INSTITUTE OF INFORMATION ENGINEERING,CAS

S EETERR : i iteécni
‘, »:'? & A ERIEBHRM RISC-V Workshop 7 - 10 May, 2018 Universitat Politéecnica de Catalunya, Barcelona : 4 RISC

Defeating the Recent AnC Attack by Simply Hashing the Cache Indexes
— Implemented in a BOOM SoC
Wei Song, Rui Hou, Dan Meng

Institute of Information Engineering, Chinese Academy of Sciences
89A Minzhuang Road, Haidian District, Beijing, China 100093
{songwel, hourui, mengdan}@iie.ac.cn

The AnC Attack

The AnC attack!! is a principled way to bypass the address space layout
randomization (ASLR) defense in all major browsers by utilizing existing side-
channels on memory management unit (MMU) and caches.

Attack Scenario:
The attacker is a JITed thread running in a browser sandbox protected by
ASLR.
- The attacker CAN access a large amount of vitual memory (data/code).
- The attacker runs in the SAME process with the browser (same ASID).
- The attacker runs on the SAME core with the browser (share L1/LLC).
- The attacker does NOT know the virtual address of her data/code.
- ALL virtual pages are randomized by the ASLR defense.

VPN
A
4 A\
PT3 offset PT2 offset PT1 offset PTO offset page offset
001010001 101110000 000100010 100001101 000000110000
root——— PT3 PT2
0x000 . PT1
0x051 | PTE 0x000 > PTO
20 o 0x000 i v
0x022 | pTE X
permission
PTE
ox170| PTE | 0x10D N
0x1FF ¢ PPN
Ox1FF
0x1FF
address translation: Ox1FF

001010001 101110000 000100010 100001101 000000110000 => PPN 000000110000 -

I\ y J \ v J \ v J
At tCle Ta rge ¢ VPN page offset page offset
Infer the virtual address (VA) of a target variable belonging to the attacker
(bypassing ASLR).
step 1 step 2 step 3 step 4
eviction buffer scan for PTEs sliding recover offsets
Attack Procedure: DTE
For a target variable v, infer all PT (page table) offsets using cache side- 8X82 ‘ P cache ~ cache line
channel attacks on the 4 cache PTEs (page table entries). X R — setindex offset
Step 1: Construct an eviction buffer. Cache Array PTO offset —— 0x21 0X5
Step 2: Scan all cache sets to identify the 4 cached PTEs related to v. 0x14 - - S
Step 3: Use the sliding technique to map PTEs to PT levels. g 7x512GB DT1 offset . 0X04 0x2
Step 4: Use the sliding technique to recover the PTE offsets inside cache lines. > (7 PIEs) — 000100 010
— 3 X 4KB
: @ (3 PTEs)
Key Insights: 0x21 = - PT2 offset — 0800 000
- Caching PTEs with data is a security vulnerabilaity. (| T
- Existing cache partitioning does not protect PTEs from side-channels. Ox2E :? \GB PT3 offset . 0X14 0x
- Knowning the cache set index is able to decipher page offsets. Ox3F (8XPTES) _——
- The direct mapping between VA and cache indexes is a prerequisite for the
attack. 001010001_101110000_000100010_100001101
 PT3 offset PT2 offset PT1 offset PTO offset
VEN
Solution
Break the direct mapping between VA and cache VA
N
indexes using a simple hash. ’ Page way-0 way-1 way-(w-1)
VPN offset
.. : | |
The original cache index: e Aieisel cache line
CI=VA[s+5:6] 7 ‘. ~~~~~~ offset g § ¢ oo - 2°sets
------ N)
__________ TLB
The hashed cache index: .- P\
CI —_— VA[S+5:6] @ PA[ZS+5:S+6] PPN PA[25|-|-5:S+6] |—>GB—> ® ® ® ® ® ® set
| | J
CI: cache set index, 2°: number of sets
N N N
Defense Methodology: S S e O
- Cache should be transparent to software; therefore, software should not infer
or rely on the direct mapping. \¢ '
- Without the direct mapping, it is difficult to constrcut an eviction buffer. 7
- Without knowing the PA, it is difficult to infer VA from cache set index. data
- Cache lines with the same page offset are likely mapped to different sets. 3
- PA is normally unknown to user mode programs. %’ 6%
Prerequisites: o Z7° I [| B B
- PA is not exposed to user mode programs. = Oo/ O l """""""""""""""""""""
- OS constantly allocates random physical pages to consecutive virtual pages. O T
- OS disable the huge page support. W -4% A A /
QS‘ fe < /o) 0 9 OO 906 /77/{' < 6. q/'@/. /))/)7@/. % bq (/e/)f
Implementation: “m
The proposed scheme is implemented in a BOOM SoC!?!. Both the L1 and L2 = baseline, L{-D wesm =
(LLC) caches are modified with the hash scheme. s o me WM
< hash, L2 === | @R B8
< 9 & .o .
Performance overhead: =0 ® - W
Running the SPECInt 2006 benchmark on rrGA. . 5 W "B ®B <-'®B I B N e
- Averge 1.0% increase in execution time. o ho - P A
- Marginal increases in the cache miss rates (L1 < 4%, L2 <0.5%). Ob/);/r Gqf@f /}’/b@f %Q/”
- Marginal increases in cache area (<0.1%). .

References:

[1] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida. "ALSR on the line: Practical cache attacks on the MMU," In Proc. of the Network and Distributed System Security Symposium, 2017, p. 15.
[2] C. Celio, D. A. Patterson, and K. Asanovic, "The Berkeley out-of-order machine (BOOM): An industry-competitive, synthesizable, parameterized RISC-V processor." EECS Department, University of California, Tech.

Rep. UCB/EECS-2015-167, 2015.

