
Defeating the Recent AnC Attack by Simply Hashing the Cache Indexes
 Implemented in a BOOM SoC

Wei Song, Rui Hou, Dan Meng
Institute of Information Engineering, Chinese Academy of Sciences

89A Minzhuang Road, Haidian District, Beijing, China 100093
{songwei, hourui, mengdan}@iie.ac.cn

8 x 1GB
(8 PTEs)

6 x 2MB
(6 PTEs)

3 x 4KB
(3 PTEs)

PT2 offset

PT1 offset

PT0 offset

0x00

0x3F

0x2E

0x14

0x21

0x04

PT3 offset

0x21 0x5
100001 101

0x04 0x2
000100 010

0x2E 0x0
101110 000

0x14 0x1
010100 001

scan
 all sets

step 2
scan for PTEs

step 1
eviction buffer

step 3
sliding

step 4
recover offsets

cache
set index

7 x 512GB
(7 PTEs)

Cache Array

PTE
cache line

offset

001010001_101110000_000100010_100001101
PT0 offsetPT1 offsetPT2 offsetPT3 offset

The AnC Attack
 The AnC attack[1] is a principled way to bypass the address space layout
randomization (ASLR) defense in all major browsers by utilizing existing side-
channels on memory management unit (MMU) and caches.

Attack Scenario:
 The attacker is a JITed thread running in a browser sandbox protected by
ASLR.
- The attacker CAN access a large amount of vitual memory (data/code).
- The attacker runs in the SAME process with the browser (same ASID).
- The attacker runs on the SAME core with the browser (share L1/LLC).
- The attacker does NOT know the virtual address of her data/code.
- ALL virtual pages are randomized by the ASLR defense.

Attack Target:
 Infer the virtual address (VA) of a target variable belonging to the attacker
(bypassing ASLR).

Attack Procedure:
 For a target variable v, infer all PT (page table) offsets using cache side-
channel attacks on the 4 cache PTEs (page table entries).
Step 1: Construct an eviction buffer.
Step 2: Scan all cache sets to identify the 4 cached PTEs related to v.
Step 3: Use the sliding technique to map PTEs to PT levels.
Step 4: Use the sliding technique to recover the PTE offsets inside cache lines.

Key Insights:
- Caching PTEs with data is a security vulnerability.
- Existing cache partitioning does not protect PTEs from side-channels.
- Knowning the cache set index is able to decipher page offsets.
- The direct mapping between VA and cache indexes is a prerequisite for the
attack.

PT3 offset

001010001

PT2 offset

101110000

PT1 offset

000100010

PT0 offset

100001101

page offset

000000110000

0x000

0x1FF

0x051 0x000

0x1FF

0x170

0x000

0x1FF

0x022
0x000

0x1FF

0x10D

PPN

permission

PTE

PTE

PTE

PTE

PT3
PT2

PT1
PT0

001010001_101110000_000100010_100001101_000000110000 => PPN_000000110000

address translation:

VPN page offset page offset

root

VPN

way-0 way-1 way-(w-1)

set

2s sets

d
a
ta

ta
g

TLB

VPN
Page
offset

VA

cache line
offset

VA[s+5:6]

PPN PA[2s+5:s+6]

data

Break the direct mapping between VA and cache
indexes using a simple hash.

The original cache index:
 CI = VA[s+5:6]

The hashed cache index:
 CI = VA[s+5:6] PA[2s+5:s+6]

CI: cache set index, 2s: number of sets

Defense Methodology:
- Cache should be transparent to software; therefore, software should not infer
or rely on the direct mapping.
- Without the direct mapping, it is difficult to constrcut an eviction buffer.
- Without knowing the PA, it is difficult to infer VA from cache set index.
- Cache lines with the same page offset are likely mapped to different sets.
- PA is normally unknown to user mode programs.

Prerequisites:
- PA is not exposed to user mode programs.
- OS constantly allocates random physical pages to consecutive virtual pages.
- OS disable the huge page support.

Implementation:
The proposed scheme is implemented in a BOOM SoC[2]. Both the L1 and L2
(LLC) caches are modified with the hash scheme.

Performance overhead:
Running the SPECInt 2006 benchmark on FPGA.
- Averge 1.0% increase in execution time.
- Marginal increases in the cache miss rates (L1 < 4%, L2 <0.5%).
- Marginal increases in cache area (<0.1%).

References:
[1] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida. "ALSR on the line: Practical cache attacks on the MMU," In Proc. of the Network and Distributed System Security Symposium, 2017, p. 15.
[2] C. Celio, D. A. Patterson, and K. Asanovic, "The Berkeley out-of-order machine (BOOM): An industry-competitive, synthesizable, parameterized RISC-V processor." EECS Department, University of California, Tech.
Rep. UCB/EECS-2015-167, 2015.

RISC-V Workshop 7 - 10 May, 2018 Universitat Politècnica de Catalunya, Barcelona

-4%
-2%
0%
2%
4%
6%

astar
bzip2

gcc gobmk
h264ref

hmmer
libquantum

Ex
e.

 ti
m

e
ov

er
he

ad

0
5

10
15
20
25
30

astar
bzip2

gcc gobmk
h264ref

hmmer
libquantum

M
PK

I

baseline, L1-D
hash, L1-D

baseline, L2
hash, L2

VPN

