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The AnC Attack

The AnC attack!! is a principled way to bypass the address space layout
randomization (ASLR) defense in all major browsers by utilizing existing side-
channels on memory management unit (MMU) and caches.

Attack Scenario:
The attacker is a JITed thread running in a browser sandbox protected by
ASLR.
- The attacker CAN access a large amount of vitual memory (data/code).
- The attacker runs in the SAME process with the browser (same ASID).
- The attacker runs on the SAME core with the browser (share L1/LLC).
- The attacker does NOT know the virtual address of her data/code.
- ALL virtual pages are randomized by the ASLR defense.
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Attack Procedure: DTE
For a target variable v, infer all PT (page table) offsets using cache side- 8X82 ‘ P cache ~ cache line
channel attacks on the 4 cache PTEs (page table entries). X R — setindex offset
Step 1: Construct an eviction buffer. Cache Array PTO offset —— 0x21  0X5
Step 2: Scan all cache sets to identify the 4 cached PTEs related to v. 0x14 - - S
Step 3: Use the sliding technique to map PTEs to PT levels. g  7x512GB DT1 offset . 0X04  0x2
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Key Insights: 0x21 = - PT2 offset — 0800 000
- Caching PTEs with data is a security vulnerabilaity. (| T
- Existing cache partitioning does not protect PTEs from side-channels. Ox2E :? \GB PT3 offset . 0X14 0x
- Knowning the cache set index is able to decipher page offsets. Ox3F (8XPTES) _——
- The direct mapping between VA and cache indexes is a prerequisite for the
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Defense Methodology: S S e O
- Cache should be transparent to software; therefore, software should not infer
or rely on the direct mapping. \¢ '
- Without the direct mapping, it is difficult to constrcut an eviction buffer. 7
- Without knowing the PA, it is difficult to infer VA from cache set index. data
- Cache lines with the same page offset are likely mapped to different sets. 3
- PA is normally unknown to user mode programs. %’ 6%
Prerequisites: o Z7° I [ | B B
- PA is not exposed to user mode programs. = Oo/ O l """""""""""""""""""""
- OS constantly allocates random physical pages to consecutive virtual pages. O T
- OS disable the huge page support. W -4% A A /
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Implementation: “m
The proposed scheme is implemented in a BOOM SoC!?!. Both the L1 and L2 = baseline, L{-D wesm =
(LLC) caches are modified with the hash scheme. s o me WM
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Performance overhead: =0 ® - W
Running the SPECInt 2006 benchmark on rrGA. . 5 W "B ®B <-'®B I B N e
- Averge 1.0% increase in execution time. o ho - P A
- Marginal increases in the cache miss rates (L1 < 4%, L2 <0.5%). Ob/);/r Gqf@f /}’/b@f %Q/”
- Marginal increases in cache area (<0.1%). .
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