
Randomized Last-Level Caches Are Still Vulnerable
to Cache Side-Channel Attacks! But We Can Fix It

Wei Song∗†, Boya Li∗†, Zihan Xue∗†, Zhenzhen Li∗†, Wenhao Wang∗†, Peng Liu‡
∗State Key Laboratory of Information Security, Institute of Information Engineering, CAS, Beijing, China

†School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
‡The Pennsylvania State University, University Park, USA

{songwei, liboya, xuezihan, lizhenzhen1, wangwenhao}@iie.ac.cn, pxl20@psu.edu

Abstract—Cache randomization has recently been revived as
a promising defense against conflict-based cache side-channel
attacks. As two of the latest implementations, CEASER-S and
ScatterCache both claim to thwart conflict-based cache side-
channel attacks using randomized skewed caches. Unfortunately,
our experiments show that an attacker can easily find a usable
eviction set within the chosen remap period of CEASER-S and
increasing the number of partitions without dynamic remapping,
such as ScatterCache, cannot eliminate the threat. By quantita-
tively analyzing the access patterns left by various attacks in
the LLC, we have newly discovered several problems with the
hypotheses and implementations of randomized caches, which
are also overlooked by the research on conflict-based cache side-
channel attacks.

However, cache randomization is not a false hope and it is
an effective defense that should be widely adopted in future
processors. The newly discovered problems are corresponding
to flaws associated with the existing implementation of cache
randomization and are fixable. Several new defense ideas are
proposed in this paper. Our experiments show that all the newly
discovered problems are fixed within the current performance
budget. We also argue that randomized set-associative caches
can be sufficiently strengthened and possess a better chance to
be actually adopted in commercial processors than their skewed
counterparts because they introduce less overhaul to the existing
cache structure.

I. INTRODUCTION

To reduce the latency of accessing memory, modern com-
puters adopt a multi-level cache hierarchy where the last-level
cache (LLC) is shared between all processing cores. Such
sharing improves the utilization efficiency of the LLC as it
can dynamically adapt its space allocation to the demand of
different cores. However, it also allows a malicious software
to trigger controlled conflicts in the LLC, such as evicting a
specific cache set with attackers’ data [1]–[3], to infer security-
critical information of a victim program. This type of conflict-
based cache side-channel attacks have already been utilized to
recover cryptographic keys [4], break the sandbox defense [5],
inject faults directly into the DRAM [6], and extract informa-
tion from the supposedly secure SGX enclaves [7].

Cache partitioning [8]–[10] used to be the only effective de-
fense against conflict-based cache side-channel attacks abusing
the LLC. It separates security-critical data from normal data
in the LLC; therefore, attackers cannot evict security-critical
data by triggering conflicts using normal data. However, cache
partitioning is ineffective when security-critical data cannot be

easily separated from normal data [11] or normal data become
the target [6]. It also reduces the autonomy of the LLC which
might in turn hurt performance for some applications [12].
Finally, cache partitioning relies on specific operating system
(OS) code to identify security-critical data, which means the
OS must be trusted.

Recently, cache randomization [13]–[21] has been revived
as a promising defense. Instead of cache partitioning, cache
randomization randomizes the mapping from memory ad-
dresses to cache set indices. This forces attackers to slowly find
eviction sets using search algorithms at run-time [3], [22]–[24]
rather than directly calculating cache set indices beforehand.
Even when eviction sets are found, attackers cannot tell which
cache sets are evicted by them. However, cache randomization
alone does not defeat conflict-based cache side-channel attacks
but only increases difficulty and latency [16]. For this reason,
dynamic remapping [16], [19] has been introduced to limit
the time window available to attackers and skewed cache [17]–
[19] has been proposed to further increase the attack difficulty.

As two of the latest implementations, CEASER-S [17]
and ScatterCache [18] both claim to thwart conflict-based
cache side-channel attacks using randomized skewed caches.
ScatterCache even argues that dynamic remapping might not
be necessary as the extra difficulty introduced by skewed
cache is hard enough. Unfortunately, our experiments show
that an attacker can easily find a usable eviction set within
the chosen remap period of CEASER-S [17] and increasing
the number of partitions without dynamic remapping, such as
ScatterCache [18], cannot eliminate the threat. By quantita-
tively analyzing the access patterns left by various attacks in
the LLC, we have newly discovered several problems with the
hypotheses and implementations of randomized caches, which
are also overlooked by the research on conflict-based cache
side-channel attacks.

• The possibility of using cache flush instructions in
conflict-based attacks has been overlooked. Our study
shows, if attackers flush the eviction set after each probe,
partial congruent eviction sets can be repeatedly used to
drastically speed up attacks.

• The concept of minimal eviction set no longer applies to
randomized skewed caches. Any group of cache blocks
that can evict the target address with a reasonable prob-
ability should be considered as a usable eviction set.

955

2021 IEEE Symposium on Security and Privacy

© 2021, Wei Song. Under license to IEEE.
DOI 10.1109/SP40001.2021.00050

• Attackers do not have to use eviction sets with 99%
eviction rate. When finding such sets become too difficult,
attackers will utilize eviction sets with low eviction rate
but possible to find.

• Measuring the remap period by LLC accesses is flawed,
since a significant portion of all the cache accesses might
be filtered by the private level-one (L1) or level-two (L2)
caches. The actual number of accesses observed by the
LLC is much smaller than the total number of cache
accesses. As a result, the remap period estimated by
CEASER-S [17] is over-optimistic.

However, cache randomization is not a false hope. As
researchers on the defense side, we strongly believe it is an
effective defense strategy that should be widely adopted in
future processors. The above-discovered problems are corre-
sponding to flaws associated with the existing tactics towards
accomplishing the “cache randomization” strategy. We believe
that these problems are fixable, and that fixing these problems
will make the strategy significantly more effective in defending
conflict-based cache side-channel attacks. In particular, several
new defense ideas are proposed in this paper:

• Measure the remap period by LLC evictions rather than
accesses because the probability of successfully finding
an eviction set is closely related to the number of evic-
tions allowed between remaps.

• Further reduce the period to stop attackers from finding
even small partially congruent eviction sets.

• Adopt ZCache-like [25] multi-step relocation to minimize
the number of cache blocks evicted during each remap.

• Promote the use of CEASER (randomized set-associative
cache) rather than skewed caches because CEASER
introduces less overhaul to the existing cache structure
than skewed caches and it can be made secure enough.

• A simple attack detection method to strengthen CEASER.
By utilizing these defense ideas, our experiments show that

all the newly discovered vulnerabilities of existing randomized
caches can be fixed within the current performance budget
and the randomized set-associative caches can be made secure
enough with reasonable performance overhead.

This paper is organized as follows: Section II introduces the
necessary background information to understand this paper.
Section III formulates the problems we try to answer in this
paper. Section IV demonstrates the vulnerabilities of existing
randomized caches by experiments. Section V shows how we
can fix the randomized skewed caches and Section VI presents
solutions to safely strengthen the randomized set-associative
caches. The performance overhead is analyzed in Section VII.
The limitations and related work are discussed in Section VIII.
Section IX finally concludes the paper.

II. BACKGROUND

A. Caches

Modern processors use caches to store recently or frequently
used data to reduce the memory access time. Most caches
adopt a set-associative structure [26] as shown in Fig. 1.

way-0 way-1 way-(W-1)

set

d
a
ta

ta
g

Address

data

ca
ch

e
 se

ts

page offset

cache set index

tag

Fig. 1. A set-associative cache.

The cache space is divided into S cache sets and each set
contains W ways of cache blocks. Cache sets are addressed
by a cache set index which is typically a subset of the
address bits shared by all cache blocks in the same set. If two
addresses are mapped to the same cache set, they are congruent
addresses [23]. When an address is accessed, the cache checks
whether there is a match (hit) in the corresponding cache set
by comparing tags. If no match is found (a miss), the cache
block is fetched and stored in the cache set for future use. The
specific position (way) to store this newly fetched cache block
is chosen by a replacement policy and the old block is evicted.
As a commonly used replacement policy, least-recently used
(LRU) [27] retains the recently accessed cache blocks.

Multiple levels of caches are normally hierarchically orga-
nized. A processing core might have one or two levels of
private caches (L1 and L2 caches) while all cores share a
large LLC. An inclusive relationship between private caches
and the LLC is usually adopted [26].1 When a cache block
is evicted from the LLC, it is also purged from all private
caches. A hardware managed coherence protocol ensures data
are correctly updated between caches.

B. Conflict-Based Cache Side-Channel Attacks

Conflict-based cache side-channel attacks [29] exploit the
fact that cache blocks in the same set are congruent. This
allows attackers to maliciously control the status of a target
cache set using a group of at least W congruent addresses
(cache blocks), namely an eviction set.

An attack normally occurs in two phases: preparation phase
when the attacker collects enough number of eviction sets,
and exploitation phase when the attacker infers sensitive
information from a victim by controlling the status of certain
cache sets using the collected eviction sets. Before cache
randomization is applied, collecting eviction sets is relatively
easy because attackers can deliberately construct an eviction
set using addresses having the same cache set index bits [3].
This becomes unfeasible when caches are randomized. The
exploitation phase normally contains numerous prime+probe
cycles [1]–[3]. In each cycle, the attacker first primes a target
set by filling it with cache blocks from a corresponding
eviction set. If there were cache blocks belonging to the victim,
they are likely evicted in the prime process. The attacker then
tricks the victim into running a program segment related to the
target cache set. If the victim indeed accesses data indexed to

1Some of the latest CPUs use non-inclusive LLCs but they might still suffer
from conflict-based attacks when the directory is inclsuive [24], [28].

956

way-0 way-1 way-3

d
a
ta

ta
g

Address

data

page offset

way-2

Cipher

Cipher

k0 k1

Partition 0 Partition 1

Fig. 2. A randomized skewed cache with two partitions over four cache ways.

the same cache set, it must have been fetched into the cache
set and one block of the eviction set is consequently evicted.
Finally the attacker probes the cache set by re-accessing all
blocks of the eviction set. If the total access latency is longer
than expected, the attacker learns that the victim should have
accessed the target cache set, which might further infer other
security-critical information.

C. Randomized Caches

The main objective of cache randomization is to deprive
attackers from usable eviction sets [16]–[18]. The latest im-
plementation of cache randomization is randomized skewed
caches [17], [18], while randomized set-associative caches [16]
can be considered as a special case with only one partition.
Fig. 2 presents a randomized skewed cache whose four cache
ways are evenly divided into two partitions independently
indexed. Instead of using a subset of address bits, the cache
set index is generated from a cipher taking the whole ad-
dress and a hardware managed key as inputs. Assuming the
encryption algorithm is unbroken and the key is not leaked,
the cache set index is a random number unobservable to
attackers. Therefore, they can no longer construct eviction
sets simply by picking addresses but dynamically search for
congruent addresses through run-time experiments, which was
considered an intolerable long procedure [3], [22]–[24].

Another major benefit of randomized skewed caches is the
reduced effectiveness of eviction sets. Two addresses are fully
congruent when they are mapped to the same sets in all
partitions while partially congruent when they are mapped to
the same sets in some but not all partitions. A group of W
addresses, where W is the number of ways, forms a fully
congruent eviction set only when all of the W addresses are
fully congruent. However, the probability that two random ad-
dresses are fully congruent in a K partitioned skewed cache is
1

SK , where S is the number of cache sets. This is an extremely
small probability even with a moderate K. Finding such a fully
congruent eviction set at run-time is unfeasible. Therefore,
attackers have no choice but to use partially congruent eviction
sets composed of partially congruent addresses. This has two
drawbacks [18], [30]: The number of addresses needed is
significantly increased and the eviction of the target address
becomes a statistically random event.

D. Fast Algorithms for Searching Eviction Sets

At the time when CEASER was proposed, the fastest
algorithm [3], [22] for finding a minimal eviction set with

N addresses

W+1 groups

 addresses

remove 1 group

W+1
WN

Fig. 3. Group elimination algorithm.

W addresses required O(N2) cache accesses, where N is the
number of addresses randomly collected to form a very large
eviction set. As N is normally at the magnitude with the size
of the LLC (N ∼ S · W) [24], O(N2) cache accesses are
just too long for any practical attacks. Soon afterwards, three
fast search algorithms are proposed to drastically reduce the
number of accesses.

Group elimination (GE) is an optimization of the original
O(N2) method [17], [23]. It still starts with a very large
eviction set of N random addresses but it tries to remove
multiple addresses in each cycle to quickly trim the set into
a minimal one. Fig. 3 illustrates such a cycle targeting an
LLC with four ways. The set of N addresses are divided into
W +1 groups. Since a minimal eviction set contains only W
addresses (shadowed in red), there is at least one removable
group containing none of the W addresses. By sequentially
testing whether the set is still an eviction set without a certain
group, the removable group is found and removed. Then
the whole process starts again taking the remaining WN

W+1
addresses as the input set until a minimal set is produced.
The whole process requires around O(WN) cache accesses,
since N ∼ SW , O(WN) = O(SW 2).

Conflict testing (CT) is a new algorithm first proposed to
find eviction sets in caches using random replacement [17].
Assuming an attacker has access to unlimited number of ran-
dom addresses, she can collect an eviction set by sequentially
testing each address whether it is congruent with the target
address. The target address is accessed first to make it cached
in the LLC. Then a random address is accessed. If this address
is congruent with the target address, it might replace the target
address by a chance of 1

W thanks to the random replacement.
Overall, any random address might conflict with the target
address by a probability of 1

S·W . To test the occurrence of
such a conflict, the target address is re-accessed and timed.
If the latency is longer than expected, the random address is
considered congruent and put into the eviction set. The re-
accessing of the target address also starts the test for the next
random address. An eviction set is produced when enough
congruent addresses are collected. The overall number of
cache accesses is estimated around O(SW 2).

Note that this algorithm is also effective for permutation-
based replacement (such as LRU). Assuming the use of LRU,
the probability of causing a conflict with the target address
after accessing M random addresses is around:

P = 1−
W−1�

i=0

�M
i

� 1

Si
(1− 1

S
)M−i (1)

This is equivalent to causing at least W conflicts in the
target cache set. The average M is around SW . Note that
re-accessing the target address is unlikely to cause an actual

957

A

B

C

D E

F G

H

I

J

K

X

set 0

set 1

set 2

(a) Internal states

B D JE X B D JE

B D E J

Accesses:

Evictions:

prime+prune test

X

(b) Ideal case

BD JE X B D JE

D J

Accesses:

Evictions:

prime+prune test

XE

X B D JE

D J

test again

XEB

(c) Non-ideal case

Fig. 4. Prime, prune and then test on a 3-set 4-way LLC using the LRU
replacement. (a) reveals the LLC internal states after prime and prune. (b)
demonstrates a success test in an ideal case where all cache accesses are
observed by the LLC. (c) shows a partial result in a non-ideal scenario when
some cache accesses are filtered by the private caches and the observed orders
of prime+prune and test are different.

access to the LLC because the target address is always cached
in private caches (L1) until it is forcefully invalidated by a
conflict in the LLC. As a result, the LRU replacer’s internal
state is unchanged for most re-accessing of the target address.
To find a minimal eviction set with W addresses, the number
of cache accesses is also around O(SW 2).

Prime, prune and then test (PPT) is an improved version
of the search algorithm exploiting the LRU replacement [17],
[30]. Let us consider an LLC using the LRU replacement. An
attacker first accesses a large set of random addresses (prime
set) to prime the whole LLC2. Since self-conflicts would
naturally occur during the prime, a prune process is used to
remove conflicted addresses until all addresses remaining in
the prime set are simultaneously cached. Assuming Fig. 4a
reveals the internal states of an LLC after prime and prune,
the target cache set (set 1) is likely primed by the prime set.
In an ideal scenario, the order of cache accesses observed
by the LLC is the same order initiated by the attacker. As
shown in Fig. 4b, if the attacker makes a timed re-access of
the target address X and the prime set sequentially, all the
addresses with long latency (miss in the LLC) are congruent
with X and the number of them is just enough for an eviction
set. However, the order seen by the LLC is normally different
from the software order as many cache accesses are filtered
by the private caches. In this scenario (Fig. 4c), the attacker
collects some but less than W congruent addresses. She has to
test again to force the order seen by the LLC equivalent to the
software order. Regarding the total number of cache accesses,
our experiments show that the prune process normally finishes
in less than two rounds. Meanwhile, the size of the prime
set after pruning is slightly less than the cache size, which
means only one round of search is usually enough. The overall
number of cache accesses is estimated around O(SW), which
is the smallest in the three fast algorithms.

This algorithm can be used to find eviction sets in LLCs
using other types of replacement policies. The estimated num-
ber of accesses for permutation-based replacement policies

2The attacker might choose to use a small set to prime a portion of the
LLC but this will significantly reduce the success rate.

(including LRU) is normally the same (O(SW)) [17] but it
approaches to O(SW 2) for LLCs using random replacement
for two reasons: One is the size of the prime set after pruning
is much smaller than the cache size SW , which reduces the
chance of finding congruent addresses in each round of search.
The other one is that, even if the target cache set is primed,
the number of congruent addresses found in each round of
test is significantly less than W (only one in most cases). The
attacker has to do multiple rounds of tests in multiple rounds
of searches [30].

E. Attack Randomized Caches Using the Fast Algorithms

All the three search algorithms can easily defeat the
static version of randomized set-associative caches, such as
CEASE [16]. As a result, a randomized set-associative cache
has to periodically remap its content by updating the hardware
managed key (Fig. 2). This forces an attacker to dynamically
search eviction sets and finish an attack both in the remap
period. Short remap period increases the hardness to launch
an attack [16]. However, frequent remaps lead to significant
performance loss. During the remap process, all cache blocks
in the LLC are sequentially relocated using the updated key.
When there is no available space at the new location, a cache
block is evicted to make space [16]. Our experiments show
that 40% to 50% cache blocks are evicted for this reason.

To reduce the performance overhead while thwarting at-
tacks, the remap period is carefully selected. For a 1024-
set 16-way CEASER LLC, it has to remap around every
47K accesses (only three accesses per cache block) [17],
which is an unbearably short period. This is why skewed
caches are currently preferred. For a same sized CEASER-
S LLC with two partitions, it is claimed that the remap
period can be safely increased to 1.6M accesses (100 accesses
per cache block) [17]. It becomes almost impossible to find
fully congruent eviction sets in a randomized skewed cache
remapped at the aforementioned rate [17]. In its current form,
the group elimination algorithm simply fails in skewed cache
due to the huge amount of false negative errors introduced by
the randomly selected partitions. Both the conflict testing and
the prime, prune and then test algorithms might still be able
to find partially congruent eviction sets [30], which is the root
of concern found in this paper.

III. PROBLEM FORMULATION

As researchers on the defense side, we would like to
thoroughly examine the effectiveness of cache randomization
and provide a strong defense against conflict-base side-channel
attacks. To be specific, we plan to answer the following
questions.

Problem Statement:
• Do the existing cache randomization schemes/techniques

make any flawed hypothesis?
• If there are any flawed hypotheses, do they lead to broken

defenses and discovery of new vulnerabilities?
• Whether the broken defenses, if any, can be fixed?

958

Before diving into the detailed analysis, let us first describe
the threat model and the analysis platform.

A. Threat Model

The main objective of using cache randomization is to
deprive attackers from usable eviction sets. We thus consider
finding a usable eviction set targeting a specific address as
a successful attack. Only conflict-based cache side-channel
attacks targeting the LLC are considered in this paper.3 In
order to examine the effectiveness of defenses under hostile
scenarios, we give attackers the following set of generous but
still reasonable capabilities:

• She has fully reverse engineered the virtual to physical
address mapping.

• She can access unlimited number of random addresses,
make arbitrary memory accesses to her own data and
accurately infer cache hit/miss status by measuring the
access latency.

• She can flush a cache block from the whole cache
hierarchy as long as it is her own data.

• She can accurately trick the victim into running a single
memory access and there is no other active process during
the attack.

• She has the full design details of the randomized cache,
but the encryption algorithm and the key used for gener-
ating cache set indices are unbreakable.4

Note that we have explicitly allowed the attacker to flush
her own data. This is different from flush-reload attacks [35]
because no data is shared between the attacker and the victim.
Although it is normally not required for conflict-based at-
tacks targeting non-randomized caches, attackers do have such
capability, such as a malicious user mode program running
on an x86-64 processor [36] or a malicious kernel running
on an ARM processor [37]. As described in Section IV-A,
this enables attackers to launch fast attacks on the latest
randomized caches using partially congruent eviction sets.

B. Analysis Platform

To quantitatively analyze the effectiveness of the latest
randomized caches, we choose to implement CEASER-S
and ScatterCache in a behavioral cache simulation model
opensourced by [24], further extend the model with the
defense ideas newly proposed in Section V and VI, and
attack the randomized caches using the aforementioned fast
search algorithms. All results revealed in Section IV, V and
VI are obtained from these experimental attacks. To evaluate
the impact of the new defense ideas on normal applications
in Section VII, we run the SPEC CPU 2006 benchmark
cases [38] on the RISC-V [39] instruction level simulator
Spike [40] with its original cache model replaced with the
extended cache model [24]. The use of Spike allows us to run
benchmark cases at a speed around 1.5 million instructions

3Attacks utilizing the cache occupancy channel[31]–[33] are also out of the
scope of this paper.

4we do not consider attacks targeting weak ciphers [34] or random number
generators.

P0 P1C0

C1

L1 LLC

Victim

Attacker

Fig. 5. When all cache blocks of the partially congruent eviction set (dot
with red shadow) are cached in the LLC but failed to evict the target block
(slash line with blue shadow), the eviction set become useless.

per second, which is ten times faster [41] than the Gem5
simulator [42] used in CEASER-S [17] and ScatterCache [18].

IV. DYNAMICALLY RANDOMIZED SKEWED CACHES ARE
STILL VULNERABLE

By quantitatively analyzing the traces left by various attacks
in the LLC, this section reveals the flawed hypotheses found
in the latest randomized caches and uses experimental attacks
to show that their defenses are indeed broken.

A. Flawed Hypothesis

Flawed hypothesis in CEASR-S: It is claimed in [17] that
an attacker must find eviction sets composed of fully congruent
cache blocks in order to evict the target address repeatedly.
This is true for certain scenarios but not always true. In order
to illustrate why this is not always true, let us first reflect on a
“true” scenario, which is depicted in Fig. 5. An attacker wants
to launch a cross-core attack from core zero (C0) to core one
(C1). She has found an eviction set composed of seven fully
congruent and one partially congruent cache blocks (dot with
red shadow), which should have a 50% probability to evict the
target address (slash line with blue shadow) in a skewed cache
with two partitions. Assuming the attacker has successfully
evicted the target address several times, she will fail eventually
as the partially congruent cache block is randomly cached in
the wrong partition (P1) as depicted in Fig. 5. The eviction
set becomes useless afterwards.

From the attacker’s viewpoint, the reason of the failure is
the lack of enough self-conflicts to dislodge the misplaced par-
tially congruent cache blocks during the re-accessing. To reuse
an eviction set, attackers must find another way to purge the
misplaced blocks from the LLC. Although one research [30]
claims that it is still viable to construct covert channels by
priming the LLC, this would cause significant amount of noise
and noticeable performance degradation for normal prime-
probe attacks. We argue that attackers can accurately flush the
eviction set using cache flush instructions (such as clflush
in x86-64), which is much cleaner and faster than priming
the LLC. Our argument indicates that attacks using partially
congruent eviction sets could enjoy big success. Note that
using flush instructions here is fundamentally different with
flush-reload attacks [35] where the target address being flushed
is shared between the attacker and the victim. All blocks in
an eviction set belong to the attacker’s own address space.

We also argue this is a valid threat even for future computers
because the cache flush instructions will be here to stay.
We used to think Intel would eventually retire the clflush

959

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 32 64 96 128 160 192 224 256 288 320

Ev
ic

tio
n

R
at

e

Size of Eviction Sets

CEASER
Skew-2
Skew-4
Skew-8

Skew-16

Fig. 6. The probability of evicting a target address (eviction rate) when a
partially congruent eviction set is applied repeatedly. All LLCs are with the
same size (1024-set 16-way). For skewed caches, the ways are divided into
2, 4, 8 and 16 partitions. Each result is averaged from 1000 independent
experiments.

TABLE I
EXTRACTED FROM FIG. 6, THE ESTIMATED SIZES OF EVICTION SETS TO

REACH THE EXPECTED EVICTION RATES (30%, 50% AND 80%).

Cache Type 0.30 0.50 0.80

CEASER 16 16 16
Skew-2 25 30 39
Skew-4 45 59 87
Skew-8 68 108 190

Skew-16 90 172 400

instruction due to the threat of flush-related attacks [35], [43]–
[45]. To our surprise, Intel not only continues to support
clflush in their new architectures but also introduces new
instructions with similar functionality, such as clflushopt
and CLWB. As described in the ISA Reference [36], these
instructions are added to reduce the performance overhead of
accessing persistent memory [46]. Since persistent memory is
a promising memory technology gradually adopted by almost
all major computer architectures, cache flush instructions will
remain in user land in the foreseeable future. Even if their
usage is limited to the privileged software, prime-probe attacks
from malicious kernels against other users/OSes [47], [48] or
SGX enclaves [7] are still practical.

Assuming attackers (can use cache flush instructions to)
flush their eviction sets after each probe, Fig. 6 reveals the
probability of evicting a target address (eviction rate) when
a partially congruent eviction set is applied repeatedly, which
complies with the theoretical analysis done in ScatterCache
(Fig. 5 in [18]): The eviction rate increases with the size of
the partially congruent eviction set. When enough addresses
are collected, a partially congruent eviction set can be used
just like a fully congruent one.

Flawed hypotheses in ScatterCache: It is claimed that at-
tackers must find eviction sets with 99% eviction rate and must
use a separate prime set to prime the LLC after each probe
(variant 1: single collision with eviction, Section 4.4 [18]).
Both hypotheses are invalid. An attacker can, and might be
forced to, use eviction sets with low eviction rate. As shown
in Fig. 6, an eviction set with a lower eviction rate is much
smaller than a set with a higher eviction rate. Since the time
consumed in both finding and applying an eviction set is
almost proportional to its size, reducing the required eviction
rate can proportionally boost the attack frequency, which is
essential for attacks demanding high temporal resolution [4],

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 300 400 500 600 700 800

Pr
ob

ab
ilit

y
of

 F
in

di
ng

 E
vi

ct
io

n
Se

ts

Number of LLC Accesses (K)

Set-25
Set-30
Set-39

(a) Conflict testing (CT)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000

Pr
ob

ab
ilit

y
of

 F
in

di
ng

 E
vi

ct
io

n
Se

ts

Number of LLC Accesses (K)

Set-25
Set-30
Set-39

(b) Prime, prune and then test (PPT)

Fig. 7. The probability of finding eviction sets with 25, 30 and 39 partially
congruent addresses in a skewed LLC (1024 sets, 16 ways, 2 partitions)
within limited number of LLC accesses. Each result is averaged from 500
independent experiments.

[48]. Although utilizing eviction sets with low eviction rate
does bring in high rate of false negative errors, these errors
could be efficiently reduced by observing repeated victim
events. Even worse, an attacker can force repeated replay
of the victim’s execution with microarchitectural replay at-
tacks [49]. Furthermore, if remapping is adopted by Scat-
terCache, acquiring eviction sets with the 99% eviction rate
might become unfeasible. Attackers would unavoidably resort
to smaller eviction sets with lower eviction rates. For the
hypothesis on priming the LLC, flushing the eviction set after
each probe is much cleaner and faster than priming the LLC.

B. Broken Defense

Table I shows the number of partially congruent cache
blocks needed to achieve a certain eviction rate. We con-
sider 80% as a high eviction rate and 30% as a low but
still threatening rate.5 A defense is broken if it cannot stop
attackers from finding eviction sets with the high eviction rate
(80%), while it is relatively safe if attackers cannot acquire
eviction sets with even the low eviction rate (30%). In the three
fast search algorithms, only CT and PPT potentially work on
randomized skewed caches. Let us consider a CEASER-S LLC
with two partitions [17]. Fig. 7 demonstrates the probability
of finding eviction sets with 25, 30 and 39 partially congruent
addresses (corresponding to eviction rates of 30%, 50% and
80% respectively) using both CT and PPT. As shown by the
result, although PPT is too long for any practical attacks (5M
to 20M LLC accesses as shown in Fig. 7b), it is possible to
find a small eviction set (30% eviction rate) in as low as 350K
LLC accesses using CT (Fig. 7a), which is far less than the

5As researchers on the defense side, our intention is not to argue that 30%
is a usable eviction rate in practical attacks but to use this low rate as a stress
test to evaluate the strength of existing defenses.

960

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 300 400 500 600 700 800Pr
ob

ab
ilit

y
of

 F
in

di
ng

 E
vi

ct
io

n
Se

ts

Number of LLC Accesses/Evictions (K)

Access-25
Access-30
Access-39
Eviction-25
Eviction-30
Eviction-39

Fig. 8. The probability of finding eviction sets with 25, 30 and 39 addresses
in a skewed LLC (1024 sets, 16 ways, 2 partitions) within limited number
of LLC accesses or evictions. Each result is averaged from 500 independent
experiments.

preferred remap period of 1600K LLC accesses (100 accesses
per cache block) [17]. In fact, 1600K LLC accesses are long
enough to find partially congruent eviction sets with the high
eviction rate. CEASER-S is broken.

The reasons for the failure of CEASER-S are twofold: One
is its neglect of the possibility of using partially congruent
eviction sets, which require much lower number of LLC
accesses to find than fully congruent eviction sets. The other
one is measuring the remap period by LLC accesses while
overlooking the filter effect of private caches. Fig. 8 reveals
the probability of using CT to find eviction sets within limited
number of LLC evictions. Nearly all accesses observed by the
LLC lead to misses (caused by visiting random addresses),
indicating that all the re-accesses of the target address are
filtered by private caches. The total number of cache accesses
observed by the LLC is halved.

Rather than periodically remapping the LLC, ScatterCache
proposes to use extra partitions to further increase the hardness
in finding eviction sets and assumes the extra hardness is
enough to thwart attacks [18]. ScatterCache estimates that
roughly 275 partially congruent addresses are needed to
achieve the 99% eviction rate in a randomized skewed cache
with eight partitions and finding such an eviction set requires
approximately 33.5M victim accesses (equivalent to 33.5M
LLC evictions), which is an intimidating large number. Fig. 9
demonstrates the number of LLC evictions required to finding
a partially congruent eviction set with 30% eviction rate in
all types of randomized caches. If an attacker tries to find a
small eviction set (68 addresses for 30% eviction rate) instead
of the large one, the total number of LLC evictions is reduced
to 1.1M, which is only 3.3% of what the large eviction set
needs.6 Even if an attacker requires the 99% eviction rate,
she can choose to re-access and flush the small eviction set
20 times. The total number of LLC evictions is around 2.7K,
which is just a negligible fraction (0.2%) of the LLC evictions
needed for finding the small set.7 ScatterCache is still unsafe
if eviction sets with low eviction rate are considered.

6We believe that ScatterCache has over-estimated the number of victim
accesses required. Instead of measuring the latency of re-accessing the random
address, an attacker can measure the latency of accessing the target address
(by the victim). This reduces the number of victim accesses to nways ·2bindices ·t,
which is 1

nways
of what ScatterCache estimates.

7This way of achieving the 99% eviction rate works only for the evict+time
attacks [2] though.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

Pr
ob

ab
ilit

y
of

 F
in

di
ng

 E
vi

ct
io

n
Se

ts

Number of LLC Evictions (K)

CEARER:16
Skew-2:25
Skew-4:45
Skew-8:68

Skew-16:90

Fig. 9. The probability of finding the eviction sets with 30% evict rate in all
types of LLCs (CEASER and skewed cache with 2 to 16 partitions). Experi-
mental results (averaged from 500 independent experiments) are depicted in
dots while the probability in theory (Equation 3) is drawn in solid lines.

V. FIX THE RANDOMIZED SKEWED CACHES

Randomized skewed caches are still vulnerable to attacks
using partially congruent eviction sets found by the CT algo-
rithm. Several ideas are proposed in this section to strengthen
the defense while retaining performance.

A. Count Cache Evictions Rather than Accesses

As analyzed in Section IV-B, the failure of CEASER-S
is partially because the remap period is measured by LLC
accesses but half of the supposed accesses are filtered by
private caches. We propose to measure the remap period by
LLC evictions.

In the CT algorithm, when the target address is cached in
the LLC, the probability that a newly fetched random address
is cached in the same set and partition with the target address
can be described as:

P =
1

SK
(2)

where K is the number of partitions. Assuming the LRU
replacement is used, the target address is evicted from the
LLC only when W

K evictions occurred in the same set and
partition. Therefore, the probability of collecting a partially
congruent eviction set of L addresses in E LLC evictions can
be estimated as:

Prob(X ≥ L) = 1−
LW
K

−1�

i=0

�E
i

�
P i(1− P)E−i (3)

As shown in Fig. 9, the theoretical probability calculated
using Equation 3 matches with the experiment result. We can
use this equation to estimate the time of finding an eviction set
(30% eviction rate) within different remap periods in various
randomized caches. Assuming the highest frequency of LLC
evictions is 800 MHz, Table II details the time estimation. If
we consider one year as a secure time margin for thwarting
potential attacks, the chosen remap periods along with its time
estimation are listed in the final column. To safely thwart
attacks, the remap period of a two partitioned CEASER-S
LLC must be reduced to 14 LLC evictions per cache block
(by average). Even a skewed cache with 16 partitions has to
be remapped very 39 LLC evictions per cache block.

Such short remap periods might be considered intolerable.
However, remapping by counting LLC evictions is much more
efficient than counting LLC accesses because the LLC miss
rate of normal applications is much lower than attacks. In

961

TABLE II
ESTIMATED TIME FOR SUCCESSFULLY FINDING AN EVICTION SET (30%

EVICT RATE) WITHIN DIFFERENT REMAP PERIODS (AVERAGE NUMBER OF
EVICTIONS PER CACHE BLOCK).

Remap Period 100 50 20 10 Chosen Period

CEASER 0.3ms 0.3ms 0.4ms 3.7y 10 (3.7y)
Skew-2 0.5ms 0.5ms 0.32s >100y 14 (204y)
Skew-4 0.9ms 0.9ms >100y >100y 25 (40y)
Skew-8 1.4ms 2.8s >100y >100y 35 (12y)
Skew-16 1.8ms 1.2h >100y >100y 39 (12y)

A

B

C

D

E F

G H I J

K L M

p

evicted

(a)

Cipher

k k'

address
cache
set

index

i > p

i

i'
0
1

Cipher

(b)

Fig. 10. The remap process of CEASER (CEASER-S). Cache sets are
sequentially relocated as depicted in (a), where p points to the cache set
that s currently be relocated. During the remap process, the cache set index
for an incoming address is decided according to (b).

an ideal scenario, if the miss rate in the LLC is sufficiently
low, remapping every 14 LLC evictions per cache block would
trigger less remaps than remapping every 100 LLC accesses
per cache block (preferred by CEASER-S). Our performance
experiments in Section VII-A will analyze this effect in details.

B. Multi-Step Cache Relocation

Our experiment shows that 40% to 50% cache blocks in
the LLC are evicted during the remap process, which is why
frequent remaps can hurt performance significantly. Borrowing
ideas from ZCache [25], we propose to use a multi-step
relocation in the remap process, which reduces the eviction
ratio to as low as 10%. This has two major benefits: One is
the reduced performance loss as extra blocks remain in the
LLC. The other one is the reduced damage from denial-of-
service attacks [50]. An attacker can trigger frequent remaps
by forcing a large amount of LLC accesses or evictions. Since
the remap process cannot differentiate victim’s data from the
attacker’s, the attacker can use remaps as a stealthy way to
blindly evict victim’s data. If the eviction ratio is reduced from
50% to just 10%, the return of such attacks becomes marginal.

In the remap process proposed by CEASER [16], cache sets
are remapped sequentially as illustrated in Fig. 10a. Remapped
blocks (shadowed in gray) are recorded in their metadata and
a set-relocation pointer (p) always points to the cache set
currently being remapped. The cache block E is currently
being relocated to the next cache set chosen by the new key
(k�). According to the replacement policy, G is evicted to make
a room for E. By repeating this procedure, all blocks in the set
are remapped and p moves to the next set. Since remapping
is a gradual procedure, normal cache accesses might occur in

A

B

C

D

E F

G H I J

K L M

p

(a)

address
cache
set

index

& miss

i

i'
0
1

i > p
retry

Cipher

k k'

Cipher

(b)
Fig. 11. A multi-step relocation process. When the destination of a relocation
is taken by an unremapped cache block, this block is further relocated until an
empty space is found as in (a) or a remapped cache block is found and evicted
instead. The cache set index for an incoming address is decided according to
(b). When using the old cache set index i results in a miss, retry using the
new index i�.

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1 2 3 4 5 6 Unlimited

Pe
rc

en
ta

ge
 o

f R
et

ai
ne

d
C

ac
he

 B
lo

ck
s

Number of Relocations

CEASER
Skew-2
Skew-4
Skew-8

Skew-16

Fig. 12. The percentage of cache blocks retained during remapping by
applying limited number of relocations. The maximum retaining percentage
is achieved when ‘infinite’ trials of relocation are applied until a remapped
cache block is found as the replacement (and evicted). Each result is averaged
from 100 independent experiments.

parallel. Fig. 10b illustrates how the cache set index is decided.
The old cache set index i and the new one i� are produced
simultaneously by two independent ciphers using the old key
k and the new key k� respectively. When i ≥ p, denoting
the cache set is not remapped yet, the old index i is used.
Otherwise, the new index i� should be used.

The problem of the original remap process is the eviction
of G. Whenever the target cache set for a relocated block is
full, a cache block is evicted, which leads to a high number of
evictions. Such evictions might be avoidable. The relocation
procedure can keep on relocating the blocks to be evicted, such
as G, in a chain until either a free space is found, as shown
in Fig. 11a, or a remapped block is to be evicted. Note that
using multi-step relocation does not increases the total number
of relocated blocks. Once a block is relocated, it is recorded
as remapped and will not be relocated again. The total number
of blocks to be relocated is equal to the number of blocks in
the LLC in both methods. As shown in Fig. 12, by allowing
unlimited number of relocations, the percentage of blocks
retained in the LLC grows. Randomized set-associative caches
(CEASER) benefits the most as the percentage increases from
63% to 90%. The boost for randomized skewed caches drops
gradually with the number of partitions.

The calculation of the cache set index needs a small change
to support the multi-step relocation. As shown in Fig. 11b,
when i ≥ p, the old cache set index i should be used in the
same way as in the original CEASER. However, if it results in

962

data
array

metadata
array

transaction
tracker

writeback
unit

L1/L2

DRAM

remap
tracker

relocated block

Fig. 13. Support multi-step relocation in the LLC of the Rocket-Chip.

a miss, the new cache set index i� should be used in a retrial
as the block might have already be relocated. Since reading
the metadata array and checking cache hit typically finish in
one or two cycles, and retrials occur only occasionally during
the relatively short remap process, the performance impact is
trivial considering the significantly reduced eviction ratio.

Supporting multi-step relocation in the actual cache hard-
ware should be straightforward. Fig. 13 demonstrates the
internal structure of the LLC (L2) used in the Rocket-Chip
SoC [51] (available from lowRISC v0.4 [52]), which is a
widely adopted open processor design taped out for tens of
times. To support multiple concurrent cache transactions initi-
ated from the multiple L1 caches, each cache slice implements
multiple transaction trackers sharing the same accesses to the
metadata array, the data array and the writeback unit. When a
transaction arrives without any race condition, a free tracker
is allocated to serve it. To support remaps, a special remap
tracker is added. During a remap, it tracks the set-relocation
pointer and gradually relocates all cache blocks. In the case
of multi-step relocation, when an unremapped cache block is
swapped out, the remap tracker throws it back to itself as
a prioritized writeback transaction. As long as unremapped
blocks are swapped out, they are continuously relocated until
a free space is found or a remapped block is swapped out
instead (which is then evicted). This recursive procedure effec-
tively implements the unlimited steps of relocation. The only
hardware changes necessary to support multi-step relocation
include adding an incoming port to the remap tracker and
modifying its state machine accordingly.

VI. USE NORMAL INSTEAD OF SKEWED CACHES

Instead of advocating the use of randomized skewed cache
like CEASER-S and ScatterCache, we argue that randomized
set-associative caches can be sufficiently strengthened and
possess a better chance to be actually adopted in commercial
processors than their skewed counterparts. By a literature
research with our best effort, we cautiously believe that skewed
caches [53], [54] have not been adopted in the LLCs of any
commercially available modern processors. Promoting them
purely for security benefits might be a hard sale.

A. Issues with Skewed Caches

We agree that skewed caches can improve cache efficiency
by reducing conflicts [53] and are natural candidates for
compressed caches [54]. However, it seems that they are not
yet embraced by the industry. One potential reason has already
been pointed out by CEASER-S [17]: The benefit of skewed

caches diminishes when the cache associativity increases. As
caches in modern processors are typically highly associative,
the marginal gain in performance might not justify the extra
hardware cost. For this reason, CEASER-S chooses to use
only two partitions. Some of our experiments show excessive
skewing (too many partitions) actually hurt performance as it
reduces the efficiency of the LRU replacement. One example is
already revealed in Fig. 12. The benefit of multi-step relocation
drops with the increasing number of partitions.

From our own perspective in hardware designs, we also
believe that skewed cache significantly complicates the de-
sign of modern LLCs which typically serve multiple cache
transactions in parallel. Taking the LLC design of the Rocket-
Chip (as shown in Fig. 13) as an example, before a tracker can
accept a transaction, the LLC must ensure that this transaction
would not conflict with the others currently being served.
This typically means that no transaction served simultaneously
should access the same cache set with others. Otherwise,
one of the conflicting transactions should be blocked before
it is accepted by a tracker (race condition). This is not a
serious issue for set-associative caches as the cache set index
of an incoming transaction can be calculated beforehand and
compared with the indices of all active trackers simultaneously
in a single cycle. For a skewed cache with K partitions and T
trackers, the incoming transaction might access anyone of the
K possible cache sets and it is not decided until the transaction
hits on a set or a target set is chosen for replacement. In the
worst scenario, K · TK parallel comparisons (rather than T
for the set-associative cache) are required to check potential
conflicts for an incoming transaction. Besides the obvious
hardware cost in doing so, this significantly increases the
probability of blocking an incoming transaction due to a
conflict that might not occur eventually. It then prolongs the
cache accessing latency.

Therefore, we would like to investigate potential means to
strengthen the randomized set-associative caches.

B. Remap When Under Attack

Although randomized skewed caches are vulnerable only
to the CT algorithm, randomized set-associative caches are
vulnerable to all the three search algorithms introduced in
Section II-D. To thwart the CT algorithm, a 1024-set 16-way
CEASER LLC has to remap every 10 LLC evictions per cache
block according to Table II, which allows for a total of 160K
LLC evictions between remaps. However, our experiments
show that the numbers of LLC evictions (accesses) needed
for finding an eviction set are around 40.8K (168K) using the
PPT algorithm and 81.3K (532K) using the GE algorithm.
Both are valid threats.

Instead of shrinking the already short remap period, we
propose to trigger a remap when an attack using the two
algorithms is detected because both of them leave a unique
pattern in the cache set distribution of evictions. Let us first
consider the PPT algorithm. By periodically sampling the
number of accesses and evictions occurred on individual cache
sets during two consecutive attacks, Fig. 14a and 14b reveal

963

163843276849152655368192098304114688131072147456163840180224196608212992229376

0 250 500 750 1000
Cache set

Ti
m

e
(L

LC
 a

cc
es

se
s)

10

20

30

value

(a) Cache set distribution of accesses

163843276849152655368192098304114688131072147456163840180224196608212992229376

0 250 500 750 1000
Cache set

Ti
m

e
(L

LC
 a

cc
es

se
s)

0

10

20

value

(b) Cache set distribution of evictions

16384
32768
49152
65536
81920
98304

114688
131072
147456
163840
180224
196608
212992
229376

0 250 500 750 1000
Cache set

Ti
m

e
(L

LC
 a

cc
es

se
s)

0.5

1.0

1.5

2.0
scaled

(c) Standardized distribution of accesses

163843276849152655368192098304114688131072147456163840180224196608212992229376

0 250 500 750 1000
Cache set

Ti
m

e
(L

LC
 a

cc
es

se
s)

0

10

20

30
scaled

(d) Standardized distribution of evictions

Fig. 14. Detect the PPT attack by analyzing the cache set distributions of
accesses and evictions. The x-axis denotes the cache set index while the y-
axis denotes simulation time measured in LLC accesses. The height and color
of each data point denotes its value. One distribution is sampled every 16K
LLC accesses. The standardization in (c) and (d) is done using the Z-Score
method [55], [56].

the distribution of LLC accesses and evictions over all cache
sets. Both distributions seem totally random. However, if we
apply a Z-Score [55] standardization on the distributions,
we can see two clear peaks in the standardized eviction
distribution (Fig. 14d), although it is still random for the
standardized access distribution (Fig. 14c). The two peaks
appear only in the test phase of the PPT algorithm and would
not show up in normal applications. After the prune phase, all
blocks in the prime set are simultaneously cached in the LLC.
If there is any eviction in the test phase, it must occur on the
target cache set. As a result, the score of the target cache set
reaches the maximum (32 for a 1024-set LLC) while it is zero
on all other sets.

The GE algorithm presents a similar pattern as demonstrated
by Fig. 15. Scores are small and randomly distributed at the
early stage of the two simulated attacks but converge on a
single cache set when the large eviction set is finally condensed
into a minimal one.

Since PPT spends less time on testing the prime set than
GE on trimming the eviction set, PPT is harder to detect than
GE. We thus finalize our detector against PPT and it should
work on GE as well. We start from a non-centered variant of

40968192122881638420480245762867232768368644096045056491525324857344614406553669632737287782481920860169011294208983041024001064961105921146881187841228801269761310721351681392641433601474561515521556481597441638401679361720321761281802241843201884161925121966082007042048002088962129922170882211842252802293762334722375682416642457602498562539522580482621442662402703362744322785282826242867202908162949122990083031043072003112963153923194883235843276803317763358723399683440643481603522563563523604483645443686403727363768323809283850243891203932163973124014084055044096004136964177924218884259844300804341764382724423684464644505604546564587524628484669444710404751364792324833284874244915204956164997125038085079045120005160965201925242885283845324805365765406725447685488645529605570565611525652485693445734405775365816325857285898245939205980166021126062086103046144006184966225926266886307846348806389766430726471686512646553606594566635526676486717446758406799366840326881286922246963207004167045127086087127047168007208967249927290887331847372807413767454727495687536647577607618567659527700487741447782407823367864327905287946247987208028168069128110088151048192008232968273928314888355848396808437768478728519688560648601608642568683528724488765448806408847368888328929288970249011209052169093129134089175049216009256969297929338889379849420809461769502729543689584649625609666569707529748489789449830409871369912329953289994241003520100761610117121015808101990410240001028096103219210362881040384104448010485761052672105676810608641064960106905610731521077248108134410854401089536109363210977281101824110592011100161114112111820811223041126400113049611345921138688114278411468801150976115507211591681163264116736011714561175552117964811837441187840119193611960321200128

0 250 500 750 1000
Cache set

Ti
m

e
(L

LC
 a

cc
es

se
s)

0

10

20

30
scaled

Fig. 15. Detect the group elimination attack by analyzing the standardized
cache set distribution of evictions.

the Z-Score standardization [56] to avoid negative scores:

zi =
ei��

e2

S−1

(4)

where ei is the number of evictions on cache set i and zi is the
calculated score for cache set i. The score of the target cache
set approaches to the maximum of

√
S in an ideal attack.

However, reporting an attack whenever a maximum score is
detected leads to false positive errors. When the LLC miss
rate is extremely low during normal operation, there might
be only one eviction during the whole sample period, which
also results in a maximum score. To avoid such errors, we
introduce the number of evictions into Equation 4 as weight:

wzi = (ei − ē) · zi (5)

where wzi is the weighted score. Since an eviction set requires
at least W addresses, the weighted score of the target cache
set approaches to W ·

√
S during the test phase of an ideal

PPT attack.
An attacker can avoid detection if the detection threshold is

simply set to W ·
√
S. She can hide her trace by spreading the

test phase over multiple sample periods. In the extreme case,
the attacker can collect only one congruent address in each
round of PPT attack, which effectively caps the weighted score
to

√
S.8 To detect such behavior and improve the robustness

of the detector, we apply an exponential moving average
(EMA) [57], [58] on the weighted score:

azi(t) = (1− α) · azi(t− 1) + α · wzi(t) (6)

where α is a discount factor used to calculate azi(t), the EMA
of wzi at sample t. The use of EMA allows the detector to
examine the history of wz because az is an infinite impulse
response of wz. For normal applications, wz should be a zero-
centered small number for all cache sets, but unavoidably
raises to at least

√
S for the target cache set during the

test phase of PPT. By using a small α, the az of the target
cache set effectively accumulates the large wz over the history,
which makes it sufficiently significant for detection. We set the
discount factor α to 1

32 by a heuristic analysis.
When the az of a certain cache set reaches a threshold

(az ≥ th), the detector triggers a remap. The value of th

8In practice, the number of rounds is limited because remaps will be
triggered due to the accumulation of LLC evictions.

964

 0

 0.2

 0.4

 0.6

 0.8

 1

 3 4 5 6 7 8 9 10 11 12 13 14 15 16Pr
ob

ab
ilit

y
of

 F
in

di
ng

 E
vi

ct
io

n
Se

ts

Threshold

16K
8K
4K

Fig. 16. The probability of finding an eviction set under active detection.
Three sample periods are chosen: 16K, 8K and 4K LLC accesses. Each result
is averaged from at least 200 independent experiments.

 0
 10
 20
 30
 40
 50
 60
 70
 80

400.perlbench

401.bzip2
403.gcc
410.bwaves
416.gamess
429.mcf
433.milc
434.zeusmp
436.cactusADM

437.leslie3d
444.namd
445.gobmk
450.soplex
454.calculix
456.hmmer
458.sjeng
459.GemsFDTD

462.libquantum

464.h264ref
471.omnetpp

473.astar

Av
er

ag
ed

 L
LC

 M
PK

I

Fig. 17. MPKI of SPEC CPU 2006 benchmark cases using a static 1024-set
16-way CEASE LLC.

is crucial to the speed and the correctness of the detector. The
detector might leave a small window for a quick attack if a
remap is late due to a large th. However, normal programs
might trigger remaps if th is too small. To choose a proper
th, we run PPT attacks detected by different combinations of
threshold and sample period (4K, 8K and 16K LLC accesses).
As shown in Fig. 16, sampling every 4K LLC accesses and
triggering a remap whenever az ≥ 5 is enough to reduce the
probability of finding eviction set to almost nil. Although not
shown in the paper, we have verified that GE attacks cannot
escape detection with the same parameters.

VII. PERFORMANCE

As the performance overhead of randomized caches has
been shown to be acceptable [16]–[18], we analyze only the
performance impact of the newly proposed ideas.

A. Impact on Normal Applications

The SPEC CPU 2006 benchmark suite [38] is used to
evaluate the impact on normal applications. Similar to Scatter-
Cache, performance results are measured without concurrent
processes [18]. As described in Section III-B, we use a
modified Spike simulator [40] as the evaluation platform. A
processing core has two private L1 data and instruction caches
(16KB, 64-set, 8-way, 64B cache block). A 1024-set 16-way
L2 cache is used as the LLC where all randomized caches
are implemented. All cache levels use the LRU replacement.
Thanks to the fast simulation speed of Spike, we are able to run
100 billion instructions for each benchmark case, which is 100
and 400 times of the instructions simulated in CEASER[16]
and ScatterCache [18]. Fig. 17 shows the number of misses per
K instructions (MPKI) using a static CEASE LLC, which is
used as the baseline for other performance results. The MPKI
figures match with the result provided in CEASER[16].

Fig. 18 demonstrates the performance overhead of different
remap strategies on a CEASER LLC. The remap period is

 0.96
 0.98

 1
 1.02
 1.04
 1.06
 1.08
 1.1

400.perlbench

401.bzip2
403.gcc
410.bwaves
416.gamess
429.mcf
433.milc
434.zeusmp
436.cactusADM

437.leslie3d
444.namd
445.gobmk
450.soplex
454.calculix
456.hmmer
458.sjeng
459.GemsFDTD

462.libquantum

464.h264ref
471.omnetpp
473.astar

1.556 1.219 1.154

N
or

m
al

iz
ed

 M
PK

I

ACC-10
EV-10

DT+EV-10

Fig. 18. Normalized MPKI of SPEC CPU 2006 benchmark cases running on
a CEASER LLC. ACC-10: remap every 10 accesses per cache block; EV-10:
remap every 10 evictions per cache block; DT: attack detection. The static
CEASE is used as the baseline.

 0

 200

 400

 600

 800

 1000

 1200

400.perlbench

401.bzip2
403.gcc
410.bwaves
416.gamess
429.mcf
433.milc
434.zeusmp
436.cactusADM

437.leslie3d
444.namd
445.gobmk
450.soplex
454.calculix
456.hmmer
458.sjeng
459.GemsFDTD

462.libquantum

464.h264ref
471.omnetpp
473.astar

R
PB

I

ACC-10
EV-10

DT+EV-10

(a) Remaps per billion instructions (RPBI)

 0

 0.2

 0.4

 0.6

 0.8

 1

400.perlbench

401.bzip2
403.gcc
410.bwaves
416.gamess
429.mcf
433.milc
434.zeusmp
436.cactusADM

437.leslie3d
444.namd
445.gobmk
450.soplex
454.calculix
456.hmmer
458.sjeng
459.GemsFDTD

462.libquantum

464.h264ref
471.omnetpp
473.astar

N
or

m
al

iz
ed

 R
PB

I

EV-10
DT+EV-10:DT
DT+EV-10:EV

(b) Normalized RPBI using ACC-10 as the baseline

Fig. 19. (a) Remaps per billion instructions (RPBI) of SPEC CPU 2006
benchmark cases running on a CEASER LLC. In (b), DT and EV denote the
remaps triggered by attack detection and reaching remap period respectively.

increased to 10 accesses/evictions per cache block to thwart the
CT attack. The average overhead is 0.61%, 0.077% and 0.19%
for ACC-10 (remapping by accesses), EV-10 (remapping by
evictions) and DT+EV-10 (EV-10 plus attack detection) re-
spectively. Measuring the remap period by evictions rather
than accesses reduces MPKI by 69% with attack detection
or 87% without.

Such significant performance boost comes from two rea-
sons: One is the reduced number of remaps as shown in
Fig. 19a. The average reduction is 72% with attack detection
or 74% without. The other one is the reduced impact for each
remap. To explain this effect, Fig. 20 depicts the run-time
MPKI and miss rate curves extracted from a representative
window of the 403.gcc (expr2) benchmark case. Note that for
the LLC remapped by accesses, the remap period is increased
to 100 accesses per cache block to avoid excessive remaps
(a totally pink colored background). Remapping by accesses
inclines to remap when both MPKI and miss rate are low, such
as the time segments of (11–13), (19–20), and (26–30) billion
instructions, while there is nearly no remaps for the same

965

 0
 50

 100
 150
 200
 250
 300

 10 12 14 16 18 20 22 24 26 28 30

LL
C

 M
PK

I

Billion Instruction Executed

(a) MPKI (remap period: 100 accesses per cache line)

 0
 0.2
 0.4
 0.6
 0.8

 1

 10 12 14 16 18 20 22 24 26 28 30

LL
C

 M
is

s
R

at
e

Billion Instruction Executed

(b) Miss rate (remap period: 100 accesses per cache line)

 0
 50

 100
 150
 200
 250
 300

 10 12 14 16 18 20 22 24 26 28 30

LL
C

 M
PK

I

Billion Instruction Executed

(c) MPKI (remap period: 10 evictions per cache line)

 0
 0.2
 0.4
 0.6
 0.8

 1

 10 12 14 16 18 20 22 24 26 28 30

LL
C

 M
is

s
R

at
e

Billion Instruction Executed

(d) Miss rate (remap period: 10 evictions per cache line)

Fig. 20. Compare the triggered remaps of running the SPEC CPU 2006
case 403.gcc (expr2). Each remap is depicted as a vertical pink line in the
background.

period in the case of remapping by evictions. What is worse,
these remaps lead to unnecessary block evictions which in turn
raise the miss rate. On the contrary, remapping by evictions
inclines to remap when the miss rate is high, such as the time
segments of (22–23) and (25–26). During these segments, the
utilization efficiency of the LLC is already reduced by the
high miss rate. The performance impact of the unnecessarily
evicted blocks in each remap is thus weakened.

The cost of enabling attack detection in CEASER is rela-
tively small compared with the performance boost from remap-
ping by evictions. Fig. 19b provides a detailed breakdown
the remaps when attack detection is enabled. On average,
attack detection introduce 16% extra remaps (false positive
errors) in addition to the remaps triggered by evictions but
together they cause only 28% of the remaps if remapping by
accesses is used. For most benchmark cases, including the
memory intensive cases [59] such as 429.mcf, 462.libquantum,
464.h264ref and 471.omnetpp, the rate of remaps triggered by
detection (related to the rate of false positive errors) is tiny.
Only cases like 403.gcc and 456.hmmer have high rates of
errors. Since the absolute number of remaps for 456.hmmer is
extremely low (RPBI ≈ 8 in Fig. 19a), the high error rate does
not actually hurt performance. As for 403.gcc, the absolute
number of MPKI increased from 10.25 to 10.47, leading to
an extra 2.1% performance loss. Considering the MPKI is
relatively low, this 2.1% loss should be tolerable.

 0.99
 0.995

 1
 1.005
 1.01

 1.015
 1.02

EV DT+EV
DT+EV+MS
EV EV+MS
EV EV+MS
EV EV+MS
EV EV+MS

CEASER Skew-2 Skew-4 Skew-8 Skew-16

N
or

m
al

iz
ed

 M
PK

I

Fig. 21. Normalized MPKI of SPEC CPU 2006 benchmark cases using
the static CEASE as the baseline. EV: remapping by evictions; DT: attack
detection; MS: multi-step relocation.

Fig. 21 shows the normalized MPKI of all types of random-
ized caches using the static CEASE as the baseline. In general,
skewed caches with a moderate number of partitions indeed
reduce MPKI but such reduction is marginal (less than 0.5%).
When more than eight partitions are used, MPKI begins to rise
and hurt performance. This is why we believe randomized set-
associate caches (CEASER) should be used if they are safely
strengthened. Utilizing the multi-step relocation (MS) reduces
MPKI roughly by 0.05% and the skewed cache with only
two partitions benefits the most (0.08%). This complies with
our estimation in Fig. 12. For CEASER LLCs, periodically
remapping by evictions (EV) introduces 0.08% extra MPKI
and enabling attack detection (DT) adds another 0.11%, but
adopting the multi-step relocation (MS) would reduce the
overhead back to a trivial 0.007%. This result shows that,
when all the newly proposed ideas are applied to CEASER
(DT+EV+MS), the randomized set-associate cache is safe
enough without significant performance loss.

B. Logic and Memory Overhead

The memory overhead of randomized caches has been
analyzed in [16], [17]; therefore, we estimate only the extra
cost using the new ideas. We use a single core Rocket-
Chip (lowRISC ver. 0.4) [52] as the base. Using the same
configuration as in Spike, the LLC (L2 cache) consumes
around 22% logic and 99% SRAM of the processor (without
outer AXI buses and devices). To support remaps, a remap
tracker is added to the LLC which originally has two acquire
(access) trackers and one release (writeback) tracker. The extra
area overhead would be round 7.6% logic of the processor
(34% logic of the LLC). This overhead is relatively high
but unavoidable. Remapping by evictions rather than accesses
introduces no area overhead. The overhead of supporting
multi-step relocation is also marginal because the only changes
required are adding a port to the remap tracker and modi-
fying its state machine. To estimate the overhead of attack
detection, we made a prototype of the detector in hardware.
The hardware detector finishes each round of detection in 2K
cycles (less than the sample period of 4K LLC accesses). By
shrinking the precision of the intermediate results and reducing
multiplier/divider to adder/shifter, the detection error is within
5% compared with the software implementation while the area
overhead (after place and route) is around 0.8% logic and 0.4%
SRAM of the processor (3.5% logic and 0.4% SRAM of the
LLC), both of which are marginal.

966

VIII. DISCUSSION

New cache designs: Since the introduction of randomized
skewed caches, two new designs [19], [21] have been proposed
and both of them promote the use of set-associative caches.
The two level dynamic randomization (TLDR) [19] tries to
strengthen CEASER by another layer of randomization using
an indirection table (iTable). An address is first randomly
mapped to an iTable entry and then the entry is mapped to a
random cache set. It is claimed that the extra iTable provides
higher level of randomness than randomized skewed caches
and gradually remapping iTable entries reduces the remap-
related performance loss. PhantomCache [21] proposes to
place an incoming cache block in one of the multiple randomly
selected cache sets rather than partitions as in skewed caches.
This increases the level of randomness and allows the use
of LRU for the whole cache set. Both designs can safely
defeat the GE attack but their effectiveness against CT and
PPT attacks needs further investigation. Finally Doblas [20]
extends the cache randomization from LLC to the L1 caches
by using simple randomization functions.

Performance evaluation: The performance results of all ex-
isting cache randomization designs come from various Gem5
simulations [16]–[18], [21], [42], whose slowness limited the
total number of instructions that can be simulated in reasonable
time, which further constrains the coverage on representative
workloads [60], [61]. Our choice of using the fast (event-
driven and timeless) Spike simulation allows us to boost
the number of simulated instructions by 100 ∼ 400 times,
which significantly increases the coverage on representative
workloads but limits the performance evaluation in miss rate
only, leaving the overhead on CPU execution time unstated.
We believe this is a reasonable trade-off. After the encryption
algorithm used in CEASER has been found problematic [34],
there is no consensus on which encryption algorithm should
be adopted but this choice has significant impact on the
extra delays introduced by cache randomization. It is still
an open challenge to choose a strong and fast encryption
algorithm for randomized caches. As a result, the estimation on
CPU execution time is already inaccurate for any comparison
between designs even if the slowest Gem5 OoO model [42] is
used. Cache miss rate is the only frequently used and unbiased
metric available.

Attack detection: Run-time detection of cache side-channel
attacks using the existing performance counters (pfc) [58],
[62]–[65] has shown to be effective to detect persistent at-
tacks by software. Some of them adopt machine learning to
increase the detection accuracy [62], [64] but they are always
constrained by the limited information available from pfc.
The concentration of cache accesses on the target cache sets
during the exploitation phase has long been discovered [22],
[58], [66]. Recent hardware detectors with set level granularity
begins to utilize this pattern [67], [68]. Most of them exploit
the cyclic pattern between an attacker and her victim [65],
[67], [68]. To the best of our knowledge, we are the first to
exploit the unique set distribution of cache evictions during
the search for eviction sets in randomized caches; however,

whether an attacker can evade detection by slowing down and
hiding behind the background noise is still an open question.

New attacks: Purnal et al. improve the original PPT
attack [17] by introducing the prune phase and correctly
points out it is possible to use partially congruent eviction
set to launch covert channel attacks on ScatterCache [30].
Our simulation and analysis on PPT are based on Purnal’s
work but with our own optimized prune method as it is not
clearly described in [30]. Our experiments show that PPT
attacks would fail on randomized skewed caches because
the accumulated number of LLC evictions always surpasses
the proposed remap period. Very recently, Purnal et al. have
further improved PPT by optimizing the pruning and profiling
method [69]. We need to evaluate these new optimiations and
decide whether attack detection is also needed for randomized
skewed caches. In another concurrent work [70], Bourgeat et
al. analyze the end-to-end security impact of utilizing partially
congruent eviction sets. It is found that attackers may decide
to use eviction sets with lower eviction rate in return for better
chance of information leakage and reducing the remap period
can signifcantly increase the cost of attacks. These findings
complement well with this paper.

IX. CONCLUSION

We have newly discovered several problems with the hy-
potheses and implementations in the latest randomized skewed
caches: The possibility of using cache flush instructions in
conflict-based attacks has been overlooked. The concept of
minimal eviction set no longer applies to randomized skewed
caches. Attackers do not have to use eviction sets with 99%
eviction rate. Measuring the remap period by LLC accesses
is flawed. As a result, existing randomized skewed caches are
still vulnerable to conflict-based cache side-channel attacks.

We proposed several defense ideas to fix the newly discov-
ered problems: Measure the remap period by LLC evictions
rather than accesses while further reduce the period. Adopt
ZCache-like multi-step relocation to minimize the number
of cache blocks evicted during the remap process. Our ex-
periments show that all the newly discovered vulnerabilities
are fixed within the current performance budget. We also
claim that randomized set-associative cache can be sufficiently
strengthened with reasonable overhead using a simple attack
detection mechanism. Compared with randomized skewed
caches, randomized set-associative caches are better candidates
for future commercial processors.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their valuable comments. This work was supported by the
National Natural Science Foundation of China under grant
No. 61802402 and No. 61802397, the CAS Pioneer Hundred
Talents Program, and internal grants from the Institute of
Information Engineering, CAS. Any opinions, findings, and
conclusions or recommendations expressed in this paper are
those of the authors and do not necessarily reflect the views
of the funding parties.

967

REFERENCES

[1] C. Percival, “Cache missing for fun and profit,” 2005.
[2] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and counter-

measures: The case of AES,” in Topics in Cryptology – CT-RSA 2006.
Springer, 2006, pp. 1–20.

[3] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache side-
channel attacks are practical,” in Proceedings of the IEEE Symposium
on Security and Privacy (S&P). IEEE, May 2015.

[4] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$A: A shared cache attack
that works across cores and defies VM sandboxing – and its application
to AES,” in Proceedings of the Symposium on Security and Privacy
(S&P). IEEE, May 2015, pp. 591–604.

[5] D. Genkin, L. Pachmanov, E. Tromer, and Y. Yarom, “Drive-by key-
extraction cache attacks from portable code,” in Proceedings of the In-
ternational Conference on Applied Cryptography and Network Security
(ACNS). Springer, 2018, pp. 83–102.

[6] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A remote
software-induced fault attack in JavaScript,” in Proceedings of the
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA). Springer International Publishing,
2016, pp. 300–321.

[7] M. Hähnel, W. Cui, and M. Peinado, “High-resolution side channels
for untrusted operating systems,” in Proceedings of the USENIX Annual
Technical Conference (UTC). USENIX Association, 2017, pp. 299–
312.

[8] D. Page, “Partitioned cache architecture as a side-channel defence
mechanism,” IACR Cryptology ePrint Archive, vol. 2005, 2005,
http://eprint.iacr.org/2005/280.

[9] T. Kim, M. Peinado, and G. Mainar-Ruiz, “STEALTHMEM: System-
level protection against cache-based side channel attacks in the cloud,”
in Proceedings of the USENIX Security Symposium (Security). USENIX
Association, 2012, pp. 189–204.

[10] F. Liu, Q. Ge, Y. Yarom, F. McKeen, C. V. Rozas, G. Heiser, and R. B.
Lee, “CATalyst: Defeating last-level cache side channel attacks in cloud
computing,” in Proceedings of the International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2016, pp. 406–
418.

[11] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch side-
channel attacks: Bypassing SMAP and kernel ASLR,” in Proceedings
of the ACM SIGSAC Conference on Computer and Communications
Security (CCS). ACM, 2016, pp. 368–379.

[12] N. El-Sayed, A. Mukkara, P. Tsai, H. Kasture, X. Ma, and D. Sánchez,
“KPart: A hybrid cache partitioning-sharing technique for commodity
multicores,” in Proceedings of the IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE, February
2018, pp. 104–117.

[13] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” in Proceedings of the International
Symposium on Computer Architecture (ISCA). ACM, June 2007, pp.
494–505.

[14] ——, “A novel cache architecture with enhanced performance and secu-
rity,” in Proceedings of the Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 2008, pp. 83–93.

[15] F. Liu and R. B. Lee, “Random fill cache architecture,” in Proceedings
of the International Symposium on Microarchitecture (Micro). IEEE,
2014, pp. 203–215.

[16] M. K. Qureshi, “CEASER: Mitigating conflict-based cache attacks
via encrypted-address and remapping,” in Proceedings of the Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2018, pp. 775–787.

[17] ——, “New attacks and defense for encrypted-address cache,” in Pro-
ceedings of the International Symposium on Computer Architecture
(ISCA). ACM, 2019, pp. 360–371.

[18] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and
S. Mangard, “ScatterCache: Thwarting cache attacks via cache set
randomization,” in Proceedings of the USENIX Security Symposium
(Security). USENIX Association, 2019, pp. 675–692.

[19] K. Ramkrishnan, A. Zhai, S. McCamant, and P. C. Yew, “New attacks
and defenses for randomized caches,” arXiv: abs/1909.12302, 2019,
https://arxiv.org/abs/1909.12302v1.

[20] M. Doblas, I.-V. Kostalabros, M. Moretó, and C. Hernández, “Enabling
hardware randomization across the cache hierarchy in Linux-class
processor,” in Proceedings of the Workshop on Computer Architecture
Research with RISC-V (CARRV), 2020, p. 7.

[21] Q. Tan, Z. Zeng, K. Bu, and K. Ren, “PhantomCache: Obfuscating cache
conflicts with localized randomization,” in Proceedings of the Network
and Distributed System Security Symposium (NDSS). Internet Society,
2020.

[22] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis, “The
spy in the sandbox,” in Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security (CCS). ACM, 2015.

[23] P. Vila, B. Köpf, and J. Morales, “Theory and practice of finding eviction
sets,” in Proceedings of the IEEE Symposium on Security and Privacy
(S&P). IEEE, 2019.

[24] W. Song and P. Liu, “Dynamically finding minimal eviction sets can
be quicker than you think for side-channel attacks against the LLC,”
in Proceedings of the International Symposium on Research in Attacks,
Intrusions and Defenses (RAID). USENIX Association, 2019, pp. 427–
442.

[25] D. Sánchez and C. Kozyrakis, “The ZCache: Decoupling ways and
associativity,” in Proceedings of the Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2010, pp. 187–198.

[26] M. Cekleov and M. Dubois, “Virtual-address caches. Part 1: Problems
and solutions in uniprocessors,” IEEE Micro, vol. 17, no. 5, pp. 64–71,
1997.

[27] C. Berg, “PLRU cache domino effects,” in Proceedings of the Inter-
national Workshop on Worst-Case Execution Time Analysis (WCET).
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2006, http://drops.dagstuhl.de/opus/volltexte/2006/672.

[28] M. Yan, R. Sprabery, B. Gopireddy, C. W. Fletcher, R. H. Campbell,
and J. Torrellas, “Attack directories, not caches: Side-channel attacks
in a non-inclusive world,” in Proceedings of the IEEE Symposium on
Security and Privacy (S&P). IEEE, May 2019, pp. 888–904.

[29] M. Yan, B. Gopireddy, T. Shull, and J. Torrellas, “Secure hierarchy-
aware cache replacement policy (SHARP): Defending against cache-
based side channel attacks,” in Proceedings of the International Sympo-
sium on Computer Architecture (ISCA). ACM, 2017, pp. 347–360.

[30] A. Purnal and I. Verbauwhede, “Advanced profiling for probabilistic
Prime+Probe attacks and covert channels in ScatterCache,” arXiv:
abs/1908.03383, 2019, https://arxiv.org/abs/1908.03383v1.

[31] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get
off of my cloud: Exploring information leakage in third-party compute
clouds,” in Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security (CCS). ACM, November 2009, pp. 199–
212.

[32] D. Cock, Q. Ge, T. C. Murray, and G. Heiser, “The last mile: An
empirical study of timing channels on seL4,” in Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security (CCS).
ACM, November 2014, pp. 570–581.

[33] A. Shusterman, L. Kang, Y. Haskal, Y. Meltser, P. Mittal, Y. Oren, and
Y. Yarom, “Robust website fingerprinting through the cache occupancy
channel,” in Proceedings of the USENIX Security Symposium (Security).
USENIX Association, August 2019, pp. 639–656.

[34] R. Bodduna, V. Ganesan, P. SLPSK, K. Veezhinathan, and C. Re-
beiro, “BRUTUS: Refuting the security claims of the cache timing
randomization countermeasure proposed in CEASER,” IEEE Computer
Architecture Letters, vol. 19, no. 1, pp. 9–12, January 2020.

[35] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high resolution, low
noise, L3 cache side-channel attack,” in Proceedings of the USENIX
Security Symposium (Security). USENIX Association, 2014, pp. 719–
732.

[36] Intel, “Intel R� architecture instruction set extensions programming
reference,” Intel, Tech. Rep. 319433-023, August 2015,
https://software.intel.com/sites/default/files/managed/07/b7/319433-
023.pdf.

[37] X. Zhang, Y. Xiao, and Y. Zhang, “Return-oriented flush-reload side
channels on ARM and their implications for Android devices,” in
Proceedings of the ACM SIGSAC Conference on Computer and Com-
munications Security (CCS). ACM, 2016, p. 858870.

[38] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” SIGARCH
Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[39] The RISC-V Instruction Set Manual. Volume I: Unprivileged ISA Ver-
sion 20191213, Editors Andrew Waterman and Krste Asanović, RISC-
V Foundation, December 2019, https://riscv.org/specifications/isa-spec-
pdf/.

[40] A. Waterman, T. Newsome, C.-M. Chao, Y. Lee, S. Beamer, and others,
“Spike RISC-V ISA simulator,” https://github.com/riscv/riscv-isa-sim.

968

[41] T. Ta, L. Cheng, and C. Batten, “Simulating multi-core RISC-V systems
in gem5,” in Proceedings of the Workshop on Computer Architecture
Research with RISC-V (CARRV), 2018, p. 7.

[42] N. L. Binkert, B. M. Beckmann, G. Black, S. K. Reinhardt, A. G.
Saidi, A. Basu, J. Hestness, D. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
simulator,” SIGARCH Computer Architecture News, vol. 39, no. 2, pp.
1–7, 2011.

[43] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+flush: A
fast and stealthy cache attack,” in Proceedings of the International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA). Springer, 2016, pp. 279–299.

[44] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in Proceedings
of the USENIX Security Symposium (Security). USENIX Association,
2018, pp. 973–990.

[45] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” in Proceedings of the IEEE Sympo-
sium on Security and Privacy (S&P). IEEE, May 2019, pp. 19–37.

[46] A. Rudoff, “Persistent memory programming,” ;login:, vol. 42, no. 2,
pp. 34–40, 2017.

[47] N. Zhang, K. Sun, D. Shands, W. Lou, and Y. T. Hou, “TruSpy:
Cache side-channel information leakage from the secure world on ARM
devices,” IACR Cryptology ePrint Archive, vol. 2016, p. 16, 2016,
http://eprint.iacr.org/2016/980.

[48] M. S. İnci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and B. Sunar,
“Cache attacks enable bulk key recovery on the cloud,” in Proceedings
of the Conference on Cryptographic Hardware and Embedded Systems
(CHES). Springer, 2016, pp. 368–388.

[49] D. Skarlatos, M. Yan, B. Gopireddy, R. Sprabery, J. Torrellas, and
C. W. Fletcher, “Microscope: Enabling microarchitectural replay at-
tacks,” IEEE Micro, vol. 40, no. 3, pp. 91–98, 2020.

[50] J. Kong, O. Aciiçmez, J. Seifert, and H. Zhou, “Deconstructing new
cache designs for thwarting software cache-based side channel attacks,”
in Proceedings of the ACM Workshop on Computer Security Architecture
(CSAW). ACM, October 2008, pp. 25–34.

[51] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Bian-
colin, C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz,
S. Karandikar, B. Keller, D. Kim, J. Koenig, Y. Lee, E. Love,
M. Maas, A. Magyar, H. Mao, M. Moreto, A. Ou, D. A. Pat-
terson, B. Richards, C. Schmidt, S. Twigg, H. Vo, and A. Wa-
terman, “The Rocket chip generator,” EECS Department, Univer-
sity of California, Berkeley, Tech. Rep. UCB/EECS-2016-17, April
2016, http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-
17.html.

[52] J. Kimmitt, W. Song, and A. Bradbury, “lowRISC with
tagged memory and minion core (version 0.4),” June 2017,
https://www.lowrisc.org/docs/minion-v0.4/.

[53] A. Seznec, “A case for two-way skewed-associative caches,” in Proceed-
ings of the Annual International Symposium on Computer Architecture
(ISCA). ACM, May 1993, pp. 169–178.

[54] S. Sardashti, A. Seznec, and D. A. Wood, “Skewed compressed caches,”
in Proceedings of the Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2014, pp. 331–342.

[55] M. Sugiyama, “Section 2.5 – transformation of random variables,”
in Introduction to Statistical Machine Learning. Boston: Morgan
Kaufmann, 2016, pp. 22–23.

[56] “Scale: Scaling and centering of matrix-like objects,”
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/scale.

[57] J. S. Hunter, “The exponentially weighted moving average,” Journal of
Quality Technology, vol. 18, no. 4, pp. 203–210, 1986.

[58] Y. Zhang and M. K. Reiter, “Düppel: Retrofitting commodity operating
systems to mitigate cache side channels in the cloud,” in Proceedings
of the ACM SIGSAC Conference on Computer and Communications
Security (CCS). ACM, 2013, pp. 827–838.

[59] A. Phansalkar, A. Joshi, and L. K. John, “Analysis of redundancy
and application balance in the SPEC CPU2006 benchmark suite,” in
Proceedings of the International Symposium on Computer Architecture
(ISCA). ACM, June 2007, pp. 412–423.

[60] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in Proceedings of the
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). ACM Press, 2002, pp.
45–57.

[61] A. A. Nair and L. K. John, “Simulation points for SPEC CPU 2006,”
in Proceedings of the International Conference on Computer Design
(ICCD). IEEE Computer Society, 2008, pp. 397–403.

[62] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection of
cache-based side-channel attacks using hardware performance counters,”
Applied Soft Computing, vol. 49, pp. 1162–1174, 2016.

[63] M. Payer, “HexPADS: A platform to detect “stealth” attacks,” in
Proceedings of the International Symposium on Engineering Secure
Software and Systems (ESSoS). Springer, 2016, pp. 138–154.

[64] T. Zhang, Y. Zhang, and R. B. Lee, “CloudRadar: A real-time side-
channel attack detection system in clouds,” in Proceedings of the In-
ternational Symposium on Research in Attacks, Intrusions and Defenses
(RAID). Springer, 2016, pp. 118–140.

[65] J. Chen and G. Venkataramani, “CC-Hunter: Uncovering covert timing
channels on shared processor hardware,” in Proceedings of the Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2014, pp. 216–228.

[66] A. Fuchs and R. B. Lee, “Disruptive prefetching: Impact on side-channel
attacks and cache designs,” in Proceedings of the ACM International
Systems and Storage Conference (SYSTOR). ACM, 2015, pp. 14:1–
14:12.

[67] F. Yao, H. Fang, M. Doroslovacki, and G. Venkataramani, “Towards
a better indicator for cache timing channels,” arXiv: abs/1902.04711,
2019, http://arxiv.org/abs/1902.04711.

[68] A. Harris, S. Wei, P. Sahu, P. Kumar, T. M. Austin, and M. Tiwari,
“Cyclone: Detecting contention-based cache information leaks through
cyclic interference,” in Proceedings of the Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO). IEEE, 2019, pp.
57–72.

[69] A. Purnal, L. Giner, D. Gruss, and I. Verbauwhede, “Systematic analysis
of randomization-based protected cache architectures,” in Proceedings
of the IEEE Symposium on Security and Privacy (S&P). IEEE, May
2021.

[70] T. Bourgeat, J. Drean, Y. Yang, L. Tsai, J. Emer, and M. Yan, “CaSA:
End-to-end quantitative security analysis of randomly mapped caches,”
in Proceedings of the Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, October 2020.

969

