Defeating the Recent AnC Attack by Simply Hashing the Cache Indexes
— Implemented in a BOOM SoC
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I. THE ANC ATTACK

A recently proposed attack, namely the ASLR®Cache or
simply AnC [1], provides a universal method to bypass
the ASLR in all major browsers by utilizing existing side-
channels on memory management units (MMU) and caches.
It is claimed that the AnC attack exploits the fundamental
properties of cache based computer architectures; therefore,
the side-channels are difficult to eliminate without significant
performance degradation. As a result, ASLR is fundamentally
insecure.

The AnC attack describes a principled way to bypass the
address space layout randomization (ASLR) defense in all
major browsers. The key to successfully bypassing ASLR is
to first obtain the virtual address of a user page. In AnC, this
goal is equivalent to inferring the VPN of an attacker created
variable inside this user page. If this user page is recently
accessed by the attacker, there is a good chance that the four
PTEs of this user page is cached in the L1 data cache. Since
VPN is used in the PTW procedure as the set of PT offsets and
these PT offsets are also partially used as the cache indexes
denoting the cache sets holding the four related PTEs, the
attacker can launch contention-based attacks to identify these
cache sets which expose the PT offsets and ultimately the
VPN. To be specific, the attacker needs to acquire three pieces
of information to infer the whole VPN: the cache indexes of
the four related PTEs, the offset of each PTE inside its cache
line, and the mapping between PT offsets and PT levels. The
first two pieces of information reveal the PT offset and the
third piece of information tells the order in assembling the
four PT offsets into the VPN. Let us consider an AnC attack
on the L1 VIPT cache. To locate the four related PTEs and
learn their cache indexes, the attacker scans all cache sets
using the Evict+Time attack. Each cache set is first evicted
and then tested through an intentionally triggered PTW by
flushing TLB and accessing the target variable. If the evicted
cache set contains a related PTE, PTW would miss causing
a long delay. The rest two pieces of information are acquired
using a sliding technique [1] which combines multiple rounds
of aforementioned scan of cache sets. In each round, the
attacker locates the four related PTEs of a variable with a
known distance away from the target variable. According to
the relationships (and their patterns) between the distance and
the changes on the cache indexes of the four related PTEs, the
attacker is able to collect enough information to figure out the

cache line offsets, and the mapping between PT offsets and
PT levels.

In summary, the AnC attack relies on several assumptions
on architecture and micro-architecture features:

o A direct mapping between VPN and the PT offsets in
the page tables.

o Uniformed caches that stores both data and page tables.

o A direct mapping between addresses and cache indexes.

II. DEFENDING THE ANC ATTACK

According to the 3 assumptions required by AnC, we
believe the key in defense is to break the 3rd assumption: the
direct mapping between memory addresses and cache indexes.

A straightforward way to to break this direct mapping is
to apply a hash function on the cache index calculation. This
hash function should map each A[s 4+ 5 : 6] unambiguously
to a C'I with a low hardware overhead. The simplest way to
do it, is to hash the address with a key unaccessible to the
attacker.

Considering most attacker run in a virtual space without
direct access to the page table, the physical page number or
the higher portion of the physical address is already a secrete.
Therefore, a cache can break the direct mapping by simply
hashing addresses with the higher digits from themselves:

Cl=A25+5:5+6]® Als+5: 6] (1)

For a normal VIPT L1 cache, Equation 1 can be described
using the virtual address (VVA) and physical page number
(PPN) as well:

CI = PPN[5:0] & VA[ll : 6] )

Here we assume the usual configuration of making the set
number equal with the number of cache lines in a page (2° -
64B = 4K B).

This defense is most effective with an OS constantly ran-
domizing the physical to virtual page mapping. The hash
function uses PPN as the hash key. However, the PPN for
adjacent virtual pages might be related as memory allocators
tend to allocat consecutive physical pages. This might give
attackers a means to decipher the PPN and disarm the defense.

The support of large pages is another feature which can
weaken RCL-Hash. On a typical 64-bit machine, a large page
is usually 2M B. This provides an attacker with a guaranteed
virtually and physically consecutive space capable of inferring



Cachg
Array\

|
stage2 |

VA[s+5:6]

stage3

stagel |

Fig. 1. Implementation of RCL-Hash.

the hash keys for an 8-way cache as large as 2048 sets
(assuming the FIFO replacement policy).

In summary, the effectiveness of the defense depends on
how much an OS tends to allocate physically consecutive
pages. If a system deliberately randomizes the physical to
virtual page mapping and disables the large page support, the
simple hash is effective in defending the AnC attack.

III. IMPLEMENTATION

The proposed RCL schemes have been implemented on the
opensourced BOOM system-on-chip (SoC) [3], [4].

The hashed cache index implemented in the L.1 VIPT cache
is depicted in Fig. 1. To implement the defense, the PA is
required to be translated before accessing the cache array.
The virtual to physical address translation is made to operate
one cycle before accessing the cache array. Although this
serialization increases the cache latency by one cycle, its
impact on performance should be limited as the out-of-order
and speculative execution in a superscalar processor is able to
partially hide the cache access latency.

IV. EVALUATION

A subset of the SPEC 2006 benchmark cases run success-
fully on the BOOM SoC. Fig. 2a reveals prolonged execution
time compared with the original BOOM SoC. On average,
the execution time increases by 1.0%. The execution time
is prolonged because the cache access latency of the L1
caches is increased due to the serialization of the virtual to
physical address translation and the access to cache array.
For certain cache configurations, the regular access pattern of
an application might cause extra conflict misses. A remapped
cache layout might provide a more balanced data distribution
which reduces conflict misses, resulting in a slightly reduced
execution time.

To extract the actual cache miss rates from the hardware,
hardware performance counters are added to all levels of
caches. These counters constantly record the numbers of
cache accesses, cache misses and write-backs by monitoring
the cache control logic. Fig. 2b reveals the miss per kilo
instructions (MPKI) collected from the L1 data cache and the
L2 cache. There is no significant change in the MPKI on both
cache levels.

V. CONCLUSIONS

A new defense is posposed to defend against the recent
AnC attack. It remaps the cache layout using a hash function
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Fig. 2. Running SPEC 2006 on FPGA.

on the cache indexes. This is an effective defense when the
OS actively randomizes its physical to virtual page mapping.
Implemented in the BOOM SoC, the results show that the
defense incurs a small overhead in execution time.
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