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ABSTRACT

The current electronic-economy is booming, electronic-wallets,
encrypted virtual-money, mobile payments, and other new gen-
erations of economic instruments are springing up. As the most
important cornerstone, CPU is facing serious security challenges.
And with the blowout of actual application requirements, the im-
portance of CPU security testing is increasing. However, the actual
security threats to computer systems are also becoming increas-
ingly rampant (now attackers often use multiple different types
of vulnerabilities to construct complex attack systems, not just a
single attack chain). The traditional vulnerability detection model
is not capable of comprehensive security assessment.

We first proposed a comprehensive CPU Security Benchmark
solution with high coverage for existing known vulnerabilities,
including Undocumented Instructions detection, Control Flow In-
tegrity test, Memory Errors detection, and Cache Side Channels
detection, Out of Order and Speculative execution vulnerabilities
(Meltdown and Spectre series) tests, and more. Our benchmark
provides meaningful and constructive feedbacks for evading archi-
tecture/microarchitecture design flaws, system security (OS and
libraries) software patches design, and user programming vulnera-
bilities tips.

We hope that the work of this paper will promote the computer
system security testing from the past scatter point and line mode
(single specific vulnerability and attack chain testing) to coordi-
nated and whole surface mode (multi-type vulnerabilities and at-
tack network testing), thus creating a new research direction of the
comprehensive and balanced CPU Security Benchmark. Our test
suite will play an inspiring role in the comprehensive assessment
of security in personal computer devices (PC/Mobile Phone) and
large server clusters (Servers/Cloud), as well as the construction
of more secure Block-Chain nodes (IOT), and many other practical
applications.

CCS CONCEPTS

« Security and privacy — Vulnerability scanners; Access con-
trol; Penetration testing;
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1 INTRODUCTION

With the booming of the electronic-economy, the electronic-wallets,
encrypted virtual currency, mobile payments, and other new gener-
ations of economic instruments continue to emerge. Because of the
temptation of potential profits, the density, intensity and diversity
of attacks on the above application scenarios have risen sharply.
Whether they are servers cluster as data centers, personal terminal
devices, or IoT nodes, they are all at risk of attacks. The commonal-
ity of above three is that they are all inseparable from CPU security.
The construction of convenient mobile payment system and virtual
currency trading platform are both inseparable from this important
cornerstone. While, the research on CPU security at the architec-
ture or microarchitecture level is still insufficient. Is the existing
CPUs (PC, Server, IoT node, etc.) secure enough to complete the
tasks of building large-scale electronic-economic infrastructures?
The resolution of this fundamental problem is imminent.

Combined with the previous analysis, there is a contradiction
between the blowout of security application requirements and the
insufficient CPU security research status. The existence of this
contradiction has prompted the industry to urgently need a stan-
dardized set of CPU security tests, in order to give a comprehensive
safety assessment. This benchmark must be comprehensive enough
to reach a wide coverage, because with the continuous discovery
of many different types of vulnerabilities, modern attacks often
use diverse vulnerabilities to construct complex attack systems. If
only a few part of the vulnerabilities are detected, it is not sufficient
for the security of whole CPU system. The age of point-to-point
detection is gone, and only a comprehensive security assessment
system can ensure the safety of the CPU. More importantly, un-
til now, there is still no high-coverage rate comprehensive CPU
security test benchmark available in the industry and academia.
Grain and fodder must be prepared in advance for the troops and
horses. A comprehensive assessment of CPU security must precede
large-scale applications.

The main design idea of our CPU Security Benchmark is: A large
set of comprehensive, high-coverage and low-cost POC(Proof of
Concept) vulnerability detection codes plus few targeted and tortu-
ous vulnerability detection codes, and according to the application
needs of different occasions, integrate the test results of different
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code combination modes, and give targeted comprehensive assess-
ment feedback. The overall structure is shown in Figure 1.
The key contributions of this paper are as follows:

(1) The first comprehensive high-coverage CPU Security Bench-
mark, which provides comprehensive CPU security assess-
ments for a variety of commercial servers and desktops pro-
cessors (including Intel, ARM, AMD, Loongson, Zhaoxin,
Phytium, Hygon, Shenwei, VIA etc.).

(2) This paper extended the research field that comprehensively
evaluate CPU security, and analyzed the practical utility of
comprehensive CPU security testing, which pointed out the
direction for subsequent researches.

2 BACKGROUND

2.1 Shortcomings of Existing Vulnerability
Detection

Traditional computer system vulnerability detection mechanisms
are often based on the scanning and verification of existing operat-
ing systems or administrator programs, as well as a large number
of applications and code libraries. However, the amount of code in
the OS Kernel or System Hypervisor or library are huge, and it is
very difficult to detect the hidden gadgets.

For the open source Linux OS Kernel and Xen Hypervisor or
OpenSSL library, its open source features have lowered the attack
threshold to some extent. In the three years from 2015 to 2017,
more than 80 new security vulnerabilities were discovered in Linux
every year [4]. And a single year in 2017, more than 60 flaws were
discovered in Xen [8]. For example, in the work of Matthieu et al.
[17] collected more than 2,200 vulnerable files, which accounted for
863 vulnerabilities and calculated more than 35 software indicators,
but only found three critical vulnerabilities in OpenSSL, and two
kinds of vulnerabilities that are critical in the Linux kernel.

Microsoft’s Windows OS, although not open source, has a long
history of heavy historical burdens and new features that are con-
stantly accumulating. There are also problems of bloated scale and
complex code that are difficult to detect. For example, Kostyantyn
et al’s work [24] performed security vulnerabilities detection in C
code, which tested over 700 test cases belonging to SARD-100 test
suite of the SAMATE project and Toyota ITC Benchmark, by using
three advanced runtime verification tools (E-ACSL, Google Sanitizer
and RV-MATCH). The results of their experiments showed that the
number of seed defects cumulatively detected by the selected tools
was only 84%.

Even the complexity of a single application goes far beyond the
capabilities of existing detection mechanisms. For example, Firefox
[5] includes more than 36 million lines of code accumulated over
10 years. Complex code undoubtedly has more opportunities to
exploit security vulnerabilities through attacks [22].

On the other hand, hackers are increasingly understanding the
various levels of computer systems. Even Intel, which is tight-lipped
about the underlying architecture/microarchitecture details, has
an inability to avoid the continued exposure of its advanced CPU
architecture flaws. Such as Rowhammer [16, 20], Spectre and Melt-
down series [18, 19]. Taking spectre variant 1 as an example, it
synergistically exploits the three aspects of flaws including Specu-
lative branch bypass, Cache side channel, and the Permission check
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flaw of user space to kernel space. These vulnerabilities almost
vertically straddle the OS, ABI(Application Binary Interface), ar-
chitecture and microarchitecture computer system levels. Spectre
played a beautiful combination of punches, forcing major computer
architecture vendors to rethink safer architecture designs.

2.2 Limits of Existing Trusted Computing

Given the inadequacy of traditional vulnerability detection, cau-
tious designers have to include key code in the TCB(Trusted Com-
puting Base). The construction of TCB itself must take a different
approach. Some existing practices seek to find software isolation
mechanisms from lower-level physical hardware support, such as
SGX [2, 9, 12] and Sanctum [13]. However, an attacker can also
build a corresponding attack by exploiting the physical characteris-
tics of the underlying hardware. For example, Wang Wenhao et al.
found a series of memory side channels that broke the isolation of
Intel SGX [25].

In another example, shortly after the spectre vulnerability was
exposed, researchers soon discovered its derivative variant on SGX
called SgxPectre [11]. This example shows that the current TCB
(Trusted Computing Foundation) or TEE (Trusted Execution Envi-
ronment) has a certain degree of backwardness in security concepts.
The underlying hardware structure and microcode details of Intel
SGX are not public. However, the old routine by concealing the un-
derlying details to achieve security, which is easy to fall into a dead
end. Ordinary users do really not have access to the underlying de-
tails. But this does not guarantee that hackers will never guess the
details, not to mention that the design, manufacturing, and supply
chain management of the underlying hardware and software are
not necessarily trusted. The RISCV-based open source TEE being
developed by Dawn Song’s Keystone project [3] team (including
members of the original Sanctum team) is exploring innovation
in security concepts. They defined the routine that concealed the
underlying details to ensure security as "Security by Obscurity".
They themselves proposed "Open Security”, they open source the
underlying infrastructure design, so that industry and academic
community can better participate in the improvement of the design.
And the security of TEE under the open source, the theoretical logic
is strictly demonstrated.

However, there is also an unfortunate fact that whether it is SGX
or sanctum (keystone), up to now, still very little breakthrough on
contradiction between performance and strong isolation. If they
are to be truly isolated, they must sacrifice the performance of
speculative interactions with the outside world. Sometimes the
performance of normal interactions is sacrificed. For example, SGX
does not have a secure peripheral IO interface. This inevitably loses
the extended performance of the connection to the peripherals,
limiting the possibility of massively parallel computing such as ma-
chine learning. Because the data in the TCB is not self-produced, the
data source must come from the outside, and the processing results
often require external feedback. This contradictory industry has not
yet found an elegant solution, so the existing TCB deficiency and
the newly added vulnerabilities on the TCB have in fact increased
the necessity and workload of the security test benchmark.
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Figure 1: Overall design of CPU Security Benchmark.

2.3 Comprehensive CPU Security Testing
Challenges

Designing a comprehensive high-coverage CPU security detection
standard mechanism, in order to make up for the above shortcom-
ings, faces many challenges:

Differences between different platforms. Different implementa-
tions are required on different architectures. Different architectures
use different Instruction Set Architectures (ISA). Different compil-
ing softwares, the underlying API (application interface functions)
supported are also different. So even with code that is identical
in principle, code that runs successfully on one platform may not
work when ported to another platforms. And sometimes, the code
migration works of different platforms are quite heavy.

Explosive diversification of vulnerabilities. The security coverage
of the CPU is wide, and security vulnerabilities and attack methods
are emerging one after another. How to ensure the high coverage
of the evaluation? How to follow up with the test code as the attack
progresses? How to take into account the loopholes we are not
good at? An important unfortunate fact in the security field is that
for a vulnerability detector, even if 999 of a thousand vulnerabilities
are detected, it is not safe to miss one; for an attacker, one success
in a thousand attacks is a success. The process of circumventing
subjective deviations and constantly moving closer to objective
laws is long and painful.

Attack chain is deeply complicated. Every hacker has his own
means and methods, which vary from person to person. For the
vulnerability tester, the simpler the test code, the smaller the side
effects on the original system, the better. However, unfortunately,
with the complexity and variety of vulnerabilities, vulnerability
features are hidden in layers. Many of the original effective de-
tection methods have been bypassed, and the detection process
has become more and more tortuous. The key is that we can’t let
all kinds of hackers take the initiative to expose their own attack
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routines and combination strategies to us. Therefore, we start from
the mechanism, testing on the basis of control flow integrity, side
channels, memory errors, speculative execution vulnerability and
so on. Then through the in-depth study of the real attack chain, we
gradually improve the process and combination mode of our test.
Recurring the whole attack chain is costly. This is not the purpose
of our benchmark, but a last resort for some slippery flaws.

3 OVERALL DESIGN OF BENCHMARK

The main testing process of our Benchmark is designed as fol-
lows: We first collected a series of common vulnerabilities and
analyzed their basic characteristics one by one. Then separately
built lightweight and small cost POC code model on different CPU
architecture platforms, and carried out the principle verification. If
after this widely covered batch of concise POC codes test, success-
fully detected the target vulnerability and completed the security
assessment task. Then, there is no need to go through a more costly
and more complex inspection process. If a certain type of high-risk
vulnerability is not detected in the above period, then the attack
chain collaborative utilization model of this type of vulnerability is
combined to explore a more complex testing process. In order to
perform targeted high-pressure tests on the entire CPU system, this
system may with certain defense mechanisms. Finally, according
to different application requirements, the test results of different
combination modes are integrated, and the targeted comprehensive
evaluation feedback is given.

A large set of comprehensive, high-coverage and low-cost PoCs
plus few targeted and tortuous detection codes. First, migrate code
based on different platforms. Then run all PoCs one by one. The
results of the first round of operation are divided into Detected list
and Undetected list according to the preset vulnerabilities. Then
analyze whether the vulnerabilities in the Undetected list is high
risk, and include the low-risk vulnerabilities in the Secure list, while
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complicate the high-risk vulnerabilities detection code and repeats
the loop detection. Finally, according to the application needs of
different occasions, integrate the Detected, Undetected and Secure
lists with different modes, and give targeted comprehensive assess-
ment feedback. The overall design of our CPU Security Benchmark
is shown in Figure 1.

4 COMPONENTS DESCRIPTION

4.1 Undocumented Instructions detection

The processor sometimes is not a trusted black box, in which hard-
ware bugs, unknown machine instructions, and some unexpected
behaviors in different architecture chips have been revealed by
researchers. Instruction-level bugs like Pentium 0xFOOF, which is
CMPXCHGSB instruction code, can result in the processor ceasing
to function until computer is physically rebooted [1]. Moreover, the
VIA C3 processor was explored a 0x0F3F undocumented instruction
code, which offers ring3 to ring0 privilege escalation [14]. We have
to find these undocumented instructions and hardware bugs ahead
of time. The undocumented instructions and instruction integrity
should be taken seriously. While, traditional instruction verification
and validation methodology focuses on the functions of processor,
the undocumented instructions have been paid little attention.

There are challenges in undocumented instruction detection: the
complexity of architecture instruction set of different platforms,
and the magnitude instruction search space. The difficulty is that
CISC ISA instruction could be up to 15 bytes long, and the search
space of it is at least 1.3 * 103 instructions. Moreover, the CISC
ISA instruction format is complex, some of them are of the form of
long combination of prefixes and opcodes. Fortunately, the RISC
ISA instruction format is relatively simple, and the search space is
4.9%10° . But it is still tough work for a PC to traverse all the space
of instructions in short time.

Little research work is about the detection of the undocumented
instructions. Sandsifter [15] which is based on observing changes
in instruction length and page fault analysis allows effective ex-
ploring the meaningful search space of the x86 ISA. But it does
not cover the legal instructions in a method of unreasonable use,
and the disassemble library tool it uses is not suitable for some
self-defined ISA. Furthermore, the approach of random instruction
generation cannot traverse all the instruction space and cannot find
arbitrary complex instructions. The method of generation based
on the architecture instruction formats cannot find undocumented
and arbitrary complex instructions.

In this paper, an undocumented instructions detection tool is
proposed. We developed an automatic instruction generator to
generate instructions, execute them, and analyze the results. The
tool has two advantages. First, it has the ability of full instruction
code space traverse. Second, it provides efficient instruction space
traversal capability. The undocumented instruction detection tool
works as the following steps:

(1) Generate instructions: use automatic generation program to
generate instructions;

(2) Filtrate instructions: put the instructions into memory, the
processor fetches the instructions, and the decoder checks
whether the instructions are executable or not;

(3) Execute instructions: run these executable instructions;
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(4) Analyze executable instructions: analyze the function of the
executable instructions, check the relative registers value
and store illegal instructions.

The tool has been used in the undocumented instructions detection
in different platforms including ARM, MIPS ISA.

4.2 Memory Errors detection

Memory corruption bugs are the foundation of many kinds of
mainstream attack technology at present, such as ROP, heap spray
and ret2libc. As for memory errors, we proposed a layer-based,
fast convergence benchmarks which consist of many elaborate test
cases to analyze the defense capabilities of tested machines with
Linux OS and different computer architectures. The framework of
memory errors detection is shown in Figure 2.

Buffer overflow is the most typical attack in memory errors,
which composes three stages: out-of-bounds access through pointer,
modifying code pointer and hijacking control flow. Whether a stage
takes effect is strictly dependent on the success of previous stage(s).
Therefore, a three-layer framework is built to evaluate the security.
Test cases in each layer evaluate whether the tested machine is
susceptible to vulnerabilities in each attack stage. If an attack case
fails, there is no need to test for further layers, which contributes to
a fast convergence. Through these benchmarks, the stages which
are vulnerable to attacks or defensed successfully will be exposed
accurately.

The attackers make the pointer going out of the bound, which
is the basis of buffer overflow attacks, to trigger a memory error.
By excessively incrementing or decrementing an array pointer in a
loop without proper bound checking, a buffer overflow/underflow
will happen. By causing pointer out of bounds, but the bounds
check is missing or incomplete, the pointer might be pointed to
any address. If an attacker controlled pointer is used to write the
memory, then any variable, including other pointers or even code,
can be overwritten. Within our framework, the first layer evaluate
whether pointers in tested machines are susceptible to make a
pointer out of bounds.

After getting the pointer out of bounds, the next goal is to modify
the code pointers, such as return addresses, function pointers and
jum_buf structure, which determine the control flow. The second
layer assesses whether these key code pointers in tested machines
are at risk of being modified by out-of-bounds pointer.

The third stage is to load corrupted code pointer to instruction
pointer register. Executing function return instruction, indirect
function call and indirect jump will hijack control flow to the point-
ers modified in the second stage. Diverting the execution from the
control-flow defined by the source code, which is a violation of the
control flow integrity (CFI) policy, is estimated in the third layer.

4.3 CFI vulnerabilities detection

According to the categories of control flow transfer, we divide the
the CFI benchmark into 2 parts: forward and backward [10], as
shown in Figure 3.

Forward. In cpu’s ISA, there are two instructions for forward
control flow transfer, call and jump. The instruction call is used for
calling a function, so the address followed the instruction usually
is the function entry. And the instruction jump is almost used to
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jump to a target address in local control flow, like loops and if-else
statement. So some addresses are almost impossible for the forward
control flow transfer instruction, for example, the middle of an
instruction, which may only appear in attacks. So we make these
situations to test the security of the CPU system. Function call has
more limits than jump, because of its arguments. We always state
the number and type of arguments in program, and compilers will
help us check the correctness of arguments [23]. But the hardware
doesn’t check. So this is also a point for us to check in our CPU
Security Benchmark. And the tests for these two instructions are
as follows:

(1) jump to the middle of a function

(2) jump to the middle of an instruction
(3) jump to the instruction in data memory
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(4) call to the middle of a function

(5) call to the middle of an instruction

(6) call to the instruction in data memory

(7) call to a function with incorrect number of arguments
(8) call to a function with incorrect type of arguments

The test cases list above are used to check the security of the
forward control flow transfer instruction directly. And there are
also many test cases to test the security of forward control flow
transfer in more complex ways, which can also be used in the
real world attacks. (1) virtual table pointer [21]. In object oriented
language, a class object finds its virtual function address by the
virtual table pointer. So we modify the virtual table pointer to test
whether the system can protect the virtual table pointer and how
the system to detect the changes of virtual table pointer. (2) global
offset table(GOT). GOT helps the procedure linkage table(PLT) to
find the address of the functions after the object files are linked with
dynamic link library. We check the security of the GOT and PLT in
benchmark. (3) function pointer. We check whether the system can
detect incorrectness of the type and number of arguments.

Backward. In the ISA, the instruction for backward control
flow transfer is just one, return. Commonly, the instruction return
appears with the instruction call in pairs. And the instruction call
and the instruction return are emitted by compiler as the prologue
and the epilogue of a function call. So testing the consistency of
the instruction call and the instruction return is necessary. Besides,
the addresses of backward control flow transfer are also limited.
Actually, the address for backward control flow transfer was decided
when a program to call a function, which is the exactly the address
of next instruction of the function call. So we change the address
for the backward control flow to detect whether there is a defense
for backward control flow transfer and the grain of the defense.
The tests of backward control flow transfer are as follows:

(1) return to the instruction in data memory

(2) return to a function entry

(3) return to the middle of an instruction

(4) return to the middle of a function

(5) return to the instruction followed another function call
(6) different number of the instruction call and returnw

4.4 Cache side channels detection

The Cache side channel mainly uses the access time difference of
the hits or misses of the caches of different hierarchies (and their
auxiliary structures TLB, PTW, etc.) to leak information. This type
of side channel requires the attacker to share part of the cache or its
auxiliary structure with the victim. Common Cache side channels
include Flush+Reload, Flush+Flush, Prime+Probe, Evict Time, AnC.

Flush+Reload: The attacker first flushes all the cache lines in-
volved in the test with the flush instruction. After the victim ac-
cesses a cache line, the attacker traverses through the reload to find
the cache line with a short time, which is the cache line that the
victim just visited.

Flush+Flush: The attacker first flushes all the cache lines involved
in the test with the flush instruction. After the victim accesses a
cache line, the attacker traverses through the flush again to find the
cache line with a long time, which is the cache line that the victim
just visited.
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Prime+Probe: The attacker first takes all the cache lines partici-
pating in the test to the cache of their own core, and waits for the
victim on another core to access one of the cache lines (due to the
cache coherency protocol, this will change the state of that cache
line in attacker’s location). The attacker traverses the access again
to find the cache line with long time, which is the cache line that
the victim just accessed.

Evict Time: The attacker first selects a target cache line and
accesses the other cache lines of the same set as the target cache
line, so that evicts the target cache line from the cache. Then observe
the victim execution time. If the time is longer, the victim has visited
the target cache line.

AnC: AnC attack uses the feature that PTE (page table entry)
and common data sharing cache, to detect the location(set index)
of PTEs in the cache during the PTW (page table walker) operation,
ie the page offset in the page table. And the virtual address of the
key data or code is obtained, finally bypassed the ASLR (address
randomization).

4.5 Out-of-Order and Speculative Execution
Vulnerabilities Detection

The Meltdown [19] and Spectre [18] series of vulnerabilities pri-
marily exploit the residual effects of out-of-order or speculative ex-
ecution on cache state to leak information. When the core pipeline
finds out-of-order execution or speculative execution errors, archi-
tectural changes are flushed without affecting correctness; however,
changes to the cache state at the microarchitecture level are main-
tained. Thus, the attacker can induce the processor to perform
erroneous out-of-order or speculative execution, thereby leaking
secret data in conjunction with the cache side channel.

4.5.1 Meltdown v3: rogue data cache load CVE-2017-5754. The
attacker uses the interval between out-of-order execution and ex-
ception handling, illegally accessing kernel space data from the user
space. On Intel CPUs that support out-of-order execution, you can
use Intel’s unique TSX (Transactional Synchronization Extensions)
to suppress exceptions and repeat attacks efficiently. The code is
shown in Figure 4. Of course, conditional jump instructions can
also be used to suppress exceptions, such as the code in the ARM
platform shown in Figure 5. On some ARM platforms, you can also
access the system register that should not be accessed: TTBRO_EL1,
(Meltdown V3a: Rogue System Register Read: CVE-2018-3640 [7]),
the code is shown in Figure 6.

4.5.2 Spectre v1: bounds check bypass CVE-2017-5753. By train-
ing the BHT(Branch History Table), the attacker always executes
the branch, and suddenly accesses the out-of-range secret address
in the branch. The code is shown in Figure 7. Although, after the
boundary condition is resolved, the branch is error guessed and an
exception is triggered. However, the secret value still remains in
the cache indirectly in the form of an address.The two debugging
experiences of Spectre v1 are:

(1) The open() function is needed to read the kernel data into the
L1 cache before you can successfully leak the corresponding data.

(2) By nesting multiple layers of cache misses or even using
TLB(Translation Lookaside Buffer) misses, extending branch reso-
lution time, can execute more malicious instructions.
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if ((status = xbegin()) == XBEGIN STARTED) {
asm _ volatile  (
"e=: \n"
"xorg %$%$rax, %$%rax \n"
"movb (%[ptr]), %%al \n"
"shlg $0xc, %$%rax \n"
"jz %=b \n"
"movqg (%[buf], %%rax, 1), %%rbx \n"
[ptr] "r" (ptr), [buf] "r" (buf)
"$rax", "%rbx");
~xend();

Figure 4: Meltdown v3 with Intel TSX.

LDR X1, [X2] ; arranged to miss in the cache
CBZ X1, over ; This will be taken but

; 1s predicted not taken
LDR X3, [X4] ; X4 points to some EL1 memory
1SL X3, X3, #imm
AND X3, X3, #0xFCO
LDR X5, [X6,X3] ; X6 is an ELO base address

over

Figure 5: Meltdown v3 on ARM.

LDR X1, [X2] ; arranged to miss in the cache

CBZ X1, over ; This will be taken

MRS X3, TTBRO EL1;

LSL X3, X3, #imm

AND X3, X3, #0xFCO

LDR X5, [X6,X3] ; X6 is an ELO base address
over

Figure 6: Meltdown v3a on ARM.

uint8 t array3[4096];
uint8 t array4[4096];

//size = page size, cause TLB miss

if (x < [array3[arrayl size]]) { // 3 cache misses

temp &= array2[arrayl[x] * 512]; // 2 cache misses

Figure 7: Spectre v1.

4.5.3 Spectre v2: branch target injection CVE-2017-5715. The at-
tacker trains BTB(Branch Target Buffer), induces the victim to jump
to the gadget, and executes the leak code. The Spectre v2 attack
process is shown in Figure 8.

Spectre v2 has two difficulties for attackers: (1) Inject malicious
targets into BTB and even tamper with RSB (Return Stack Buffer)
/ RAS (Return Address Stack). (2) Find Gadgets in the victim code
that can indirectly reveal the secret value.

For this vulnerability detection, one can simplify the process by
the following means: (1) Construct gadgets in victim code. (2) The
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Figure 8: Spectre v2 [6, 11].

default test code has cracked ASLR (address randomization) and
obtained a virtual address.

5 CONCLUSIONS AND FUTURE WORKS

This paper proposed a comprehensive CPU Security Benchmark
solution with high coverage for existing known vulnerabilities,
including Undocumented Instructions detection, Control Flow In-
tegrity test, Memory Errors detection, and Cache Side Channels
detection, Out of Order and Speculative execution vulnerabilities
tests. The Benchmark has been experimentally verified on several
real platforms, and provided meaningful feedbacks for evading ar-
chitecture/microarchitecture design flaws, software patches design,
and user programming vulnerabilities tips.

This article is only a preliminary version of the CPU Security
Benchmark. Several future works are as follows: (1) Improving
the compatibility of Benchmark code for different instruction sets
and reducing the porting work of users to test code. (2) Reduc-
ing the gap between our own built gadgets and real gadgets on
computer system and improving the authenticity of Benchmark.
(3)Further improving the coverage of Benchmark, expanding the
types and quantities of more vulnerabilities and their derivatives.
(4) Designing a more reasonable comprehensive evaluation process
and conclusion integration mechanism of different combination
modes, to make more meaningful test feedbacks. A more complete
Benchmark with more features will be available in the near future.
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