However, it is not strong enough to thwart
Evict+Time and it is weaker than load balanced insertion
even without relocation.
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Takeaway 1: As a strong defense, load balanced insertion
significantly increases the number of congruent addresses
required for launching Evict+Time attacks.

Performance benefit: Both Mirage and SeqAss imple-
ment load balanced insertion. However, Mirage incurs over
20% area overhead while only 3.7% extra area is required
by SeqAss. Such an enormous difference is caused by the
different ways in estimating conflict levels. Mirage estimates
the conflict level of a metadata cache set by counting the
occupied ways, which requires the metadata cache set to be
50∼75% over-provided and the data array to be separated
from the metadata array [9]. The over-provided metadata
space and the pointers used to connect metadata and data
lead to the heavy area overhead. In SeqAss, conflict level
is estimated by a small (3-bit) conflict counter attached to
each cache set, which causes a negligible area overhead.

In addition, the load balanced insertion doubles the
available cache ways for each cache block and actively
reduces the conflict level of all cache sets, both of which
help reduce cache misses. Our evaluation in Section 5.4
shows that applying load balanced insertion on a traditional
set-associative cache reduces 4.29% cache misses.

Unlike cache skews, the two cache sets in Figure 5 are
checked sequentially for each access request. If the first one
results in a hit, checking the second one can be avoided. The
predictor utilized in the predicative sequential associative



cache [18] is also applied to predict the correct cache set
for cache hits. It is formed as a hashed bitmap, where bits
are indexed by hashing addresses. Whenever a cache block
is inserted into a cache set or relocated to another one, the
correct cipher id (1-bit) is stored in the bitmap. Therefore,
the correct cipher can be chosen by reading this bitmap in
parallel with calculating the two cache sets for each access
request. Our experiment shows that a bitmap large enough
to hold only 1-bit per block in the cache achieves a 95%
prediction rate. As a result, only 5% of the hit cache accesses
suffer from a second metadata check.

4.2. Partial Relocation

Sequential associativity [18] has already supported indi-
rect eviction by enforcing a full relocation scheme. When a
cache block is to be evicted due to a conflict, it is relocated
to another cache set using the other cipher as depicted in
Figure 5. The cache block at the eviction candidate position
of the relocation destination cache set is evicted instead.

Although full relocation is effective in thwarting the CT
search algorithm, relocation is a power consuming opera-
tion. Each relocation incurs two accesses to the cache array
to swap both metadata and data, which push up the energy
for each cache miss by ∼60% and reduce the available
bandwidth of the cache. SeqAss implements a partial but
possibly chained relocation scheme where only those cache
blocks to be evicted from cache sets with a high conflict
level are relocated. Cache blocks from cache sets with a low
conflict level can be evicted out of the cache as normal. The
total number of relocations is reduced by 85% compared to
the full relocation scheme.

We use Figure 5 to explain the partial relocation scheme.
Since the green cache set is full, inserting the incoming
cache block (colored in red) causes a conflict, and the cache
block on way-1 is to be evicted. If the conflict level is
higher than a pre-defined conflict threshold (ct), the cache
block is relocated to another cache set (blue arc); otherwise,
it is evicted as normal. If a relocation indeed occurs, the
relocated block is inserted at the eviction candidate position
to avoid polluting other cache blocks in the destination cache
set. As shown in Figure 5, the original eviction candidate
(the blue block on way-3) is evicted, if the conflict level of
the destination cache set is low. Otherwise, SeqAss would
continue to relocate this block until a block from a cache
set with a low conflict level is evicted. Note that relocation
would not prolong cache access latency as it is processed
in the background.

Partial relocation makes it significantly harder for attack-
ers to evict victim’s cache block in Evict+Time attacks. Let
us consider the example depicted in Figure 7. Assuming an
attacker has successfully pushed the victim’s cache block
(colored in blue) into the eviction candidate position on the
victim’s cache set 1, she would evict it out of the cache by
accessing another congruent address (colored in red). How-
ever, the conflict levels of both cache sets of the victim must
have been arisen by the attacker’s behavior. Consequently,
the victim’s cache block is relocated to the other cache set

way-0 way-1 way-3way-2

victim's cache set 0

victim's cache set 1
relocate to

the other set

attacker's
cache blocks

an unrelated block
is evicted instead

Figure 7. Chained relocation keeps victim’s cache block relocated rather
than evicted in Prime+Probe attacks.

also with a high conflict level, which triggers a chained
relocation resulting an unrelated cache block from another
cache set to be eventually evicted. Continuously accessing
more congruent addresses maintains the high conflict level
of both victim’s cache sets and the victim’s cache block
would be constantly relocated rather than evicted. As shown
in Figure 6, the number of congruent addresses required for
evicting a victim’s cache block increases by another ∼22
times when relocation is enabled (∼700 times compared to
2-skew CEASER-S). The number of addresses (∼50K) is
so large that they would have occupied ∼23% of the LLC
with enormous noise. Evict+Time remains possible only in
theory.

Partial relocation thwarts Prime+Probe attacks. In such
attacks, an attacker needs to prime the target cache sets
before triggering her victim’s access. Afterwards, she probes
the addresses used in the prime. Missing anyone of them
indicates an access by the victim. To reduce noise and
increase attack frequency [13], cache sets should be quietly
primed without affecting other unrelated cache sets, and
attackers cannot wait too long before triggering the victim’s
run. The combination of load balanced insertion and partial
relocation not only makes priming cache sets extremely
difficult and noisy, but also pushes up the conflict level of
the primed cache sets. In most situations, the target cache
sets are not sufficiently occupied, and an unrelated cache
block is evicted (i.e., affected) by the following victim’s
access, failing the final probe. Even if an address used in
the prime is indeed pushed out from the target cache sets,
an unrelated cache block is likely to be eventually evicted.

Takeaway 2: The combination of load balanced insertion
and partial relocation thwarts Prime+Probe attacks and
makes Evict+Time attacks significantly harder.

Performance benefit: Although load balance and cache
block relocation are existing techniques utilized by Mi-
rage and Chameleon, respectively, SeqAss is the first to
combine and apply them in a way that balances defense
and power overhead. Instead of blindly forcing all evicted
cache blocks to be relocated as defined by the original
sequential associativity (also in Chameleon) and consumes
high dynamic power, SeqAss relocates only those cache
blocks evicted from cache sets with a high conflict level.
This is sufficient to thwart Prime+Probe attacks while the
number of relocation is reduced by 85%.

Partial relocation helps reduce conflict misses [37] as
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Algorithm 2: Update of the Conflict Counters
Input: s, the conflicted cache set
Input: pref, whether this is a prefetch;
Input: vbuf, whether this access hits in the evict buffer;
Input: CL[], the conflict counter for each cache set.
Input: C_MAX = 7, the maximum counter value.

1 function update(s, pref) // triggered by cache conflict
2 if pref and CL[s] < ct + 2 then CL[s] = ct + 2
3 else if vbuf then CL[s] = C_MAX
4 else if CL[s] < C_MAX then CL[s]++
5 end

well. Such misses occur when multiple cache blocks, with
good temporal locality, are mapped to the same cache set
and competing for the limited space. When these conflict
misses push up the conflict level of a cache set over the
conflict threshold, the relocation for those competing cache
blocks is enabled to avoid further misses. However, not all
evicted blocks are with good temporal locality and excessive
relocation leads to substantial power overhead. Estimated
using the SPECrate CPU 2017 benchmark [26], Figure 8
reveals the variation on the LLC misses per 1K instructions
(MPKI) and the number of relocations with different ct
values. Using 3-bit wide counters and setting ct = 1 achieve
the maximal MPKI reduction of 2.8%. Only 15.3% of all
evictions are relocated. Further relocations by reducing ct to
0 return no benefit. Therefore, ct is fixed to 1. This small ct
has a security benefit as well: Just two conflicts would be
enough to push up the conflict level and enable relocation for
a long period, which is hard to avoid in the prime process.

4.3. Thwart Prefetch-Based Prime+Probe

For performance benefits, SeqAss uses the LRU re-
placement policy and implements almost the same prefetch
operation as Intel processors [27]. When a cache block is
prefetched and missing in the LLC, it is inserted into a cache
set at the eviction candidate position. The LLC does nothing
if the prefetch is a hit. This implementation may allow
attackers to launch the prefetch related attacks described in
Section 2.3.

To thwart the prefetch-based Prime+Probe attack, Se-
qAss raises the conflict level to at least ct + 2 for missing
prefetches, as described on line 2 of Algorithm 2. This is a
careful balance between safety and performance. Assuming
a cache block is prefetched into the target cache set by an
attacker, pushing up the conflict level immediately enforces

relocation for the prefetched cache block. Therefore, it is
relocated rather than evicted by the victim’s access, and the
following probe would fail. If the attacker tries to delib-
erately decay the counter, the minimal number of random
evictions required to demote relocation is ∼S, the number
of total cache sets, since reducing the counter value from
ct + 2 to ct requires the hardware-controlled index d to
overflow twice by the sequential decay process. However,
S random evictions should have already triggered an access
to the target cache set, which would relocate the prefetched
cache block. Experiments show that relocation is normally
demoted after 1.5 · S evictions. At this time, the prefetched
block is likely relocated and then evicted.

Takeaway 3: By pushing up the conflict level to at least
ct + 2 for the cache set with a prefetched cache block,
SeqAss thwarts prefetch-based Prime+Probe attacks.

4.4. Evict Buffer and On-Demand Remap

Since only 15.3% of evictions are relocated, SeqAss can-
not fully stop attackers from collecting congruent addresses
using CT-like algorithms (CT and CT-prefetch). However,
thwarting all CT-like algorithms may not be secure enough
anyway. As described in Section 2.3, attackers may slowly
collect congruent addresses using a yet unknown search al-
gorithms, similar to W+W, in the future. Instead of stopping
attackers from collecting any congruent addresses, SeqAss
endeavors to prevent attackers from using them to launch
attacks. Prime+Probe attacks have already been thwarted
according to Section 4.2 and 4.3. Evict+Time remains pos-
sible only in theory as it would require tens of thousands of
congruent addresses.

To prevent attackers from collecting large numbers of
congruent addresses using existing search algorithms, an on-
demand remap scheme is implemented in SeqAss to keep the
number of usable congruent addresses collected by attackers
far below the required number for any attacks. A remap is
triggered whenever an active search algorithm is detected.
This detection utilizes a well-known ping-pong pattern [38],
[39], [40], [41] unavoidably asserted by all search algo-
rithms: The target address (cache block) is evicted and later
fetched back multiple times during a search.

We build our detector by retrofitting the evict buffer used
in TreasureCache [34], which is an incoherent buffer used
to prevent Flush+Reload attacks by caching the recently
evicted and flushed cache blocks and reducing their reload
latency. In SeqAss, a similar evict buffer is added to detect
the ping-pong pattern, as depicted in Figure 5. Whenever a
cache block is evicted from the LLC, it is copied into the
evict buffer. If this block is later re-accessed, it is fetched
directly from the evict buffer, and one ping-pong access
is recorded. Unlike in TreasureCache, flushed blocks are
not copied to the evict buffer; otherwise, the attacker can
easily flushing the evict buffer. We deliberately configure the
buffer as (randomly) directly-mapped with only

√
S blocks,

rather than a large and fully associative one as used in Trea-
sureCache. This both reduces area overhead and improves



defense. Let us assume that the cache block storing the target
address is successfully evicted and copied to the evict buffer,
the attacker may want to hide her ping-pong access and flush
the target address out of the evict buffer before refetching it.
If this is done by random evictions, a large number of them
would be required, because each eviction has only a 1/

√
S

probability of success. The noise would be unbearable. Even
if the attacker has collected an address (cache block X)
congruent with the target address (cache block T) in the evict
buffer, not to mention this is highly unlikely, she would need
to access tens of thousands of addresses congruent with X
to force X into the evict buffer and eventually flush T, which
is even worse than random evictions. With

√
S blocks, the

storage overhead of the evict buffer is <0.05% for a 16-way
cache, significantly lower than the 0.45% storage overhead
incurred by TreasureCache.

This evict buffer is also used to deliberately slow down
CT-prefetch. To collect multiple congruent addresses, the
target address is constantly re-fetched and unavoidably hits
in the evict buffer. SeqAss utilizes this hit to raise the con-
flict level of the cache sets storing the target address to the
maximum value (line 3 in Algorithm 2). This significantly
prolongs the relocation period of the victim’s cache set. As
later shown in Table 7, the search speed of CT-prefetch is
reduced to CT on SeqAss.

The number of ping-pong accesses is recorded by a
counter attached to each cache set. When the counter ex-
ceeds a pre-defined attack threshold (at), a remap is trig-
gered. The two ciphers are re-keyed sequentially. In each
remap, one of the ciphers is re-keyed, and all cache blocks
mapped using this cipher are gradually relocated to use
the new key or the other cipher. As a result, more than
half6 of the congruent addresses collected by the attacker
are nullified. The upper bound of the number of collectible
congruent addresses is roughly proportional with at. We
heuristically set at to 32 to narrow each attack counter to
only 5 bits and limit the maximal number of congruent
addresses collectible to under 80 for all CT-like algorithms,7
as shown in Figure 9. This number is far from enough for
launching any reasonable attacks.

Takeaway 4: On-demand remap keeps the congruent ad-
dresses collected by attackers far below the necessary
number required for launching any reasonable attacks.

Since SeqAss does need to finish a remap as quickly
as in CEASER-S, it adopts a postponed remap approach
proposed in the RollingCache [35]. A spare cipher is added
and re-keyed waiting for the next remap. When a remap is
triggered, the cipher to be re-keyed is immediately swapped
with the spare cipher. To allow normal accesses to the cache
blocks using the old cipher, we adopt the same indexing
scheme proposed in CEASER-S to allow both ciphers to

6. Newly found congruent addresses distribute evenly between keys but
all of the congruent addresses surviving from a remap use the old key. This
results in an unbalanced distribution towards the old key, which is to be
re-keyed by the next remap, and the >50% nullification rate.

7. The result for W+W is not shown as it fails to collect any congruent
address during a remap period in its current form.
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Figure 9. The number of usable congruent addresses collected using CT-
like search algorithms on a 16-way 16384-set SeqAss cache (at = 32).

be accessible until the remap is finished [3]. Instead of
immediately relocating the cache blocks mapped by the
old cipher, which would incur 10∼50% data loss, SeqAss
waits until most of these blocks are naturally evicted by
incoming cache blocks. To do this, the number of cache
blocks mapped using each cipher is constantly monitored
by three global counters. When the percentage of cache
blocks mapped by the old cipher drops below 0.5%, SeqAss
starts the relocation process using the same method used
in CEASER-S [3]. Therefore, the maximum data loss is
reduced to 0.5%. This wait is not long during active attacks,
because the attacker is still busy accessing a large number of
random addresses. Of course, the attacker may try to stop a
remap by retaining a cache block through repeated accesses.
SeqAss currently avoids this by setting a maximal waiting
time of 16 · N LLC accesses, where N is the number of
blocks in the LLC.

The evict buffer makes CT and CT-prefetch even harder
to use. A typical probe test needs to differentiate cache hits
(normally L1 hit) from cache misses (normally LLC miss),
where the latency gap between these two is longer than
the DDR access time. When the evict buffer is used, the
target address is fetched form the evict buffer rather than
the memory. The latency gap reduces to the access time of
a hit in the LLC, which is significantly shorter than the DDR
access time.8

Performance benefit: Both the evict buffer and the on-
demand remap bring performance benefits. The evict buffer
behaves similarly to a VC, which is able to reduce conflict
misses and memory accesses. The data loss caused by on-
demand remap is reduced to a negligible level thanks to
the postponed remap. For normal applications, remap is
triggered only when a high number of conflict misses strike
on a small number of cache sets. Remap in this situation
would rebalance the distribution of data and potentially
reduce future conflict misses. According to our estimation
later in Section 5.4, adding the evict buffer reduces LLC
misses by 1.35% and applying on-demand remap reduces
them further by another 3.51%.

5. Security and Performance Analysis

We have implemented the SeqAss cache on FlexiCAS
(Flexible Cache Architectural Simulator) [42], along with

8. The access time of a hit in the LLC of Intel i7-9700 is measured
around 30 cycles, while the DDR access time is around 150 cycles.



TABLE 3. PROCESSOR AND LLC PARAMETERS

Processor Spike, assume freq = 3GHz, IPC=2

L1-I/D 32KB per core, 8-way, LRU
L2 256KB per core, 4-way, LRU, MSI, exclusive

All LLC 16MB shared (16384-set), MESI, inclusive, directory
Baseline 16-way, LRU
SP2021 16-way, LRU, remap @10EV+detect
CEASER-S 2x 8-way partition, SRRIP, remap @100ACC
Chameleon 2x 8-way partition, Random, 8-way VC
Mirage-50 2x 12-way partition, Random, 3-step relocation
Mirage-75 2x 14-way partition, Random, no relocation
SeqAss 16-way, LRU, ct=1, remap @detect, at=32

other five cache structures, i.e. a baseline non-randomized
set-associative cache, a randomized set-associative cache
(SP2021 [15]), a randomized skewed cache (CEASER-S),
the Chameleon cache and the Mirage cache. We have re-
produced various search algorithms (CT, CT-prefetch, CTPP
and PPP) and attack methods (Evict+Time, Prime+Probe
and prefetch-based Prime+Probe) executable on FlexiCAS.
This cache model has also been incorporated into the
ISA level simulator Spike [43] to form a behavioral
processor simulator (Spike-FlexiCAS) capable of running
Linux. This simulator is available from https://github.com/
comparch-security/spike-flexicas.

We evaluate the runtime performance of the cache struc-
tures using the SPECrate CPU 2017 benchmark suite [26].9
It is compiled using Speckle [44] and RISC-V GCC [45],
and running on a RISC-V Linux compiled using a Spike
simulator SDK [46]. The detailed parameters for the sim-
ulated processor and the various cache structures are pre-
sented in Table 3. The processor frequency and IPC are
used to estimate the power consumption.

We choose Spike-FlexiCAS over the commonly used
cycle-accurate Gem5 due its modular implementation and
high simulation speed. Spike-FlexiCAS allows us to quickly
reproduce all the recent randomized caches and configure a
three-level cache hierarchy according to Intel Core proces-
sors, both of which would be difficult or even impossible
using Gem5 [9]. The 5x simulation speed over Gem5 [42]
allows us to run various persistent attacks (>100G cache
accesses) and 10G instructions per SPEC benchmark case
rather than the maximal of 1G instructions in existing pa-
pers [6], [8], [9]. The cache miss rate extracted from longer
simulation runs is a more accurate estimate of realistic
performance. The lack of IPC overhead is a drawback, but
LLCs impact IPC mainly through miss rate. We believe that
it is favorable to trade in IPC estimation for the benefits
of wide structure coverage, practical cache hierarchy and
realistic miss rate estimation.

9. Spike adopts a batched execution scheme to speed up the simulation
for multi-core processors, which does not support the frequent cross-core
synchronization asserted by OpenMP. As a result, the CPU speed subset of
SPEC CPU 2017 does not stress the cache model properly. Only the CPU
rate subset is used. Multi-core performance is analyzed in the Appendix.

TABLE 4. PARAMETERS FOR BUCKET-AND-BALL MODEL

Mirage-75 SeqAss

Balls 256K 256K
Buckets 32K 16K
Bucket Capacity 14 (75% extra) 16
Conflict Level (CL) balls in bucket conflict counter value
Increase CL insert a new ball insert a new ball
Decrease CL indirect eviction conflict and relocation
Success Condition evict target evict target

5.1. Effectiveness of Load Balance on Evict+Time

Both Mirage and SeqAss implement load balanced inser-
tion. Mirage provides two cache set indices by dividing the
cache into two skews and estimates the conflict level of each
cache set using over-provided metadata space. SeqAss also
provides two cache set indices using sequential associativity
and estimates the conflict level of each cache set using
dedicated conflict counters. To compare the effectiveness of
these two schemes, we reuse the bucket-and-ball model [9]
open-sourced by Mirage and verifies the result on our be-
havioral cache model.

The bucket-and-ball model was used by Mirage to es-
timate the number of random addresses required to cause
a set-associative eviction (SAE). By over-providing 75%
metadata space, Mirage claims that 1034 random addresses
would be needed to cause an SAE. Although we agree with
the estimation, we argue that this may not be sufficient
to deprive attackers of their capability of collecting con-
gruent addresses. As described in Section 2.3, we cannot
fully rule out the possibility that attackers might slowly
collect congruent addresses by exploiting the potential time
differences caused by hardware conflicts, similar to W+W,
without relying on SAEs. We would like to assume that
an attacker has already collected a number of congruent
addresses, and evaluate the probability of evicting a target
address using these congruent addresses.

We have added SeqAss into the bucket-and-ball model
and changed the test condition to throw balls congruent with
the target. The detailed parameters are listed in Table 4.
Mirage-75 is configured with 75% over-provided metadata
space and 2 skews. In each test, a randomly selected target
ball is thrown into buckets after an initial warm-up. A
number of congruent balls are then thrown into buckets
to evict the target ball. While Mirage directly estimates
the conflict level of each bucket using the number of balls
remaining the bucket, SeqAss maintains a conflict counter
for each bucket according to Algorithm 1 and 2.

The test result is depicted in Figure 10. On Mirage-
75, the target ball begins to be evicted after 4K balls. The
success rate rises to 50% with ∼50K balls, and approaches
to 100% with ∼100K balls. The curve for SeqAss is much
steeper than Mirage. The target ball begins to be evicted
after 32K balls and the success rate approaches to 100% with
∼60K balls. SeqAss is safer than Mirage when the number
of congruent balls is smaller than 32K but suffers from a
lower ball count for the 100% eviction rate. The partial

https://github.com/comparch-security/spike-flexicas
https://github.com/comparch-security/spike-flexicas
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relocation in SeqAss does not allow balls from buckets with
a high conflict level (CL) to be evicted. A post-mortem
analysis shows that the CLs of the two buckets associated
with the target ball are quickly raised to the maximal value
of 7 in the early stage of each test. When the number of
congruent balls becomes sufficiently large, long relocation
chains begins to emerge and decay the CLs of target buckets
to levels below ct, leaving a short window allowing the target
ball to be evicted. An easy enhancement is to widen the
conflict counter by one bit (raise the maximal CL from 7
to 15), which would make SeqAss stronger than Mirage, as
depicted by SeqAss-4bit in Figure 10.

We have conducted a similar eviction test on all random-
ized caches using our cache model. The result is shown in
Figure 11. Since attacking with tens of thousands of congru-
ent addresses is both extremely slow and unbearably noisy,
we argue that Mirage and SeqAss are safe from Evict+Time
attacks. Even without widening conflict counters, SeqAss
has already provided a defense comparable to Mirage. All
of the other random caches are clearly vulnerable.

The result of SeqAss matches perfectly with the bucket-
and-ball test, but Mirage-75 shows a slightly weaker de-
fense. We find out that Mirage is more sensitive to the warm-
up between tests than SeqAss. A bucket-and-ball test always
starts from empty buckets, but tests on cache model rely on
a warm-up of accessing random addresses twice the size
of the LLC. This is not sufficient to remove the unbalanced
conflict levels left by previous tests in Mirage, leading to the
weaker result. This is unlikely to be exploitable by attackers
in practice.

In addition, we are surprised to find that the defense
provided by Chameleon is even weaker than CEASER-S.
The target address is likely evicted by accessing only 64
congruent addresses. By analyzing the simulation traces, we

TABLE 5. POSSIBILITY FOR PRIME+PROBE ATTACKS

No. of Preci- F1
Structure Addresses sion Recall Score Possibility

Baseline 16 100% 100% 1 Definitely.
SP2021 16 100% 100% 1 Definitely.
CEASER-S 67 100% 100% 1 Definitely.
Chameleon 14 70% 1.4% 0.027 Unlikely.
Mirage 512 0% 0% 0 Unlikely.
SeqAss 512 0% 0% 0 Unlikely.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 8  16  32  64  128  256  512

P
re

ci
si

o
n
 /

 R
e
ca

ll 
/ 

F1
 S

co
re

Number of congruent addresses

CEASER-S Pre.
CEASER-S Rec.

CEASER-S F1
Chameleon Pre.
Chameleon Rec.

Chameleon F1
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find out that the oblivious (random but not load balanced) re-
location distribution allows the target address to be swapped
into the VC and later pushed out the cache by an indirect
eviction. With a sufficient number of congruent addresses,
the VC begins to relocate the attacker placed addresses back
to the main cache array. Since these addresses are congruent,
each of them has a 25% probability (assuming 2-skew) to
be relocated back to the cache set storing the target address,
where it gets a 1/16 probability of swapping the target
address into the VC. Once this occurs, the target address
is stuck in the VC and doomed to be pushed out by a later
indirect eviction.

In summary, Mirage and SeqAss are the only caches
reasonably safe from Evict+Time attacks. The defense pro-
vided by SeqAss is comparable to Mirage. All of the other
random caches are vulnerable once the attacker has slowly
collected tens of congruent addresses.

5.2. Effectiveness on Prime+Probe

In a Prime+Probe attack, the attacker primes the target
cache set with her own congruent addresses and expect
that the following victim’s run knocks one of her addresses
out of the cache. To evaluate the possibility of launching
Prime+Probe attacks, we run multiple Prime+Probe attacks
with different numbers of congruent addresses. These at-
tacks are evenly divided into positive ones, where the target
address is indeed accessed by the victim, and negative tests,
where a random address is accessed. Table 5 reveals the F-
score [47], and the variance of F-score on CEASER-S and
Chameleon is depicted in Figure 12.

Baseline and SP2021 caches are obviously defenseless.
CEASER-S is not much better, as priming with 64∼200
congruent addresses achieves the perfect F-score (F1 = 1).
Prime+Probe attacks are unlikely to succeed on Mirage or



TABLE 6. POSSIBILITY FOR PREFETCH-BASED PRIME+PROBE ATTACKS

No. of Preci- F1
Structure Addresses sion Recall Score Possibility

Baseline 1 100% 100% 1 Definitely.
SP2021 1 100% 100% 1 Definitely.
CEASER-S 12 97.6% 98.6% 0.981 Definitely.
Chameleon 16 52.9% 43.2% 0.476 Unlikely.
Mirage 110 0% 0% 0 Unlikely.
SeqAss 110 0% 0% 0 Unlikely.
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Figure 13. The F-score of detecting a victim’s access by prefetch-based
Prime+Probe attacks using various numbers of congruent addresses. Each
result is collected from 500 positive and 500 negative tests.

SeqAss even with 512 congruent addresses. Priming with
more congruent addresses is normally unfavorable, since it
would further bring down the attack frequency and accu-
racy, both of which are essential to Prime+Probe attacks.
Prime+Probe on Chameleon may bring some visibility to
attackers. By priming with 14 congruent addresses, an at-
tacker may observe her victim’s access (precision > 50%) at
a very low recall rate (1.4%). Since this visibility is highly
affected by noise, direct Prime+Probe attacks are unlikely
to succeed. However, attackers may use Prime+Probe for
cache occupation attacks [48], [49] (out of the scope of
this paper). With only 48 congruent addresses, the attacker
obtains a ∼20% recall rate to detect whether a memory
access occurs.

We have assessed the prefetch-based Prime+Probe at-
tack in a similar fashion and the results are presented
in Table 6 and Figure 13. As expected, the number of
congruent addresses is significantly reduced, which allows
the attacker to monitor her victim’s accesses at a much
higher high frequency [13]. Baseline, SP2021 and CEASER-
S remain defenseless, while SeqAss and Mirage remain safe.
On Chameleon, prefetch-based Prime+Probe provides no
visibility, but it is easier to launch occupation attacks than
Prime+Probe. The required number of congruent addresses
is reduced to 8 and the recall rate rises to 50%.

5.3. Effectiveness on Search Algorithms

Table 7 demonstrates the success rate of collecting con-
gruent addresses using various search algorithms. It is found
that CT and CT-prefetch are the only algorithms continuing
to work after enforcing random insertion. CT-prefetch is
much faster than CT due to the reduced number of evictions.
No search algorithm works on Mirage and Chameleon. Since
SeqAss enforces partial rather than full relocation, it cannot
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Figure 14. The number of usable congruent addresses collected using CT-
prefetch on SP2021, CEASER-S and SeqAss when remap is enabled.

stop but only slow down CT or CT-prefetch. CT-prefetch
shows no speed benefit against CT on SeqAss.

Although attackers can collect congruent addresses on
a SeqAss cache, the on-demand remap restricts the num-
ber of usable congruent addresses collectible by an at-
tacker. Figure 14 records the number of usable congru-
ent addresses collected by attackers using CT-prefetch on
SP2021, CEASER-S and SeqAss. Once a remap is done,
the addresses previously congruent with the target address
become non-congruent, and the number of usable congruent
addresses drops sharply. However, attackers can easily col-
lect more than 50 and 400 congruent addresses on SP2021
and CEASER-S, respectively. These are more than enough
for both Evict+Time and Prime+Probe attacks. SP2021 and
CEASER-S are vulnerable. On SeqAss, the number of us-
able congruent address never rises over 80, but tens of thou-
sands of congruent addresses are required by Evict+Time,
as shown by Figure 11. SeqAss is safe with a wide margin.

5.4. Performance Overhead

Let us start with the area overhead. Compared with
the baseline (a non-randomized set-associative cache), the
storage overhead of SeqAss comes from increased address
tag bits (needed by all randomized caches), a cipher id, the
cache set predictor and the conflict counter (Section 4.1),
the evict buffer and the attack counter (Section 4.4). Table 8
presents the detailed storage overhead of all cache structures
listed in Table 3. Like all randomized caches, the address
tag in SeqAss is widened from 28 to 42 bits, assuming a
48-bit address system. One bit is added to each cache block
to record the cipher used for its mapping (cipher id). Each
cache set is attached with a 3-bit conflict counter and a 5-
bit attack counter, leading to 8 extra bits per cache set. The
storage overhead of the cache set predictor and the evict
buffer is counted separately and added into the total bits
and area results.

The ASIC area is estimated using CACTI-6.5 [50] in a
32nm technology. The logical area of the ciphers, update and
decay logic of the conflict counters, and remap control logic
is negligible and not estimated according to the discussion
in [9]. SeqAss incurs a small storage overhead of 3.04%
extra bits and 3.72% extra area compared with baseline,
and this overhead is significantly smaller than Mirage. It
is 16.6% and 28.8% lower than Mirage-50 and Mirage-75,
respectively.



TABLE 7. SUCCESS RATE OF FINDING ONE CONGRUENT ADDRESS FOR AN ARBITRARILY SELECTED TARGET ADDRESS USING VARIOUS SEARCH
ALGORITHMS. REMAP IS DISABLED. RESULTS ARE AVERAGED FROM 1000 REPEATED RUNS FOR THE SAME TARGET ADDRESS AND REPRESENTED IN

SUCCESS rate AND NUMBER OF LLC evictions.

CT CT-prefetch CTPP PPP
Structure rate evictions rate evictions rate evictions rate evictions

Baseline 100% 264K 100% 16.5K 100% 549K 8.7% 443K
SP2021 100% 263K 100% 16.8K 100% 531K 7.9% 443K
CEASER-S 100% 259K 100% 30.5K 0.4% 1.07M 0.4% 480K
Chameleon 0% 265K 0% 105K 0% 584K 0% 453K
Mirage 0% 253K 0% 247K 0% 609K 0% 469K
SeqAss 86.1% 345K 85.7% 344K 0% 604K 0% 455K

TABLE 8. COMPARISON OF LLC STORAGE OVERHEAD

meta bits cache total meta area bits total data area total overhead total area overhead in
Structure per set sets meta bits (mm2) per block data bits (mm2) bits in bits (mm2) ASIC area

Baseline 16x(28+11) 16K 10.2M 2.267 512 134.2M 28.30 144.7M — 30.63 —
SP2021 16x(42+12) 16K 14.2M 3.287 512 134.2M 28.30 148.9M 2.93% 31.74 3.62%
CEASER-S 8x(42+12) 32K 14.2M 3.287 512 134.2M 28.30 148.6M 2.73% 31.65 3.33%
Chameleon 8x(42+11) 32K 13.9M 3.216 512 134.2M 28.30 148.1M 2.37% 31.52 2.91%
Mirage-50 12x(42+29) 32K 27.9M 7.175 531 139.2M 29.67 167.1M 15.5% 36.85 20.3%
Mirage-75 14x(42+29) 32K 32.6M 10.92 531 139.2M 29.67 171.8M 18.7% 40.59 32.5%
SeqAss 16x(42+12)+8 16K 14.3M 3.323 512 134.2M 28.30 149.1M 3.04% 31.77 3.72%

TABLE 9. ACCESSES AND MISSES OF VARIOUS CACHE STRUCTURES

Acc. Miss Reloc. Remap Mem Acc.
Structure PKI PKI PKI PGI PKI

Baseline 4.785 0.559 0.000 0.000 0.953
SP2021 4.662 0.601 0.074 0.241 1.006
CEASER-S 4.700 0.545 0.025 0.078 0.924
Chameleon 4.810 0.565 1.131 0.000 0.968
Mirage-50 4.605 0.580 0.000 0.000 0.983
Mirage-75 4.667 0.586 0.000 0.000 0.999
SeqAss 4.607 0.495 0.078 0.008 0.845

We evaluate the runtime and power performance by
running the SPECrate CPU 2017 benchmark suite [26] on
the Spike processor simulator [43], where Spike’s cache
model is replaced with our implementations of the various
cache structures listed in Table 3. For each benchmark
case, detailed cache performance data and simulation traces
are recorded for executing 10G instructions. CACTI 6.5
is used to estimate the static power and access energy of
each SRAM block. Consequently the dynamic energy of
a single LLC access is approximated by accumulating the
energy of all SRAM blocks visited by the LLC access.
The total dynamic power is calculated as the total dynamic
energy divided by the estimated running time using the IPC
specified in Table 3. The miss rate and power performance
of all benchmark cases is depicted in Figure 15. The overall
cache miss rate is summarized in Table 9.

According to the results in Figure 15a and 15b, SeqAss
incurs the least LLC MPKI and memory access overhead in
all randomized cache structures for most benchmark cases.
To be specific, a total of 11 out of the 23 benchmark cases
benefit from reduced cache misses, including several mem-
ory heavy cases, i.e., 502.gcc, 505.mcf, 507.cactuBSSN,
and 520.omnetpp. Overall, SeqAss achieves a significant

TABLE 10. OVERHEAD REDUCTION BY EACH TECHNIQUE IN SEQASS

LLC Misses Reloc. Remap Mem Accesses
PKI PKI PGI PKI

Baseline 0.559 0 0 0.953
+LdBal 0.535 (-4.29%) 0 0 0.911 (-4.41%)
+Reloc. 0.520 (-6.98%) 0.08 0 0.897 (-5.88%)
+EvBuf 0.513 (-8.23%) 0.079 0 0.876 (-8.08%)
+Remap 0.495 (-11.4%) 0.078 0.008 0.845 (-11.3%)

reduction of 11.4% and 11.3% on LLC MPKI and memory
accesses, respectively, compared with baseline, while most
other randomized caches incur extra cache misses and mem-
ory accesses. Mirage-75’s LLC MPKI and memory accesses
are 18.4% and 18.2% higher than SeqAss, respectively. To
demonstrate the performance benefits of the individual tech-
niques introduced in SeqAss, we gradually enable them and
test for performance. According to the results in table 10,
each of the techniques is able to reduce cache misses.

Combining the energy estimation from CACTI 6.5 and
the detailed performance data from simulation, Figure 15e
and Table 11 reveal the power overhead. All randomized
cache structures introduce power overhead. The power over-
head incurred by Mirage is obviously unacceptable. The
3.43% power overhead of SeqAss is in line with SP2021,
CEASER-S and Chameleon, and it is 14.4% and 22.1%
lower than Mirage-50 and Mirage-70, respectively.

We would also like to raise the issue of dynamic power
overhead, which was overlooked by previous work. On
average, the total power consumption is dominated by static
power. Dynamic power accounts for only 2∼3% of the
total power. However, this ratio is related to the amount
of memory access issued by applications. For memory
heavy applications, such as 519.lbm, the ratio of dynamic
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Figure 15. The LLC MPKI overhead (a), memory access overhead (b), relocation PKI (c) and power overhead (d) of running the SPECrate CPU 2017
benchmark suite on various cache structures. Each benchmark case is executed on the Spike processor simulator for 10G instructions. The y-axis of
relocation PKI (c) and power overhead (d) is scaled in Log10.

TABLE 11. COMPARISON OF LLC POWER (OVERHEAD) (UNIT: W )

Structure leak dyn. total dyn. of 519.lbm

Baseline 5.93 0.120 6.047 0.440
SP2021 6.11 0.132 6.240 (3.19%) 0.480 (9.20%)
CEASER-S 6.09 0.128 6.218 (2.82%) 0.475 (7.91%)
Chameleon 6.07 0.176 6.242 (3.22%) 0.769 (75.0%)
Mirage-50 6.94 0.181 7.126 (17.8%) 0.712 (61.2%)
Mirage-75 7.39 0.198 7.588 (25.5%) 0.771 (75.2%)
SeqAss 6.11 0.144 6.255 (3.43%) 0.555 (26.1%)

power rises to 7% for baseline, and 11.6% for Chameleon.
Chameleon is particularly worse than others due to its
high relocation rate. Relocation is an energy consuming
operation. Each relocation incurs two accesses to the cache
array to swap both metadata and data, consuming an extra
of ∼60% energy beyond the energy incurred by a cache
miss (see Table 13 in Appendix B). Reducing the amount
of relocation is important for reducing dynamic power over-
head. Chameleon incurs a large number of relocations. After
the LLC is fully warmed up, each cache miss unavoidably
triggers a cache eviction, during which the conflicted cache
block is moved to the VC. This block is later relocated
back to the main cache array and one block in the main
cache array is swapped back (relocated to) the VC. There-
fore, each cache miss incurs two relocations. As shown in
Figure 15c and 15d, Chameleon incurs the highest number
of relocations and its relocation rate is fixed at 2. The
number of relocations incurred by SeqAss is significantly
lower than Chameleon. SeqAss has a negligible remap rate

of only 0.008 remap per 1G instructions (PGI). Most of
the relocations are incurred by partial relocation. Complying
with the estimation in Section 4.2, only ∼15.6% of evictions
trigger relocations even when on-demand remap is enabled.
Thanks to the pattern-ignorant decay process, the relocation
rate is almost fixed with a small standard deviation of 0.77%.
according to the results showing in Figure 15d.

To demonstrate the impact of reduced relocation on
dynamic power overhead, the last column of table 11 reveals
the dynamic power needed to run 519.lbm, which is much
higher on randomized caches than on baseline. SP2021 and
CEASER-S are relatively power efficient as they consume
only 8∼9% more than baseline. This overhead shoots up to
61.2∼75.2% for Mirage and 75.0% for Chameleon. Reloca-
tion is the root cause for Chameleon’s extremely high power
overhead. Mirage still suffers from its large storage overhead
as the per-access energy increases proportionally with the
array size. Since SeqAss incurs much less relocations than
Chameleon, it consumes 26.1% more dynamic power than
baseline. Although this is higher than SP2021 and CEASER-
S, it is 49.1% and 48.9% lower than Mirage and Chameleon,
respectively. The dynamic power reduction against Mirage
and Chameleon is significant.

6. Conclusion

A new randomized cache structure based on the se-
quential associativity, namely the SeqAss cache, has been
proposed. SeqAss achieves a defense as strong as Mirage,
as they are the only two cache structures reasonably safe



from Evict+Time attacks and thwart Prime+Probe attacks.
Rather than relying on techniques intrusive to the traditional
cache structure, such as cache skews, over-provided meta-
data space, and separated data storage, SeqAss retains the
set-associative structure and the LRU replacement policy.
Instead of raising cache miss rate, SeqAss actually reduces
it by 11.4%. Its area and power overhead is 28.8% and
22.1%, respectively, which is significantly lower than Mi-
rage. When running memory heavy applications, it incurs
∼50% lower dynamic power overhead compared to Mirage
and Chameleon.

Acknowledgments

This work was partially supported by the National Natu-
ral Science Foundation of China under grant No. 62172406
and the CAS Pioneer Hundred Talents Program. Any opin-
ions, findings, conclusions, and recommendations expressed
in this paper are those of the authors and do not necessarily
reflect the views of the funding parties.

References

[1] M. Yan, R. Sprabery, B. Gopireddy, C. W. Fletcher, R. H. Campbell,
and J. Torrellas, “Attack directories, not caches: Side-channel attacks
in a non-inclusive world,” in Proceedings of the IEEE Symposium on
Security and Privacy (S&P). IEEE, May 2019, pp. 888–904.

[2] J. Kim, S. van Schaik, D. Genkin, and Y. Yarom, “iLeakage: Browser-
based timerless speculative execution attacks on Apple devices,”
in Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, Nov. 2023, pp. 2038–2052.

[3] M. K. Qureshi, “CEASER: Mitigating conflict-based cache attacks
via encrypted-address and remapping,” in Proceedings of the Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
Oct. 2018, pp. 775–787.

[4] ——, “New attacks and defense for encrypted-address cache,” in Pro-
ceedings of the International Symposium on Computer Architecture
(ISCA). ACM, Jun. 2019, pp. 360–371.

[5] X. Zhang, H. Gong, R. Chang, and Y. Zhou, “RECAST: Mitigating
conflict-based cache attacks through fine-grained dynamic mapping,”
IEEE Transactions on Information Forensics and Security, vol. 19,
pp. 3758–3771, 2024.

[6] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and
S. Mangard, “ScatterCache: Thwarting cache attacks via cache set
randomization,” in Proceedings of the USENIX Security Symposium
(Security). USENIX Association, Aug. 2019, pp. 675–692.

[7] Q. Tan, Z. Zeng, K. Bu, and K. Ren, “PhantomCache: Obfuscating
cache conflicts with localized randomization,” in Proceedings of
the Network and Distributed System Security Symposium (NDSS).
Internet Society, Feb. 2021.

[8] T. Unterluggauer, A. Harris, S. Constable, F. Liu, and C. Rozas,
“Chameleon cache: Approximating fully associative caches with
random replacement to prevent contention-based cache attacks,” in
Proceedings of the IEEE International Symposium on Secure and
Private Execution Environment Design (SEED). IEEE, Sep. 2022,
pp. 13–24.

[9] G. Saileshwar and M. Qureshi, “MIRAGE: Mitigating conflict-based
cache attacks with a practical fully-associative design,” in Proceed-
ings of the USENIX Security Symposium (Security). USENIX
Association, Aug. 2021, pp. 1379–1396.
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Appendix A.
Performance for Running Parallel Applications

This section evaluates the performance of different ran-
domized LLCs when multiple applications are running si-
multaneously on parallel cores. We configure the Spike
simulator to a 4-core processor and execute 20 combinations
of 4 randomly selected SPECrate CPU 2017 benchmark
cases. These combinations are detailed in Table 12. There
are 36 test inputs belonging to a total of 23 benchmark cases.
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Figure 16. The LLC miss rate (a), LLC miss rate overhead (b), relocation per K LLC accesses (c) and dynamic power overhead (d) of running four
randomly selected SPECrate CPU 2017 benchmark cases in parallel. Each combination of benchmark cases is executed on the Spike processor simulator
for 200M LLC accesses. Combinations are ordered by their LLC miss rates on the default LLC (traditional non-randomized set-associative cache). The
y-axis of relocation per K LLC accesses (c) is scaled in Log10.

The random selection is uniformly distributed to ensure
each test input is included in at least two test combinations.
During the execution, the cache model records performance
counter values from the LLC and reports an accumulated
result after executing 200M LLC accesses. According to
Table 9, the average LLC accesses per K instructions for
single-core is around 4.8; therefore, 200M LLC accesses is
roughly equivalent to running 10.4 G instructions for each
benchmark case in the 4-core parallel run.

Using the same evaluation method described in Sec-
tion 5.4, the performance result is presented in Figure 16.
The combinations are ordered according to their LLC miss
rates shown in Figure 16a. The randomly selected combina-
tions demonstrate significantly different LLC performance
as the miss rate varies from 7.22% (combination mcore-4)
to just 71.9% (combination mcore-12).

Figure 16b demonstrates the LLC miss rate overhead
against the default (the traditional non-randomized set-
associative) LLC. Among all randomized cache structures,
SeqAss is the only one that achieves a miss rate reduction
on average, although this reduction is only 0.42%, which
is much less than the 11.4% achieved in single-core. The
mix of multiple applications increases the access pressure
for the LLC and reduces the available locality exploitable
by the LRU replacement policy and the increased cache
associativity. Nevertheless, SeqAss still achieves a miss rate
reduction for a total 11 out of the 20 combinations. All
of the randomized caches providing strong defenses, i.e.,
Chameleon and Mirage, suffer from much higher LLC miss
rate than SeqAss. The average miss rate is increased by
2.73%, 7.93%, and 7.49% for Chameleon, Mirage-50 and
Mirage-75, respectively.

Relocation is an important contributor for the extra dy-
namic power introduced by randomized caches. Figure 16c
reveals the number of relocations triggered by serving K
LLC accesses on all randomized cache structures. The re-
sult is comparable to that shown in Figure 15c. SeqAss
incurs around the same number of relocations with SP2021,
which is higher than CEASER-S but significantly lower
than Chameleon. The result indicates that Chameleon would
suffer from high consumption of dynamic power, which is
verified in Figure 16d. Chameleon consumes the highest
dynamic power, which is 84.2% higher than default. Mirage
also suffers from high dynamic power due to its high
storage overhead. Mirage-50 and Mirage-75 incur 53.4%
and 66.8% overhead in dynamic power, respectively. The
23.7% overhead asserted by SeqAss is significantly lower
than Chameleon and Mirage. This result is also comparable
to that presented in Table 11.

In summary, SeqAss demonstrates observable perfor-
mance benefit when multiple applications are running simul-
taneously on parallel cores. It is the only randomized cache
structure managed to reduce the average LLC miss rate.
All of the other randomized cache structures, especially the
ones providing strong defenses, i.e. Chameleon and Mirage,
suffer from increased LLC miss rate. The extra dynamic
power incurred by SeqAss is moderate, while Chameleon
and Mirage suffer from significantly higher power overhead.

Appendix B.
Estimation of Dynamic Energy per Access

To detail the dynamic energy consumption of various
randomized caches, we have set up a simplified model



TABLE 13. ENERGY PER ACCESS (nJ )

hit miss relocation

Baseline 1.406 3.268 N/A
SP2021 1.485 3.374 2.481
CEASER-S 1.485 3.367 2.481
Chameleon 1.475 3.958 1.242
Mirage-50 2.083 4.933 2.749
Mirage-75 2.334 5.278 N/A
SeqAss 1.518 4.020 2.482

for estimating the dynamic energy. The dynamic power of
running a SPEC CPU 2017 benchmark case is estimated as:

Pdyn =
Nhit · Ehit +Nmiss · Emiss +Nreloc · Ereloc

Ninst./(f · IPC)

where Nhit, Nmiss, and Nreloc are the total number of LLC
hits, misses, and relocations, respectively, and Ehit, Emiss,
and Ereloc are the energy consumed by a single LLC hit,
miss, and relocation, respectively. Nhit, Nmiss, and Nreloc are
provided by the simulation traces. The total running time is
calculated as Ninst./(f · IPC): the total number of executed
instructions Ninst. divided by the number of instructions
executed per second (f ·IPC), where f and IPC are provided
in Table 3. To obtain the estimate of Pdyn, we need to model
Ehit, Emiss, and Ereloc. Since most of the energy per cache
access is consumed by accessing SRAMs, we estimate the
total energy by accumulating the energy incurred by SRAMs
visited by each cache access:

Ehit = kh · Emeta,set + Edata + Erepl. (1)
Emiss = Ehit + 2Emeta,way + kd · Edata + Erepl. + Eother (2)
Ereloc = 2(Emeta,way + Edata) (3)

For each LLC hit, a set of metadata ways are read in parallel
(Emeta,set), the data is fetched from the data array (Edata) and
the replacement state is updated (Erepl.). For skewed caches,
two metadata sets from both skews are read in parallel
(kh = 2). SeqAss needs extra ∼10% metadata access due
to prediction errors (kh = 1.1). Besides all the energy con-
sumption equivalent to a hit, each LLC miss needs to acces
the metadata block twice (2Emeta,way, one for writeback and
one for memory fetch), potentially write back a dirty block,
store the fetched block (kd = 1.5 considering 50% probabil-
ity of writing back), and update the replacement state after
eviction (Erepl.). Some other operations may be required as
well (Eother, i.e. detectors in SP2021 and SeqAss, victim
cache/buffer in Chameleon and SeqAss, extra meta access
in Mirage). When a relocation occurs, two cache blocks
swap places by two meta and data accesses. Chameleon is
special as its relocation happens between the cache array and
the VC. Subsequently, its Ereloc = Emeta,way + Edata + EVC.
Based on this model, Table 13 shows the estimated energy
per access in all cache structures.

Appendix C.
Meta-Review

The following meta-review was prepared by the program
committee for the 2026 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

C.1. Summary

The paper introduces a sequential associative cache,
denoted the SeqAss cache, that offers protection
against conflict-based attacks, including Prime+Probe
and Evict+Time. SeqAss incorporates optimized load
balance and cache relocation mechanisms to reduce power
consumption and the storage overhead in the ASIC area.

C.2. Scientific Contributions

• Addresses a Long-Known Issue
• Provides a Valuable Step Forward in an Established

Field
• Other

C.3. Reasons for Acceptance

1) The paper presents a new cache design that repurposes
sequential associativity employed by the established
set-associative LLCs for security with a load-balanced
insertion extension, which addresses a long-known is-
sue that structural disruption and performance overhead
seem unavoidable in such a design.

2) The paper provides a valuable step forward in an
established field. The proposed cache design provides
defense against conflict-based cache attacks that is as
effective as state-of-the-art solutions, but with better
performance and lower area and power overhead.

C.4. Noteworthy Concerns

1) The paper only includes results of the SPEC benchmark
suite but not other general application workloads.
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