Towards General Purpose Tagged Memory

Wei Song, Alex Bradbury, and Robert Mullins
Computer Laboratory, University of Cambridge, Cambridge CB3 OFD United Kingdom
{firstname.lastname } @cl.cam.ac.uk

I. INTRODUCTION

lowRISC is a not-for-profit project [1] aiming to produce
high quality open source System-on-Chip (SoC) implementa-
tions that can be exploited by academia, industry, and the wider
open-source community. We have previously described our
plans for tagged memory and ‘minion’ cores [2] as key features
of our hardware platform. These are both flexible system-
level features with uses including security and software-based
specialisation. One of the most interesting use-cases for tagged
memory is in providing protection against control-flow hi-
jacking attacks [2], [3]. We also intend to further explore a
wide range of additional potential uses including fine-grained
memory synchronisation, garbage collection, and debug tools.
To further explore implementation costs and performance
implications of tagged memory, we have extended the Rocket
RISC-V implementation [4] with preliminary tagged memory
support. The current implementation extends on-chip caches
to hold tags, adds a tag cache, and adds minimal instruction
set extensions to manipulate tags. A richer integration into
the instruction set and the ability to configure the triggering of
interrupts on access to memory which has been given a certain
tag will be added in future development.

II. ROCKET CHIP

The ’Rocket chip’ is a configurable SoC generator which
can instantiate a RISC-V Rocket core and associated mem-
ory hierarchy. The generated Rocket chip SoC comprises a
group of Rocket tiles, each of which contains a RISC-V
Rocket core running the 64-bit RISC-V instruction set [5],
an L1 instruction cache and a non-blocking L1 data cache.
Coherence is maintain by “coherence managers” in each L2
bank. Communication between the Rocket tiles and coherence
managers takes place using the TileLink protocol [6]. The
protocol defines a number of independent transaction channels,
the prioritization of the channels and their format.

III. TAGGED MEMORY

The implementation of tagged memory adds a design-time
configurable number of tag bits to each 64-bit word in memory.
These tag bits are copied along with the data word through
the cache hierarchy, meaning each word in the L1 data and L2
cache lines are augmented with additional tag bits. In the same
way, the payload of all TileLink messages and L2 caches are
augmented, allowing the coherence of tags to be maintained by
the existing cache coherence protocol. Two new instructions
(LTAG, STAG) have been added for loading and storing tags.
An exception is raised if the memory address operand to LTAG
or STAG is not word-aligned.

We choose to store tag metadata in a reserved area of
main memory. An alternative implementation approach would

Rocket Tile

Rocket Tile

Rocket
Core
I$ D§||eee I$ D$

ITH@LUH\ ITML‘Lm](t’meunk
I‘\ ileLink I’I'i]ul ink iTileLink

L2 L2 & L2 &
Coherence |e e | Coherence Coherence
Manager Manager Manager

t)

2

TS -

Rocket Tile

Rocket Rocket
Core Core

=]
2]
@

Tracker &

C t
MetaData onverter
Array

Memory
Controller

Rocket chip with tag cache

Fig. 1.

use the ECC bits available in some DRAMs to store tags.
This would avoid the need for a tag cache, although such an
approach may still benefit from using a region of physical
memory to store tag metadata for multiple granularity tags.
Repurposing the ECC bits in this way would of course prevent
their use for their intended purpose. It also relies on the ability
to modify the memory controller to add the necessary logic and
of course the use of ECC DRAM. Without an additional cache,
an extra access to the reserved tag area would be needed for
each access to main memory. In order to minimise this memory
traffic overhead, a tag cache is added to the Rocket chip as
depicted in Fig. 1. It has a similar structure to the tag cache
used in CHERI [7] but with parallel handlers. In the case of
a miss in the tag cache, the 64-byte cache line containing the
associated tag is read from memory using a parallel memory
access to the reserved area. Extra handlers can be configured
to serve multiple memory requests in parallel.

IV. PERFORMANCE ANALYSIS

The number of tag bits is fully parameterisable at design
time. For these experiments we add two tag bits to each 64-bit
word. The implementation has been tested both in simulation
and on FPGA using the RISC-V test suite, tests specifically
targeting tagged memory, and existing software ports such as
the Linux kernel. Experiments are run using a single core with
a 2-way 8KiB instruction cache and 4-way 16KiB data cache.
The tag cache is 8-way set associative.

TABLE 1.

MISS RATES AND MEMORY TRAFFIC FOR THE SPECINT 2006 BENCHMARK SUITE

1$ D$ L2 Mem Traffic Tag$ Traffic Tag$ Traffic Tag$ Traffic Tag$ Traffic

8KiB 16KiB 256KiB without Tag 16KiB Ratio 32KiB Ratio 64KiB Ratio 128KiB Ratio

(MPKI) (MPKI) (MPKI) (TPKI) (MPKI) (MPKI) (MPKI) (MPKI)

perlbench 20 5 <1 2 <1 1.289 <1 1.089 <1 1.025 <1 1.011
bzip2 <l 14 10 16 10 1.941 7 1.688 3 1.281 <1 1.007
gce 15 11 4 6 2 1.497 <1 1.240 <1 1.072 <1 1.023

mcf <1 168 104 136 67 1.651 40 1.409 11 1.128 3 1.040
gobmk 24 8 3 6 1 1.368 <1 1.146 <1 1.073 <1 1.046
sjeng 11 5 1 3 1 1.673 <1 1.482 <1 1.383 <1 1.316
h264ref 1 3 2 3 <1 1.480 <1 1.265 <1 1.109 <1 1.028
omnetpp 40 5 <1 <1 <1 1.653 <1 1.415 <1 1.190 <1 1.042
astar <1 21 5 9 4 1.750 2 1.471 <1 1.173 <1 1.009
average 12 27 14 20 ‘ 10 1.589 ‘ 6 1.356 ‘ 2 1.159 ‘ <1 1.058

The SPECInt 2006 benchmark suite (test data set) has
been used to investigate the increase in memory traffic due
to tags. Currently 9 (out of 12) benchmark cases have been
successfully compiled and run on FPGA (with the aid of
Speckle [8]). Table I reveals the miss rates (misses per K
instructions, MPKI) of each cache and the memory traffic
of the original Rocket chip (transactions per K instructions,
TPKI). We explore tag cache sizes of 32, 64 and 128KiB
and report the increase in memory traffic (compared with an
implementation without tags).

Without a tag cache we would require an additional access
to the reserved tag area for each memory transactions, resulting
in a memory traffic ratio of 2. The use of a tag cache is
effective in reducing this ratio. The largest tag cache reduces
the overhead in additional memory traffic to a few percent in
most cases. The overhead for the sjeng benchmark appears
high but in practice absolute memory traffic is low in this case.

There is significant scope for further optimisation of the
tag cache. The current set of results represent a worse case
where every single memory access requires a corresponding
tag access. In reality, it is likely that there will be large regions
where tags are not applied. Optimising for these cases through
a multiple granularity tagging scheme will reduce memory
traffic and pollution in the tag cache. We are in the process
of exploring options for such a hierarchical scheme. These
options include a completely hardware managed scheme with
cache line granularity, a scheme where the operating system is
responsible for marking regions as cleared, or a more general
compression scheme such as run-length encoding. Another
potential optimisation would be to have the tag cache check
if the tag is actually changed on a write, or to track the dirty
state of tags in the L1 and L2 separately to the dirty state of
the data. Properly evaluating these choices and their trade-offs
requires a range of realistic workloads which we are in the
process of developing through our investigations into potential
applications of tagged memory. Even the most straightforward
of these approaches would help provide the property that “you
don’t pay for what you don’t use”, i.e. software that doesn’t
make use of tagged memory would see almost zero runtime
overhead.

V. FUTURE WORK AND CONCLUSION

We believe tagged memory is a low-cost feature that
provides a valuable foundation for a range of useful features
in a general purpose SoC. We hope to further demonstrate this

in future work. We see a number of directions as being of
particular interest:

1) Exploring a range of uses for tagged memory and
appropriate ISA support.

2) Further reducing the overhead of tagged memory
through hierarchical tagging schemes.

3) Schemes for configuring the interpretation of tags,
including the triggering of interrupts, communication
with minions and potentially the propagation of tags
through the ALU. Simple approaches include the use
of a fixed-sized table defining rules and actions (e.g.
indexed by instruction tag and opcode class). One
could also imagine a range of approaches based on
simplified versions of the PUMP [9].

4) Using minion cores in concert with tagged memory to
implement more complex security policies and higher
level functionality such as a full capability system [7].
This would require the ability for a minion to sub-
scribe to events indicating access to memory with
certain tags. Such communication would take place
over dedicated communication links.

REFERENCES

[1] “lowRISC project.” [Online]. Available: http://www.lowrisc.org

[2] A. Bradbury, G. Ferris, and R. Mullins, “Tagged memory and minion
cores in the lowRISC SoC,” Decemeber 2014. [Online]. Available:
http://www.lowrisc.org/downloads/lowRISC-memo-2014-001.pdf

[3] L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal war in
memory,” in [EEE Symposium on Security and Privacy, May 2013, pp.
48-62.

[4] “Rocket chip generator.” [Online]. Available: https://github.com/ucb-bar/
rocket-chip

[5] A. Waterman, Y. Lee, D. Patterson, and K. Asanovi¢, “The RISC-V
instruction set manual — volume I: user-level ISA,” CS Division, EECE
Department, University of California, Berkeley, May 2014. [Online].
Available: http://riscv.org/riscv-spec-v2.0.pdf

[6] H. Cook, “Tilelink 0.3.1 specification,” February. [Online].
Available: https://github.com/ucb-bar/uncore/blob/master/doc/TileLinkO0.
3.1Specification.pdf

[71 J. D. Woodruff, “CHERI: A RISC capability machine for practical
memory safety,” Ph.D. dissertation, Computer Laboratory, University of
Cambridge, 2014, section 5.5.2. [Online]. Available: http://www.cl.cam.
ac.uk/techreports/fUCAM-CL-TR-858.pdf

[8] C. Celio, “A wrapper for the SPEC CPU2006 benchmark suite,” April.
[Online]. Available: https://github.com/ccelio/Speckle

[9] U. Dhawan and et al, “Architectural support for software-defined meta-
data processsing,” in Intl. Conf. on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2015.

