
CTPP: A Fast and Stealth Algorithm for Searching Eviction Sets
on Intel Processors

Zihan Xue
SKLOIS, Institute of Information

Engineering, CAS
School of Cyber Security, University
of Chinese Academy of Sciences

Beijing, China
xuezihan@iie.ac.cn

Jinchi Han
SKLOIS, Institute of Information

Engineering, CAS
School of Cyber Security, University
of Chinese Academy of Sciences

Beijing, China
hanjinchi@iie.ac.cn

Wei Song∗
SKLOIS, Institute of Information

Engineering, CAS
School of Cyber Security, University
of Chinese Academy of Sciences

Beijing, China
songwei@iie.ac.cn

ABSTRACT
Eviction sets are essential components of the conflict-based cache
side-channel attacks. However, it is not an easy task to construct
eviction sets on modern Intel processors. As a promising defense
against conflict-based cache side-channels, dynamic cache random-
izationmakes the construction of eviction sets evenmore difficult by
periodically randomizing themapping between addresses and cache
set indices. It forces attackers to develop fast search algorithms to
find an eviction set at runtime with the lowest latency. Several fast
search algorithms have been proposed in recent years. By using
these algorithms, attackers regain the capability of launching useful
attacks on dynamically randomized caches. Consequently, a detec-
tor was recently introduced to catch the fast search algorithms in
action according to the uneven distribution of cache evictions. All
existing fast search algorithms fail to work.

We present a new eviction set search algorithm called Conflict
Testing with Probe+Prune (CTPP). Based on the evaluation on six
Intel processors and a behavioral cache model, CTPP is found to
achieve the lowest latency in finding an eviction set in all algorithms,
potentially escape from the recently proposed detector, and present
a strong tolerance to environmental noise.

CCS CONCEPTS
• Security and privacy→ Side-channel analysis and counter-
measures.

KEYWORDS
cache side-channel attack, eviction set, micro-architecture

ACM Reference Format:
Zihan Xue, Jinchi Han, and Wei Song. 2023. CTPP: A Fast and Stealth
Algorithm for Searching Eviction Sets on Intel Processors. In The 26th
International Symposium on Research in Attacks, Intrusions and Defenses
(RAID ’23), October 16–18, 2023, Hong Kong, Hong Kong. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3607199.3607202

∗Corresponding author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0765-0/23/10.
https://doi.org/10.1145/3607199.3607202

1 INTRODUCTION
Software cache side-channel and covert-channel have become an
important tool for attackers to exploit modern computer systems.
They have been used directly as an attack to leak security-critical
information from the cache system [9, 17, 23], or indirectly as a tool
to disarm existing defenses, such as the address space randomiza-
tion [3, 5], before launching the actual attack. In some comprehen-
sive attacks, cache side-channels have been used as an intermediate
step, such as retrieving the leaked information at the end of a tran-
sient execution attack [12, 13], and constantly striking a row of the
off-chip memory in a rowhammer attack [6].

Eviction sets, especially the minimal eviction sets [33], are es-
sential components of the conflict-based cache side-channel at-
tacks [37]. In such attacks, an attacker and her victim share the
same cache space, typically certain cache sets in the last-level cache
(LLC). The attacker needs to control the state of these shared cache
sets to monitor the memory accesses of her victim, which are then
used to infer security-critical information. To be specific, the at-
tacker occupies (primes) a cache set by (repeatedly) accessing an
eviction set in an optimized way [6]; therefore, her victim’s access to
this cache set must incur a cache miss, a refill of this missing cache
block, evicting one of the attacker’s addresses (the eviction set), and
eventually a prolonged access. Both the eviction of the attacker’s
addresses and the prolonged access latency might be observable by
the attacker and used to infer the access of her victim.

Reducing the size of an eviction set is important. Intuitively, a
sufficiently large collection of random addresses is a generic evic-
tion set capable of evicting any targeted address, because accessing
this large collection of addresses primes the whole cache. Most
cache attacks concentrate on a small number of targeted cache set
and favor an environment with the minimal noise. A generic evic-
tion set is obviously useless in this sense. Priming a targeted cache
set using a minimal eviction set, a smallest collection of addresses
just capable of occupying the targeted cache set, generates the least
amount of noise and is normally faster than using non-minimal
eviction sets [6]. It is important for attackers to construct and use
minimal eviction sets. For simplicity, the term “eviction set” beyond
this point refers to the minimal eviction set.

All addresses in an eviction set are congruent with the targeted
cache set (mapping to the targeted cache set) [33]. At least 𝑊
addresses are required for a𝑊 -way set-associative cache. Obviously,
the key for constructing an eviction set is to find enough congruent
addresses, which, unfortunately, is not an easy task on modern
processors for several reasons: LLC is indexed by physical addresses

https://doi.org/10.1145/3607199.3607202
https://doi.org/10.1145/3607199.3607202

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Zihan Xue, Jinchi Han, and Wei Song

while only virtual addresses are observable by attackers. Without
deciphering the virtual-to-physical page mapping, attackers cannot
compute the mapped cache set of an address as cache indices are
determined by physical addresses. As a way to get around this,
some attackers may obtain partial control over the cache set index
by exploiting huge pages. However, the complex addressing scheme
utilized by modern Intel processors [15] randomized the mapping
of physical addresses to LLC slices, which nullifies some of the
benefits of using huge pages. At the end, attackers are often forced
to blindly search for eviction sets.

Cache randomization has recently been proposed as a promis-
ing defense against conflict-based cache side-channels [21, 26]. By
randomizing the mapping from addresses to cache set indices, it
forcefully nullifies all existing ways to directly construct eviction
sets by manipulating the mapping between addresses and cache
set indices. An eviction set must be dynamically searched from a
large amount of random addresses. Furthermore, the randomized
mapping is remapped periodically to limit the time window left
for attackers to utilize an eviction set even if it is found [2, 21, 26].
These reasons push attackers to develop fast search algorithms
which can find an eviction set with the lowest latency.

Several fast search algorithms have been proposed in recent
years, including group elimination (GE) [14, 27, 33], prime, prune
and probe (PPP) [18, 20], conflict testing (CT) [22] and some CT
derived algorithms, such as the optimized CT (CT-fast) utilized
in the Prime+Scope attack [19] and write-after-write (W+W) [28].
With the help of these fast algorithms, the time required for finding
an eviction set on current Intel processors has been reduced from
hundreds of milliseconds [16] to several milliseconds (See Table 1).
Evidences show that attackers may already have the capability to
find eviction sets and launch useful attacks on dynamically ran-
domized caches [2]. As a strong counter-measure, a detector was
recently introduced in [26] to detect the action of fast search al-
gorithms according to the uneven distribution of cache evictions
across cache sets. Extra remaps are triggeredwhen a dynamic search
of eviction set is caught in action. In this scenario, all existing fast
search algorithms fail to work. [26]

In this paper, we present a new eviction set search algorithm
called Conflict Testing with Probe+Prune (CTPP), which combines
the benefits of both CT and PPP algorithms. Comparing with exist-
ing algorithms, CTPP has three major advantages: (1) It achieves the
lowest latency in finding an eviction set on current Intel processors.
(2) It can escape from the detector proposed in [26]. (3) It presents a
strong tolerance to environmental noise. We have tested CTPP on six
Intel processors, including i7 processors from the 3rd to the 11th
generation and both the 1st and 2nd generation Xeon processors.
The results show that CTPP can successfully find an eviction set
in a couple of milliseconds with a high success rate on all proces-
sors. By re-implementing the detector proposed in [26] using the
same behavioral-level cache model [27], we are able to verify the
anti-detection capability of all algorithms. The results show that
CTPP maintains working with a success rate ranging 10 ∼ 70%
when all other algorithms fail (see Figure 12). We have also verified
that CTPP may still work properly when another process (such as
a SPEC CPU 2006 benchmark) is running in the background.

Overall, this paper makes the following contributions:

• Propose a new search algorithm, namely CTPP, which achieves
the lowest latency in finding eviction sets, a unique capabil-
ity to escape from the latest detector, and a strong tolerance
to environmental noise.
• Analyze the causes of the slow speed of existing search algo-
rithms.
• Analyze the behaviors of existing algorithms that make them
exposed to detectors.
• Practical evaluation of existing algorithms along with CTPP
on both real Intel processors and a behavioral-level cache
model.

The paper is organized as follows: Section 2 introduces the nec-
essary background for understanding this paper. Section 3 explains
our motivation in designing a new algorithm for search eviction
sets. The threat model is defined in Section 4. Section 5 presents the
proposed CTPP algorithm, whose performance is compared with
all existing algorithms in Section 6. The limitations of CTPP are
discussed in Section 7. Finally, the paper is concluded in Section 8.

2 BACKGROUND
2.1 Cache Architecture
Current Intel processors are multicore processors adopting a three-
level cache structure. Each processing core contains a pair of private
level-one (L1) instruction and data caches, and a uniformed level-
two (L2) cache. A large level-three (L3) cache is shared as the last-
level cache (LLC) between all processing cores. The LLC is evenly
divided into multiple slices, normally one per each processing core.
Themapping between (physical) addresses and LLC slices is decided
by an undisclosed hash function, namely the complex addressing
scheme. The hash functions of several Intel processors have been
reverse-engineered [15].

All cache levels use classic set-associative caches adopting a
writeback allocation policy. The L1 caches are reported to use the
pseudo-LRU (PLRU) replacement policy [1] while the L2 and LLC
likely adopt some policies derived from RRIP [11, 32]. LLC acts as
the coherence hub for the cache coherence management. LLC and
the private L1/L2 caches maintain an inclusive relation on consumer
processors (i3 to i9 processor families) as shown in Figure 1a, while
the relation is non-inclusive on server-level processors (the Xeon
processor family) starting from the SkyLake-SP architecture [38].
Cross-core cache side-channel attacks targeting the LLC depends on
the attacker’s capability to purge a cache block from another core’s
L1/L2 cache as an inclusion victim [10]. This is easily achieved
on an inclusive LLC as evicting a cache block from the LLC also
purges the cache block from the whole cache hierarchy. On the
Xeon processors using non-inclusive LLCs, the directory adopts
an inclusive structure as shown in Figure 1b. For cache blocks
shared between cores, the block’s metadata is stored in one of the
traditional directory entries and can be evicted using an eviction
set comprising of shared cache blocks [38], which also results in
purging the cache block from all cache levels.

2.2 Cache Side-Channel Attacks
Cache side-channel attacks refer to attacks using a cache as a
medium for leaking security-critical information. Depending on
how caches are manipulated by attackers, there are three types of

CTPP: A Fast and Stealth Algorithm for Searching Eviction Sets on Intel Processors RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

A

A

B

C

C B

CB

B

D

DC

L1-IL1-D L1-D

L2 L2

LLC

L1-I
E

E

(a) Inclusive LLC

A

A

AF

B

BC

C B

C

C

B

B

B

D

D

DC

L1-IL1-D L1-D

L2 L2

LLC-Directory

traditional directory extended directory

L1-I
E

E

E

(b) Non-Inclusive LLC with an inclusive directory

Figure 1: Examples of the inclusive LLC (a) used in Intel’s con-
sumer processors and the non-inclusive LLC with an inclu-
sive directory (b) used in the Xeon processors. Cache blocks
𝐴, 𝐵 and 𝐶 are used by core 0; 𝐵, 𝐶, 𝐷 and 𝐸 are used by core
1; 𝐵 and 𝐶 are shared between cores.

cache side-channel attacks: cache occupancy attacks, flush-based
attacks and conflict-based attacks. The cache occupancy attack [25,
31] is an untargeted cache attack which takes the whole LLC as
the communication channel. An attacker uses a large collection
of addresses to occupy (prime) most cache sets in the LLC and
measures the interference caused to her victim as a way to leak
information. Both flush-based and conflict-based attacks are tar-
geted attacks concentrating on one or several cache sets. They both
require an attacker to bring a targeted cache set into a controlled
state but in different ways [37]. Flush-based attacks use explicit
cache control instructions, such as clflush on x86 [39], to invali-
date victim’s cache blocks, while conflict-based attacks indirectly
evict victim’s cache blocks by occupying the targeted cache sets
with attacker’s own blocks [17]. Comparing with conflict-based
attacks, flush-based attacks are fast and accurate (more informa-
tion is leaked per attack); however, they require the flushed cache
block to be shared between the attacker and her victim, which is a
rather restricting requirement. In generic attack scenarios where
an attacker and her victim are running on separated processes shar-
ing no memory but only the cache space, conflict-based attacks
are preferred over flush-based attacks. This paper focuses on the
conflict-based cache attacks on current Intel processors.

An attack normally proceeds in two phases: a preparation phase
and an exploitation phase. In the preparation phase, the attacker
collects enough number of eviction sets. Each eviction set is a
collection of congruent addresses mapping to a targeted cache set.
Accessing this collection of addresses in a certain order is capable
of occupying all ways of the targeted cache set, evicting any block
belonging to the victim, and setting the cache set to a fully occupied

N addresses

W+1 groups

 addresses

remove 1 group

W+1
WN

Figure 2: One prune round of GE in a 4-way cache.

state. In the exploitation phase, the attacker infers security-critical
information by manipulating the targeted cache sets using the
collected eviction sets. The exploitation phase normally contains
numerous prime+probe cycles [14, 17]. In each cycle, the attacker
first primes a target cache set using a corresponding eviction set.
If there were cache blocks belonging to the victim, they are likely
evicted. The attacker then tricks the victim into running a program
segment related to the target cache set. If the victim indeed accesses
data indexed to this cache set, it must have been fetched and refilled
into the cache set by eviction one of the attacker’s cache blocks.
Finally the attacker probes the cache set by re-accessing the eviction
set. If the total access latency is longer than expected, the attacker
learns that the victim should have accessed the target cache set.

2.3 Fast Search Algorithms for Eviction Sets
Group elimination (GE) is an optimization of an old algorithm
against the Intel’s complex address scheme [22, 33]. It starts with
a large eviction set composed of random addresses and quickly
prunes it into a minimal one with only𝑊 addresses, where𝑊 is
number of ways. In each prune round, as shown in Figure 2, the
remaining 𝑁 addresses are divided into𝑊 + 1 groups. Since a min-
imal eviction set contains only𝑊 addresses, there is at least one
removable group containing none of the𝑊 addresses and should
be removed. By sequentially testing whether the address collection
remains an eviction set without a certain group, the removable
group is found and removed. The prune process continues with
𝑁 /(𝑊 + 1) addresses removed in each round until a minimal set is
produced. By average, it requires O(𝑆𝑊 2) cache accesses to find a
minimal eviction set in an 𝑆-set LLC [27].

Prime, prune and probe (PPP) is a search algorithm exploiting the
LRU replacement [20, 22]. An attacker starts with accessing a large
collection of random addresses (prime set) to prime the LLC. Since
these addresses unavoidably cause self-conflicts, a prune process is
used to remove conflicting addresses until all addresses remaining
in the prime set are concurrently cached. To collect congruent
addresses from the reduced prime set, the attacker makes a timed
re-access of the target address and the prime set sequentially, as
depicted in Figure 3. Addresses missing in the LLC are detected as
they incur long access latency. Since all addresses in the reduced
prime set are stored in the LLC, all missing addresses must be
evicted by the target address 𝑋 , such as 𝐸, or the previously evicted
addresses in a chain reaction, such as 𝐺 , 𝐽 and 𝐿. It is easy to
observe that all these addresses are congruent with 𝑋 . In an ideal
(noiseless) scenario, as shown in Figure 3, enough addresses are
found in just one probe. The overall number of cache accesses is only
O(𝑆𝑊). This algorithm can be used with other types of replacement
policies, such as the random replacement policy. However, the
overall number of accesses rises to O(𝑆𝑊 2), because the number of
congruent addresses found in each search decreases significantly,
leading to the need for extra search rounds [20].

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Zihan Xue, Jinchi Han, and Wei Song

A

B

C

D

E

F

G

H

I

J

K

L

M

N

X

set 0

set 1

set 2

set 3

X A E J LG N

E G J L

Figure 3: The probe step of PPP in a 4-way cache.

Conflict testing (CT) is an algorithm first proposed to find eviction
sets in caches using random replacement [22], where an attacker
can collect an eviction set by sequentially testing multiple random
addresses whether any of them are congruent with the target ad-
dress. The target address is accessed first to make it cached in the
LLC. Then a random address is accessed. If this address is congruent
with the target address, it might replace the target address by a
chance of 1/𝑊 thanks to the random replacement. This condition
is checked by a timed re-assess of the target address. An eviction
set is produced when enough congruent addresses are collected.
Overall, any random address might conflict with the target address
by a probability of 1/(𝑆𝑊). The total number of cache accesses
is estimated around O(𝑆𝑊 2). This algorithm is also effective for
permutation-based replacement, such as LRU and RRIP. Assuming
the use of LRU, the probability of causing a conflict with the target
address after accessing𝑀 random addresses is around:

𝑃 = 1 −
𝑊 −1∑︁
𝑖=0

(
𝑀

𝑖

)
1
𝑆𝑖
(1 − 1

𝑆
)𝑀−𝑖 (1)

This is equivalent to causing at least𝑊 conflicts in the target cache
set. The average 𝑀 is around 𝑆𝑊 . To find a minimal eviction set
with𝑊 addresses, the number of cache accesses is O(𝑆𝑊 2).

Two derived algorithms have been proposed based on the CT al-
gorithm. An optimized version of CTwas present in the Prime+Scope
attack [19], which we call CT-fast in this paper. Whenever a congru-
ent address is found (the target address is evicted), all the previously
found congruent addresses are accessed after re-accessing the target
to make the target easier to evict. The total number of memory ac-
cesses is roughly halved in CT-fast. Instead of checking congruence
by evicting the target address, detecting the prolonged latency due
to the LLC enforced serialization of parallel writes to the same cache
set was also found effective [28]. The resulted algorithm, namely
W+W in this paper, was claimed faster than the GE algorithm.

2.4 Randomized Caches
Cache randomization [21, 34] has recently been accepted as a
promising defense. In a randomized cache as depicted in Figure 4,
the mapping from memory addresses to cache set indices is ran-
domized by a cipher, forcing attackers to slowly find eviction sets
at runtime. Even when eviction sets are found, attackers cannot
easily tell which cache sets are evicted by them. However, cache ran-
domization alone does not defeat conflict-based cache side-channel
attacks but only increases difficulty and latency [2, 21]. For this
reason, periodical remapping [21] is used to limit the time window
available to attackers, extra remaps can be triggered if a search of
eviction sets is found in active [26], and cache skews [22] can be
used to further increase the difficulty in finding eviction sets.

way-0 way-1 way-3

d
a
ta

ta
g

Address

data

page offset

way-2

Cipher

random
cache index

detector

remap

Figure 4: Randomized set-associative cache.

In this paper, we also consider finding eviction sets for the ran-
domized set-associative caches [21, 26] (such as the results present
in Figure 12) but leave the randomized skewed cache as one of our
future works.

3 MOTIVATION
The proposal of CTPP is motivated by two findings on the existing
fast search algorithms for eviction sets:

• Existing algorithms fail to exhaust all the available tech-
niques to manipulate the LLC in Intel processors.
• Existing algorithms are easily detectable under the recently
proposed detector [26].

These make us to wonder whether it is possible to design an even
faster search algorithm by exploiting extra ways to manipulate the
caches of the current Intel processors and make it less likely to be
detected. The rest of this section elaborates the two findings while
the CTPP algorithm is proposed in Section 5.

3.1 Slowness of Existing Search Algorithms
The GE algorithm starts with a large eviction sets and recursively
prunes the large set using the group elimination method. In the
pruning process, no detailed controlling of the cache set state is ap-
plied to the targeted cache set. Each round of test is a full utilization
of the assumed eviction set. This is why its success rate depends
on the optimal traverse function of the eviction set [27]. This tol-
erance to the cache replacement policy makes the GE algorithm
the most robust algorithm which works on almost all (non-skewed)
cache architectures with a relatively high success rate (see Table 1);
however, this is also the reason why its prune process is inefficient
and slow.

The PPP algorithm also starts with a large prime set to occupy
most of the LLC. The final probe step utilizes the RRIP replacement
on Intel processors. It needs typically only one or two rounds of
probes to collect enough congruent addresses for an eviction set. For
this reason, PPP incurs the shortest latency in all existing algorithms
(see Table 1). However, how to efficiently implement the prune step
is unclear in existing literature. According to our own investigation,
if the number of congruent addresses in the initial prime set is
more than𝑊 , the prune step is likely to remove extra congruent
addresses and reduce the total number to less than𝑊 in the pruned
set, leading to a failed search. The success rate of PPP is low, which
leads to a prolonged latency for successfully finding an eviction set.

CTPP: A Fast and Stealth Algorithm for Searching Eviction Sets on Intel Processors RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

The CT algorithm was originally proposed for LLCs using the
random replacement policy but later found applicable to LLCs using
LRU/RRIP policies as well. The problem for CT is that it actually
tested a large number of congruent addresses (with the targeted
cache set) and only a small portion of them are finally collected.
For each time an addresses is successfully identified as a congruent
address,𝑊 −1 congruent addresses are actually accessed (and tested)
for pushing the target address to the LRU position, assuming the
PLRU policy. For the original CT algorithm,𝑊 2 congruent addresses
are accessed for collecting𝑊 addresses. As an optimization, the CT-
fast algorithm reduces the search time by pushing the target address
towards the LRU position reusing the already collected congruent
addresses before testing a new random address. However, CT-fast
only reduces the total number of congruent addresses accessed by
half, still significantly larger than𝑊 .

The W+W algorithm exploits the fact that parallel write ac-
cesses to the same cache set are serialized by the LLC, incurring a
detectable latency overhead. Since causing such serialization con-
dition does not require manipulating the cache state, W+W could,
in theory, find an eviction set by accessing just𝑊 congruent ad-
dresses, potentially achieving a speed faster than CT-fast. However,
detecting such latency overhead carries with significant amount of
noise [28] and is feasible on some but not all Intel processors. On
practical attacks, W+W is faster only than GE.

3.2 Detectable Footprint of Cache Evictions
Adetector dedicated for detecting existing fast search algorithms for
eviction sets has been proposed in [26]. It is claimed that both GE’s
recursive pruning and PPP’s final probe step would unavoidably
incur extra amount of cache evictions on the targeted cache set. By
monitoring the distribution of cache evictions among cache sets, the
unbalanced distribution caused by the extra evictions on the target
cache set can be identified. Consequently, a remap is triggered to
nullify the eviction set even if it were successfully found.

To be specific, the detector records the number of cache evic-
tions on the 𝑖-th cache set during one monitoring period as 𝑒𝑖 and
calculate a z-score 𝑧𝑖 , according to Equation 2, to single out the
cache sets with outstanding amount of evictions.

𝑧𝑖 =
𝑒𝑖√︃∑

𝑒2

𝑆−1

(2)

However, directly using this z-score leads to false positive errors
when only a small number of evictions happen in one monitoring
period. As a solution, the z-score is weighted and moving averaged
using Equation 3 and 4, respectively:

𝑤𝑧𝑖 = (𝑒𝑖 − 𝑒) · 𝑧𝑖 (3)
𝑎𝑧𝑖 (𝑡) = (1 − 𝛼) · 𝑎𝑧𝑖 (𝑡 − 1) + 𝛼 ·𝑤𝑧𝑖 (𝑡) (4)

where𝑤𝑧𝑖 is the weighted score and 𝑎𝑧𝑖 (𝑡) is the moving averaged
score at the 𝑡-th monitoring period finally used for detection. For
simplicity, let us call 𝑎𝑧𝑖 as the detector score for 𝑖-th cache set. If
any detector score surpasses a predefined threshold of 5.0, an attack
is assumed in action and a remap is triggered.

We have reproduced the testing environment for the dynamically
randomized LLC using the same cache model open-sourced by [27].
All existing fast search algorithms fail to work as shown in Figure 12.

This result shows that this detector is indeed effective in identifying
and thwarting existing search algorithms.

4 THREAT MODEL
Before diving into the details of the new search algorithm, wewould
like to specify our assumptions. For an eviction search algorithm,
we define a successful attack as finding a sufficiently small (ideally
minimal) eviction set. We assume that the search algorithm is run
by an attacker in a restricted user model environment with the
following capabilities and limitations:
• The targeted LLC is a non-skewed set-associative cache (po-
tentially randomized) shared between the attacker and her
victim.
• The amount of memory acquirable by the attacker is not
limited by the system, so the attacker can access an arbitrarily
large range of addresses.
• The attacker can occupy more than one processing cores
and issue parallel memory accesses to the same LLC cache
block.
• The attacker can flush her own data out of the LLC.
• The attacker can accurately trick her victim into accessing
the target LLC cache set without incurring a large amount
of noise.
• Some parameters regarding the cache system are made avail-
able, such as the number of sets and ways of each cache
level, but neither the virtual to physical page mapping nor
the Intel complex addressing scheme is reverse-engineered.

5 THE CTPP ALGORITHM
In this section, we propose a new search algorithm for eviction
sets called CTPP: Conflict Testing with Probe+Prune. The behavioral
description of CTPP is presented in Algorithm 1. It is a combina-
tion of the CT and the PPP algorithms. In all eviction set search
algorithms, PPP achieves the lowest latency but suffers from a low
success rate. This low success rate is caused by the ineffective prime
and prune steps. By replacing them with a part of the CT algorithm,
the success rate is improved significantly. In addition, the original
probe step of the PPP algorithm is found easily detectable by the
detector proposed in [26]. By swapping the order of prune and
probe, we successfully reduce the likelihood of being detected.

The algorithm accepts two inputs: the target address 𝑥 and the
number of ways𝑊 in the LLC. If success, the algorithm returns
an eviction set E targeting 𝑥 . The search proceeds in three steps:
(1) A prime set C containing just 𝑊 congruent addresses with
the target 𝑥 is obtained using the CT algorithm. This prime set is
sequentially fed into a probe (2) and a prune (3) steps to reduce
the large prime set into a minimal eviction set. Both the probe and
the prune steps adopt the same method as in PPP but the order
of the two steps are swapped. Depending on the noise level, extra
rounds of probe+prune may be required. The rest of this section
explains the logic behind the design of CTPP and why it is effective
in finding eviction sets.

5.1 Obtain a Perfect Prime Set Using CT
First of all, let us revisit why the PPP algorithm is ineffective in
obtaining a usable prime set after the prune step. In a common but

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Zihan Xue, Jinchi Han, and Wei Song

Algorithm 1: The CTPP algorithm
Input: 𝑥 , target address.
Input:𝑊 , number of ways.
Output: E, an eviction set for 𝑥 .

1 function ctpp(𝑥 ,𝑊)
2 C ← ∅ // prime set
3 R ← ∅ // probed set
4 E ← ∅ // eviction set
5 prime(LLC) // preparation
6 // CT step
7 access(𝑥)

8 while probe(𝑥) do
9 𝑎 ← random()

10 access(𝑎)

11 C⋃{𝑎}
12 end
13 while | C | >𝑊 do
14 if R ≠ ∅ then
15 R ← ∅
16 flush(C), access(C)
17 end
18 // probe step
19 access(𝑥)

20 foreach 𝑐 ∈ C do
21 if not probe(c) then
22 R⋃{𝑐 }
23 end
24 end
25 // prune step
26 E ← ∅
27 foreach 𝑐 ∈ R do
28 if probe(𝑐) then
29 E⋃{𝑐 }
30 end
31 end
32 C ← E
33 end
34 return E
35 end

A

B

C

D

E

F

G

H

I

J

K

L Q

M

N

set 0

set 1

set 2

set 3

O

(a) Prime Set

E G J L Q

set 2 G J L Q

G J L Q E

(b) Prune

Figure 5: PPP is ineffective in pruning an imperfect prime set.
When an initial prime set (a) containsmore than𝑊 congruent
addresses, the prune step (b) is likely to remove the number
of congruent addresses to less than𝑊 . Addresses colored in
blue are found missing in the cache. Addresses colored in red
are evicted from the cache. Cache set 2 is the target.

imperfect situation, a randomly chosen prime set contains more
than𝑊 congruent addresses as shown in Figure 5a.1 After priming
the LLC, 𝐺 , 𝐽 , 𝐿 and 𝑄 are left in the targeted cache set 2. By the
default (also naive) prune method described in [20], the prime set is
pruned by re-accessing all addresses in the prime set and removing
all addresses missing in the LLC. Using the same accessing order
as in the prime step, all accesses to the targeted cache set result
1We do not discuss the case where the number of congruent addresses is less than𝑊
as it always fails.

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08

 1 1.5 2 2.5 3 3.5 4

S
u
cc

e
ss

 R
a
te

Size of Prime Set (K addresses)

Figure 6: Success rate of PPP on i7-6700 using prime sets of
different sizes. Each sample is averaged from 2000 tests.

in misses and the addresses are removed accordingly. The prime
set after prune contains no address congruent with the targeted
cache set and the search fails. The root cause of failure is that
the ineffective prune fails to reduce a prime with more than𝑊

congruent addresses into one with exactly𝑊 congruent addresses.
Unfortunately, no optimal prune method has been proposed yet.

Figure 6 shows the success rate of PPP (without retry) on i7-6700
using prime sets of different sizes. The optimal size of the prime set
is around 2 ∼ 2.5 K addresses. When using a prime set smaller than
the optimal size, the number of congruent addresses contained in
the prime set is likely less than𝑊 and PPP is less likely to succeed.
When using a prime set larger than the optimal size, the number of
congruent addresses is likely more than𝑊 and the prune step is
prone to reduce the number to less than𝑊 , which also results in a
low success rate. Even when the prime set is with the optimal size,
the success rate is still low (only around 6%) as the probability of
containing just𝑊 congruent addresses in the prime set is small.

Instead of using PPP, we decide to use the CT algorithm to obtain
a perfect prime set (C in Algorithm 1) with exactly𝑊 congruent
addresses. When we successfully collect the first congruent address
using CT in an LLC adopting the LRU replacement policy, all the
random addresses accessed during the search process become a
perfect prime set containing just𝑊 congruent addresses. The LLC
in the Intel processors adopt variants of the RRIP replacement
policy [32]. The attacker can degrade RRIP into LRU by enforcing
duplicated accesses for each random address using two processing
cores [22]. By feeding this perfect prime set collected by CT to
the original PPP algorithm (CT+PPP), we significantly improve the
success rate on i7-6700 from around 6% to 49% with a small latency
overhead (prolonged from around 0.6 ms to 0.78 ms per test).

5.2 Stealth Probe
The PPP algorithm is found easily detectable by the detector pro-
posed in [26] due to the unbalanced distribution of evictions among
cache sets during the probe step.

Let us analyze this unbalanced distribution using a demonstrative
example of running PPP on a 6-set 4-way cache as shown in Figure 7.
A perfect prime set is first obtained (using the CT algorithm) as
depicted in Figure 7a. In this perfect prime set, four addresses are
congruent with the targeted cache set 2, exactly the number of
ways. Assuming the address accessing order is 𝐴 → 𝑋 and the
order observed by the cache matching with the order initiated by
the attacker, the prune step removes all addresses missing during a
re-accessing of the prime set. As shown in Figure 8b, after the prune

CTPP: A Fast and Stealth Algorithm for Searching Eviction Sets on Intel Processors RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

A

B

C

D

E

F

G

H

I

J

K

L

Q

M

N

set 0

set 1

set 2

set 3

set 4

O

P

set 5

R

S

T

U

V

W

X

type (a)

type (b)

type (c)

(a) Prime Set

D

E

F

G

H

I

J

L

Q

M

N

set 0

set 1

set 2

set 3

set 4

O

P

set 5

R

S

T

U

V

W

X

5

6

0

0

0

0

LRU MRU
Evictions

A

(b) Prune

D

E G

H

J

L

M

set 0

set 1

set 2

set 3

set 4

set 5 T

X 5

0

0

0

0

0

LRU MRU
Evictions

detected!
I S VA

(c) Probe

Figure 7: Explain the reasonwhyPPP is easily detected. Cache
set 2 is the target cache set. Addresses colored in blue are
foundmissing in the cache. The perfect prime set collected by
CT (a) is pruned using the default prune method (b) and then
probed by re-accessing the reduced prime set after accessing
the target address (c). In the probe step, all evictions unevenly
occur on the target cache set.

step, all addresses colored blue are found missing in the cache and
are removed while all addresses colored in black are concurrently
stored in the cache and kept in the reduced prime set. The numbers
of cache evictions happened on each cache set during the prune
step are counted and presented in Figure 8b as well. Since two cache
sets2 demonstrate high amount of cache evictions, the distribution
of cache evictions is relatively balanced among cache sets. However,
such distribution become extremely unbalanced in the probe step.
Since all addresses in the reduced prime set are concurrently stored
in the cache, any addresses founding missing in the probe step,
after re-accessing the target address, must be congruent with cache
set 2 and cause an eviction on cache set 2. Consequently, only
cache set 2 suffers from a large amount of cache evictions. Such
unbalanced distribution is exactly the pattern constantly monitored
by the detector and the search is therefore exposed.

Analyzing the whole procedure for the detector to detect PPP,
we can observe two insights:
• Only cache evictions, rather than cache hits, are detectable.
• The eviction set is identified by evictions in the final probe.

Basically, the PPP algorithm starts with a large prime set containing
three types of addresses (labeled in Figure 7a): type (a), addresses
mapped to cache sets with more than𝑊 congruent addresses; type
(b), addresses mapped to cache sets with less than𝑊 congruent
addresses; and finally type (c) addresses mapped to cache sets (hope-
fully including the targeted cache set) with exactly𝑊 congruent
addresses. The prune step reduces the prime set by removing all
type (a) addresses using the default prune method. Later in the
probe step, the eviction set is identified from type (c) addresses by
2The number of cache sets experiencing evictions would be far larger in the LLC of a
practical processor.

D

E

F

G

H

J

L

Q

M

N

set 0

set 1

set 2

set 3

set 4

O

P

set 5

R

T

U

W

X

5

6

0

0

LRU MRU
Evictions

C

B K

5

0I S VA

(a) Probe

E

F

G J

Q

N

set 0

set 1

set 2

set 3

set 4

O

P

set 5

R U

W

X

5

6

0

0

0

LRU MRU
Evictions

Eviction Set

(b) Prune

Figure 8: Explain the reason why CTPP is unlikely to be
detected. Cache set 2 is the target cache set. Addresses colored
in blue are found missing in the cache. The perfect prime
set collected by CT is first probed by re-accessing it after
accessing the target address (a) and then pruned (b). The
addresses found hitting in the prune step form an eviction
set. In both probe and prune, the eviction distribution is
balanced.

cache evictions as all type (a) addresses are already removed. If we
can reduce the initial prime set by removing all type (b) addresses
rather than type (a) addresses, it is possible to identify the eviction
set utilizing cache hits, which are not detectable. As the reduction
of type (b) addresses is not set targeted, the distribution of cache
eviction is relatively balanced. During the final identification of the
eviction set, a large amount of cache evictions are caused by the
remaining large amount of type (a) addresses, the distribution of
cache eviction is relatively balanced as well. As a result, the whole
search procedure becomes unlikely detectable. How can we do this?
Swap the order of prune and probe.

As shown in Figure 8a, we first reduce the same perfect prime
set used in the previous PPP example (Figure 7a) by a probe rather
than a prune. The target address is first accessed (line 19 in Algo-
rithm 1) and then the whole prime set is re-accessed 𝐴→ 𝑋 (line
20–24 in Algorithm 1). All addresses missing during the probe, type
(a) addresses and the eviction set, are retained (colored in blue)
while the addresses hitting in the cache, type (b) addresses and
type (c) addresses except for the eviction set, are removed. Since a
large amount of cache evictions are caused by re-accessing type (a)
addresses and the eviction set, the distribution of cache evictions
among cache set is balanced.

Addresses belonging to the eviction set are identified using a
prune step as shown in Figure 8b. Note that the probe step removes
not only all type (b) addresses but also the type (c) addresses not
belonging to the eviction set. Addresses of the eviction set become
the only type (c) addresses retained in the reduced prime set after
probe. In the prune step, all remaining addresses are re-accessed in
the same order 𝐸 → 𝑋 (line 27–31 in Algorithm 1). Assuming the
access order observed by the cache matching with the attacker’s
re-accessing order, only addresses belonging to the eviction set
are found hitting in the cache and are therefore identified. Similar
to the probe step, a large amount of cache evictions are caused
by re-accessing the type (a) addresses, the distribution of cache
evictions among cache set is still balanced.

By swapping probe and prune, CTPP successfully avoids the
unbalanced distribution of cache evictions among cache sets caused

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Zihan Xue, Jinchi Han, and Wei Song

by the probe step in PPP. Consequently, CTPP has a much higher
probability to succeed without being detected. Compared with PPP
(or CT+PPP), no extra step is introduced and the total number of
memory accesses increases only marginally. Testing on i7-6700, the
performance of CTPP is almost unaffected by the swap of steps. It
achieves a success rate of 42% and an average latency of 0.73 ms
per test without retry, which lies in the same range with CT+PPP.

5.3 Match Access Order
The same access order initiated by the attacker and observed by
the LLC is a prerequisite for the success of CTPP. In the probe step
depicted in Figure 8a, CTPP expects to remove all type (b) addresses
and retain all type (a) addresses along with the eviction set. If any
type (a) address results in hitting in the cache in the probe, it is
mistakenly retained and potentially becomes a type (b) address,
because the total number of congruent addresses remaining in the
reduced prime set and mapping to this cache set drops below𝑊 . As
a result, it would be identified as a part of the eviction set, leading
to a failed search. Such condition is likely to happen if the access
order observed by the LLC is different with the order initiated by
the attacker.3

Generally speaking, there are two issues need to be resolved:
One is the filter effect of the private caches. If any access hits in the
private L1/L2 caches, it is hidden from the LLC. The other one is
the RRIP replacement policy adopted by modern Intel processors is
anti-thrashing [11] while the accessing of a prime set is exactly a
thrashing pattern [36].

Let us first consider the filter effect in an inclusive cache hier-
archy and pretend the replacement policy is LRU. We argue that
the access order observed by the LLC matches with the access or-
der initiated by the attacker as long as that the LLC is fully reset
(by priming it with random and irrelevant addresses, at line 5 in
Algorithm 1) and the prime set is always accessed using the same
order. If the LLC is fully reset, each address accessed by the attacker
during the CT step is taken as new by the LLC and occupies the
MRU position in the cache set. After a prime set is found, the ac-
cess order observed by the LLC, more importantly the replacement
priority from MRU to LRU, matches with the order of random ad-
dresses issued by the attacker. By accessing the prime set using
the same order during the probe step, all type (a) addresses and all
addresses belonging to the eviction set are found missing in the
LLC, since the accessing of these addresses presents a thrashing
pattern where each address is accessed once and only once in a
chain, and the chain is too long to fit in a cache set. The accessing
of type (b) addresses does not present the same thrashing pattern
but they are removed in the probe step. Later in the prune step,
the re-accessing of type (a) addresses presents the same thrashing
pattern and results in all misses, while all addresses belong to the
eviction set hit in the LLC.

For the non-inclusive LLC use by Intel Xeon processors, a cache
block shared between processing cores must occupy one of the tra-
ditional directory space, as reported by [38]. When a block becomes
shared between cores, its metadata is moved from the extended
directory to the traditional directory. If the traditional directory
space is fully occupied, a room is made by evicting a shared cache

3An example leading to such condition is to reverse the access order in the probe step.

block and purging it from the whole cache hierarchy, similarly as
in an inclusive LLC. The size of the traditional directory space is
the same with the number of LLC ways. By re-accessing all ran-
dom addresses and the target by two processing cores, an attacker
can enforce the use of traditional directory space and cause the
same conflict as in inclusive LLCs. In this way, the thrashing access
pattern remains effective.

The RRIP replacement policy is designed to be anti-thrashing but
only effective when the thrashing accesses are initiated by a single
core. If all accesses are duplicated, the RRIP algorithm is degraded
into the traditional LRU [21]. Conveniently, the dual-core access
method used for the non-inclusive LLC also enforces a duplicated
access pattern for accessing each address.

In summary, the attacker can enforce the access order initiated
by the attacker to be observed by the LLC by fully resetting the
LLC before the search, and accessing all addresses always in the
same order and by two processing cores.

5.4 Deal with Noise
Practical side-channel attacks rarely occur in a noiseless environ-
ment. The tolerance to noise is an important factor in considering
the usefulness of an eviction set search algorithm. CTPP is designed
with a strong tolerance to noise.

We consider two sources of noises: TLB noise and background
noise. Let us first discuss the TLB noise. Since a large amount of
random addresses are accessed by the attacker, the limited space of
TLB (and L2-TLB) are stressed, increasing the probability of TLB
misses. Accessing a cache block stored in the LLC may take an
abnormally long latency and be mistakenly assumed missing due
to a L2-TLB miss [8, 30]. This is especially problematic for the final
prune step. If one of the addresses belonging to the eviction set
is mistakenly assumed missing due to a TLB miss, the number of
congruent addresses identified by the prune step is less than𝑊 .
These addresses would fail to form an eviction set. To reduce this
type of failure, we adopt the TLB preload method [3] commonly
used in other eviction set search algorithms. In the prune step,
before accessing an address 𝑎, (𝑎 ⊕ 0x0800) is first accessed to
preload the TLB. For any set-associative cache with more than 32
sets, (𝑎 ⊕ 0x0800) is unlikely mapped to the same cache set with 𝑎
but they share the same TLB entry.

The background noise is the unavoidable noise caused by other
processes (including the kernel) running in the background, the
code related memory accesses due to misses in attacker’s own L1
instruction cache, and potentially the extra memory accesses issued
by the victim when triggered to access the target. The attacker can
neither control the amount of this noise nor predict the location or
time when it strikes. A strong algorithm must tolerate such noise.

There are three scenarios that noise can fail the CTPP algorithm:

• A noise-caused access to the targeted cache set occurs during
the CT step. This would cause the number of addresses in the
prime set and congruent with the target to be less than𝑊 ,
leading to a failed search.
• Anoise-caused access to the targeted cache set occurs during the
probe or the prune steps. CTPP assumes that all the addresses
belonging to the eviction set hit in the LLC in the prune step.
When a noise-caused access strikes the target cache set, one

CTPP: A Fast and Stealth Algorithm for Searching Eviction Sets on Intel Processors RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

H

L

M

set 0

set 1

set 2

set 3

set 4

set 5 T

LRU MRU

I S V

Qα

β

O W

E G J X

N P R U

γ δ

C F QO W

A I S V

B K N P RU

E G J X

D L T

HM

D

ε

t

(a) CT with noise

H M

set 0

set 1

set 2

set 3

set 4

set 5 T

LRU MRU

V

N P R U

C F QO W

A I S

B K

E G J X

D Lδ

(b) Probe with noise

set 0

set 1

set 2

set 3

set 4

set 5

LRU MRU

N P R U

F QO W

E G J X

D L

A I S

(c) Prune

set 0

set 1

set 2

set 3

set 4

set 5

LRU MRU

E G J X

D L

A I S
Eviction Set

(d) 2nd probe

Figure 9: Explain the noise tolerance of CTPP. Cache set 2 is
the targeted cache set. Addresses colored in blue are found
missing in the cache. Addresses represented by red Greek
alphabets are noise accesses. Re-accessing the target address
is denoted by a red t. The cache is primed after a perfect prime
set is obtained using CT (a). The order of accessing the prime
set after re-accessing the target address is also depicted in (a).
Due to noise, some type (b and c) addresses are kept after the
probe (b), i.e., 𝐴, 𝐷 , 𝐼 , 𝐿 and 𝑆 . These addresses are obtained
with the eviction set after prune (c). To remove them, a 2nd
probe is required (d).

of the eviction set’s address might be evicted and become
missing in the final prune, leading to a failed search.
• Noise-caused accesses to non-targeted cache sets during the
CT and the probe steps. Let’s consider the perfect prime set
shown in Figure 7a. As shown in Figure 9a, three noise-
caused accesses occur during the CT step (𝛼 , 𝛽 and 𝛾) and
two further noise-caused accesses occur during the probe
step (𝛿 and 𝜖). As a result, five type (b and c) addresses, i.e.,
𝐴, 𝐷 , 𝐼 , 𝐿 and 𝑆 , are mistakenly retained after the probe step,
as shown in Figure 9b. These addresses would remain hitting
in the cache during the prune step as shown in Figure 9c,
leading to extra addresses being mistakenly identified as a
part of the eviction set.

The first two noise-caused failures are unlikely to happen. The
noise-caused accesses are randomly distributed among all cache
sets. For modern processors with large LLCs, the number of cache
set 𝑆 is huge. As result, the probability that a noise-caused access
hitting the targeted cache set is extremely small (1/𝑆). The impact
on success rate is negligible.

The third failing scenario is the common case that needs to cope
with. As shown in Figure 9c, once a type (b) or type (c) address is
found missing in the probe step due to noise, it is kept as a part of
the eviction set obtained after prune. According to our estimation,
the quantity of such addresses in practical tests is not small. On

i7-6700, the average number of remaining addresses after each step
is: ∼2020 after CT, ∼290 after probe, and ∼80 after prune. As a result,
∼60 type (b and c) addresses are mistakenly identified as a part of
the eviction set.

Our solution to this problem is doing another round of probe.
Since noise is not repeatable, a 2nd round of probe does not suffer
from the same noise-caused accesses and all the mistakenly retained
addresses should be removed, as shown in Figure 9d. In practical
tests on all Intel processors, the number of addresses reduces to𝑊
after just one extra round of probe. For the simplicity in representa-
tion, we describe this rerun as a loop (line 13, 32, 33 in Algorithm 1)
although a 2nd prune is actually unnecessary.

5.5 Work on Randomized Caches
CTPP works on randomized set-associative caches almost in the
same way as on non-randomized caches, with only one extra op-
eration: When an extra round of probe is needed, the remaining
addresses (C in Algorithm 1) need to be deliberately flushed from
the whole cache hierarchy (line 16 in Algorithm 1) and then ac-
cessed to enforce that the same access order initiated by the attacker
is observed by the LLC.

This is not a problem for classic set-associative caches. Since the
number of ways in the inner private caches are normally smaller
than it in the LLC and multiple LLC cache sets are mapped to
one cache set in the inner private caches, the accessing pattern
observed by the targeted LLC cache set is always a thrashing pattern.
Consequently the access order observed by the LLC matches with
the order initiated by the attacker. However, since the cache set
indices in a randomized LLC is randomized, addresses mapping
to one LLC cache set is mapped with different cache sets in the
inner private caches. As a result, the access order of the eviction set
observed by the LLC in the prune step (Figure 9c) might be different
with the access order initiated by the attacker as some addresses hit
in the inner caches and are hidden from the LLC. If a 2nd probe is
required, the cache block evicted by re-accessing the target might
not be the first cache block (𝐸 in Figure 9d) accessed by the attacker
and this block would result in a hit and be mistakenly removed.
We need to restore the access order before the 2nd probe to avoid
such errors. This is achieved by flushing and then accessing all
remaining addresses after prune.

6 PERFORMANCE EVALUATION
In this section, we compare the performance of CTPP with all
existing fast search algorithms on both modern Intel processors and
on a dynamically randomized set-associative cache implemented
in the same behavioral cache model used in [26].

6.1 Search Speed
Table 1 demonstrates the speed performance of all existing fast
search algorithms for eviction sets on six different Intel processors,
including the 3rd to the 11th Gen Intel consumer processors and
both the 1st and the 2nd Gen server-level processors. CTPP is clearly
the winner in all algorithms. GE and W+W are significantly slower
than other algorithms. According to our analysis in Section 3.1,
GE suffers from its inefficient and slow prune process while W+W
suffers from its sensitivity to noise in detecting conflicting write

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Zihan Xue, Jinchi Han, and Wei Song

Table 1: Speed performance of all existing fast search algorithms for eviction sets. Each test has been repeated for 2000 times.

Processor LLC Huge Latency (` ± 𝜎) in Millisecond, Success Rate𝑎

Page GE𝑏 PPP𝑐 CT𝑑 CT-fast𝑑 W+W𝑒 CTPP𝑐

i7-3770 inclusive,16-way N 58 ± 32, 74% 1.07 ± 0.45, 26% 15 ± 1.3, 100% 14 ± 2.8, 100% 33 ± 41, 6.1% 0.98 ± 2.3, 96%
Y 44 ± 21, 78% 0.21 ± 0.53, 50% 0.64 ± 0.16, 100% 0.68 ± 0.29, 100% N/A 0.26 ± 1.2, 89%

i7-6700 inclusive, 16-way N 82 ± 66, 79% 1.38 ± 2.9, 24% 18 ± 4.4, 73% 18 ± 7.4, 74% 10.41 ± 5.3, 5.3% 1.3 ± 3.6, 92%
Y 46 ± 25, 85% 0.25 ± 0.06, 66% 2.4 ± 2.9, 100% 1.3 ± 0.88, 100% N/A 0.29 ± 0.76, 100%

i7-9700 inclusive,12-way N 115 ± 92, 85% 0.67 ± 0.78, 41% 54 ± 126, 88% 42 ± 100, 92% 159 ± 8.5, 2.0% 1.0 ± 2.2, 99%
Y 87 ± 99, 83% 0.14 ± 0.14, 40% 2.2 ± 2.8, 100% 1.4 ± 1.6, 100% N/A 0.24 ± 0.82, 100%

i7-11700 inclusive,16-way N 642 ± 586, 24% 1.9 ± 0.82, 10% 23 ± 2.6, 45% 21 ± 8.0, 52% 3.0 ± 1.4, 0.4% 1.7 ± 0.85, 59%
Y 446 ± 424, 47% 0.23 ± 0.041, 59% 1.6 ± 2.3, 100% 0.74 ± 0.15, 100% N/A 0.18 ± 0.03, 86%

Xeon-4110
𝑓

non-inclusive,11-way N 219 ± 203, 19% 2.9 ± 1.0, 71% 23 ± 7.3, 67% 23 ± 8.2, 75% 125 ± 133, 12% 1.5 ± 3.8, 98%
Y 159 ± 205, 17% 0.40 ± 0.14, 86% 5.0 ± 2.4, 36% 4.7 ± 2.6, 44% N/A 0.27 ± 0.025, 100%

Xeon-8280
𝑓

non-inclusive,11-way N 380 ± 345, 28% 7.5 ± 7.8, 38% 49 ± 35, 58% 54 ± 76, 60% 441 ± 130, 20% 4.5 ± 5.5, 99%
Y 299 ± 289, 26% 1.1 ± 0.48, 71% 3.5 ± 2.4, 64% 3.9 ± 2.7, 52% N/A 0.52 ± 0.11, 100%

𝑎The average latency and the standard deviation are estimated using the latency results of only the successful tests, because the average latency of the unsuccessful tests can be
unreasonably affected by the retry parameter and suffers from large variance.
𝑏Reuse the code open-sourced by [27] with manual parameter optimization without using the reuse technique.
𝑐Each PPP or CTPP test is allowed to retry for four times in maximal if failing to find an eviction set.
𝑑Reuse the code open-sourced by [19]. Each CT test is allowed to extend the search for eight extra addresses to cope with noise. The CT-fast algorithm is a full-blown one with an
extended search of𝑊 addresses in maximum.
𝑒The original code open-sourced by [28] fails to run on most of our test platforms. We implement our own version according to [28] and relax the condition for success. Each test
collects 100 addresses and is counted as a success if these 100 addresses form an eviction set. Results with huge pages are not collected as huge pages are not supported in the
original implementation.
𝑓 The eviction sets found for Xeon processors exploit the inclusive directory in the LLC.

 0.1

 1

 10

 100

La
te

n
cy

 (
m

s)

PPP CT CT-fast CTPP

 0
 0.2
 0.4
 0.6
 0.8

 1

400.perlbench

401.bzip2

403.gcc

410.bwaves

416.gam
ess

429.m
cf

433.m
ilc

434.zeusm
p

435.grom
acs

436.cactusADM

437.leslie3d

444.nam
d

445.gobm
k

447.dealII

450.soplex

453.povray

454.calculix

456.hm
m

er

458.sjeng

459.Gem
sFDTD

462.libquantum

464.h264ref

465.tonto

470.lbm

471.om
netpp

473.astar

481.wrf

482.sphinx3

483.xalancbm
k

m
eanS

u
cc

e
ss

 R
a
te

Figure 10: Find eviction sets on i7-6700 while running the SPEC CPU 2006 benchmark as background noise. Each test has been
repeated for 10000 times. Huge pages are not used.

accesses. Both CT and CT-fast achieve high success rates in finding
eviction sets. However, their search latency is almost ten times
longer compared with PPP. As analyzed in Section 3.1, the CT
variant algorithms suffer from the unnecessary accesses to extra
number of congruent addresses while PPP achieves the low latency
thanks to its manipulation of cache state according to the RRIP
replacement policy. However, the inefficient prune of PPP leads
to low success rate. Comparing with all the existing algorithms,
CTPP achieves low search latency and high success rate at the
same time. The low search latency comes from its exploitation of
the replacement policy similar with the PPP algorithm. The high
success rate thanks to the perfect prime sets obtained by CT.

Regarding the differences between architectures, older genera-
tions of consumer processors (before the 11th Gen) are easier to
attack than the 11th Gen. All algorithms suffer from lower success

rates on i7-11700 but CTPP still achieves the highest success rate of
59%. There is no significant difference between the two generations
of Xeon processors. The CT variants (CT and CT-fast) and CTPP
appear to achieve similarly high success rates while CTPP is best
of providing a success rate approaching 100%. The search latency
on Xeon-8280 is significantly longer than on Xeon-4110 due to its
large LLC. Xeon-4110 is a 16-core processor with an 11MB LLC
while the Xeon-8280 platform under test is a dual-socket server
mounted with two 28-core Xeon-8280 processors and an LLC of
accumulated ∼38MB.

6.2 Noise Tolerance
Tolerance to background noise is important for the success of side-
channel attacks in practical attacks. To examine the capability of
noise tolerance, we run the four fastest search algorithms, i.e., PPP,

CTPP: A Fast and Stealth Algorithm for Searching Eviction Sets on Intel Processors RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

2021222324252627282930313233343536373839404142434445464748495051525354555657585960

500 550 600 650 700 750
cache set

sa
m

pl
e

0

2

4

6

8
score

(a) GE (0–100)

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

500 550 600 650 700 750
cache set

sa
m

pl
e

0

2

4

6

8
score

(b) PPP (0–30, 31–61)

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

500 550 600 650 700 750
cache set

sa
m

pl
e

0.0

0.5

1.0

1.5

2.0

2.5
score

(c) CT (0–63)

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

500 550 600 650 700 750
cache set

sa
m

pl
e

0

2

4

6

8
score

(d) CT-fast (0–32, 33-75)

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

500 550 600 650 700 750
cache set

sa
m

pl
e

0

1

2

3

4

5

score

(e) CTPP (13–26, 27–41, 42–48,
49–60)

Figure 11: The detector scores of cache sets during the search for eviction sets on a 1024-set 16-way LLC using GE (a), PPP (b),
CT (c), CT-fast (d) and CTPP (e). The score distribution is sampled (re-calculated) every 4 accesses per cache set. Samples 20–60
are depicted in the figure, omitting the initial 20 warm-up samples. For the best visibility of figures, the value of score is capped
at 8.0. The same color scale is used for all sub-figures for visual comparison. The targeted cache set is fixed to cache set 666. The
scores of cache set 500–750 are depicted including the targeted cache set. The samples corresponding to each search are labeled
in the sub-figure caption in parentheses, e.g., 4 searches are finished in the 40 samples shown for CTPP (e).

CT, CT-fast and CTPP, on an i7-6700 processor while running one
SPEC CPU 2006 benchmark [7] as the background noise. As shown
in Figure 10, the success rate of all algorithms is similarly reduced
by half while CTPP achieves the best of 41%. The search latency of
PPP and CTPP is almost the same with or without the background
noise but it is prolonged by around four times for CT and CT-fast.
CTPP incurs the lowest search latency of 1.3 ms in average (with
or without noise).

Regarding the performance when different background noise is
applied by individual SPEC CPU 2006 benchmarks, the fast search
algorithms are sensitive to memory heavy benchmarks, such as
410.bwaves, 437.leslie3d, 450.soplex, 459.GemsFDTD, 462.libquan-
tum, 470.lbm, 471.omnetpp, 482.sphinx3. The success rate of all
algorithms drops to almost zero. One exception is 433.milc, where
PPP, CT-fast and CTPP still work with a success rate higher than
10%, and CTPP achieves a much higher rate of 45%. For benchmarks
with a moderate amount of memory accesses, such as 401.bzip2,
403.gcc, 434.zeusmp, 436.cactusADM, 481.wrf, CTPP’s success rate
outperforms other search algorithms by a large margin.

In summary, all fast search algorithms for eviction sets are
unavoidably sensitive to background noise. CTPP presents the
strongest tolerance to background noise and outperforms other
algorithms by a large margin when the memory accesses generated
by the background noise is moderate.

6.3 Escape Detection
To evaluate the capability of escaping from the detector proposed
in [26], we port all fast search algorithms for eviction sets to the
same behavioral cache model used in [26] (except for W+W because
serialization of write accesses incur no latency penalty in the be-
havioral cache model). The cache model is configured into a cache
hierarchy with two levels of set-associative caches. The L2 cache
acts as the LLC, which is randomized and dynamically remapped
using EV10+DT.4 As a visual demonstration, we extract the detec-
tor score 𝑎𝑧𝑖 (𝑡) described in Equation 4 during the active search

4EV10: periodically remap every 10 evictions per cache block. DT: trigger extra remaps
when an eviction set search algorithm is detected in action. [26]

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 4 6 8 10 12 14 16 18

S
u
cc

e
ss

 R
a
te

Detector Threshold

GE
PPP
CT

CT-fast
CTPP

CTPP-2

Figure 12: Success rate of finding eviction sets when the
EV10+DT detector is enabled. The detector threshold ranges
from 3.0 to 18.0. Each test is repeated for 1000 times.

for eviction sets using different algorithms. The score distribution
among cache sets for all algorithms is shown in Figure 11.

GE, PPP and CT-fast are clearly exposed by the detector. A high
score (actually much larger than 8 as the score is capped) is found
on the targeted cache set 666, since too many cache evictions are
unevenly incurred on it. For GE, this unbalanced eviction is clearly
visible during the whole prune process. The PPP algorithm incurs
the unbalanced eviction distribution in the final probe step. A simi-
larly unbalanced distribution is produced by the extended search
introduced by the CT-fast algorithm.

CT seems to be the most stealth algorithm. Since congruent ad-
dresses are collected by testing a huge number of random addresses,
the eviction distribution is statistically even. No detector score ever
surpasses 2.5. However, it suffers from the slow speed. It finishes
just one search in 64 sample periods (0–63 as labeled in the caption
of Figure 11c). Although it can escape from the detector, it is easily
defeated by the periodical remap triggered by EV10.

The eviction distribution incurred by CTPP generates higher
scores than CT. The highest score can rise to around 5.5, surpassing
the default detector threshold of 5.0. However, the speed of CTPP
is much faster than all other algorithms. In the same 60 sample
periods, CTPP has finished 5 rounds of search. Although it would be
eventually detected, it is very likely that an eviction set has already
been successfully found and utilized.

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Zihan Xue, Jinchi Han, and Wei Song

By applying the full remap scheme (EV10+DT), Figure 12 reveals
the drop of success rate of all search algorithms when the detector
threshold shrinks from 18.0 to 3.0. Matching with the conclusion in
[26], all existing search algorithms fail to work when the threshold
is set to the default value of 5.0, but CTPP achieves a high success
rate around 60%. Even when the detector threshold is decreased
to 3.0, CTPP still works with a 12% success rate. CTPP obviously
outperforms all existing algorithms in escaping form detection.

Algorithm 2: CTPP-2, search an eviction set targeting two
addresses simultaneously.
Input: 𝑥0 , the 1st target address.
Input: 𝑥1 , the 2nd target address.
Input:𝑊 , number of ways.
Output: E, an eviction set for 𝑥0 or 𝑥1 .

1 function ctpp-2(𝑥0, 𝑥1,𝑊)
2 C ← ∅ // prime set
3 R ← ∅ // probed set
4 E ← ∅ // eviction set
5 prime(LLC) // preparation
6 // CT step
7 access(𝑥0), access(𝑥1)

8 ℎ0 ← 𝑡𝑟𝑢𝑒 , ℎ1 ← 𝑡𝑟𝑢𝑒

9 while ℎ0 or ℎ1 do
10 𝑎 ← random()

11 access(𝑎)

12 C⋃{𝑎}
13 ℎ0 ← ℎ0 and probe(𝑥0)

14 ℎ1 ← ℎ1 and probe(𝑥1)

15 end
16 // probe step
17 access(𝑥0), access(𝑥1)

18 foreach 𝑐 ∈ C do
19 if not probe(c) then
20 R⋃{𝑐 }
21 end
22 end
23 // prune step
24 E ← ∅
25 foreach 𝑐 ∈ R do
26 if probe(𝑐) then
27 E⋃{𝑐 }
28 end
29 end
30 return E
31 end

By a further investigation, we find that the success rate can be
improved by searching an eviction set targeting multiple target
addresses. A revised algorithm that targets two addresses (𝑥0 and
𝑥1) simultaneously is described by Algorithm 2, where the revised
parts are highlighted in red. Instead of collecting addresses just
enough to form a perfect prime set for a single target address,
extra addresses are collected for evicting two target addresses. The
following probe and prune steps remain the same with the original
algorithm except for accessing both targets at the beginning of
probe. If successful, the collection of addresses returned by the
algorithm, E, is an eviction set for either 𝑥0 or 𝑥1,5 or even both
by a 15% probability. Labeled as “CTPP-2” in Figure 12, when the
detector threshold drops to lower than 6.0, CTPP-2 achieves a higher
success rate than CTPP. For the lowest threshold of 3.0, CTPP-2
5An eviction set that works with a 50% probability is still better than no eviction set,
because the former can be used to leak information in a statistical manner. [2]

raises the success rate from 12% to 18% (50% improvement). The
underlying reason is the increased number of type (a) addresses
when a prime set is collected for two target addresses. These extra
number of type (a) addresses increase the number of cache sets
experiencing with evictions, leading to a more even distribution of
evictions than the original algorithm. Detector scores rise slower
and becomes less likely to surpass the detector threshold.

7 DISCUSSION
Similar with many other eviction set search algorithms [27, 28],
we have tested CTPP on two AMD processors (Ryzen-7 5700G
and Threadripper 3955WX) and verified that CTPP fails to work.
Recent AMD processors adopt a non-inclusive LLC with a snooping
coherence protocol, lacking the inclusiveness required by CTPP.

Randomized skewed caches [4, 22, 24, 29, 35] have recently been
considered as a promising defense against conflict-based cache
side-channel attacks, although none of the existing commercial
processors adopts a skewed cache in the cache hierarchy. Directly
applying CTPP to randomized skewed caches does not work in its
current form. There are at least two reasons: One is the re-accessing
of the target address (line 7 in Algorithm 1) may fail to strike on the
correct skew occupied by the prime set, resulting in the removal of
most addresses partially congruent with the target as they hit in
the cache. The other one is the thrashing access pattern required
by CTPP for retaining the eviction set during probe. Even if the
re-accessing of the target address strikes on the correct skew and
one of the partially congruent addresses is evicted, it may not cause
a conflict on the same (correct) skew when this partially congruent
address is re-accessed later. Theoretically, an attacker may still get
a chance by enforcing conflicts on the correct skew by repeated
flushing and re-accessing, but we cannot easily predict whether
CTPP remains effective. We leave this research exploration to one
of our future works.

Regarding potential counter-measures on set-associative LLC
utilized by existing Intel processors, some hardware changes may
significantly reduce the success rate of CTPP. For inclusive LLCs, in-
troducing randomness in the replacement policy breaks the match-
ing access order observed by the LLC, which leads to potential
removal of some addresses belonging to the eviction set in the
probe step. This is also effective for the non-inclusive LLC using an
inclusive directory, but relaxing the strict inclusive condition for
shared cache blocks [38] would potentially nullify the usefulness
of eviction sets.

8 CONCLUSION
A new eviction set search algorithm called Conflict Testing with
Probe+Prune (CTPP) is proposed in this paper. It combines the ben-
efits of both CT and PPP algorithms. Comparing with existing
algorithms, CTPP achieves the lowest latency of less than five mil-
liseconds in finding an eviction set on current Intel processors,
escapes from the detector proposed in [26] by a 60% probability
when all other algorithms fail to work, and presents the strongest
tolerance to environmental noise as verified by running the SPEC
CPU 2006 benchmark in the background.

CTPP: A Fast and Stealth Algorithm for Searching Eviction Sets on Intel Processors RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

AVAILABILITY
CTPP is available at https://github.com/comparch-security/ctpp.

ACKNOWLEDGMENTS
This work was partially supported by the National Natural Science
Foundation of China under grant No. 61802402 and 62172406, the
CAS Pioneer Hundred Talents Program. Any opinions, findings,
conclusions, and recommendations expressed in this paper are
those of the authors and do not necessarily reflect the views of the
funding parties.

REFERENCES
[1] Christoph Berg. 2006. PLRU cache domino effects. In Proceedings of the Interna-

tional Workshop on Worst-Case Execution Time Analysis (WCET’06).
[2] Thomas Bourgeat, Jules Drean, Yuheng Yang, Lillian Tsai, Joel Emer, and Mengjia

Yan. 2020. CaSA: End-to-end quantitative security analysis of randomly mapped
caches. In Proceedings of the IEEE/ACM International Symposium on Microarchi-
tecture (MICRO’20). 1110–1123.

[3] Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yuval Yarom. 2018. Drive-by
key-extraction cache attacks from portable code. In Proceedings of the International
Conference on Applied Cryptography and Network Security (ACNS’18). Springer,
83–102.

[4] Lukas Giner, Stefan Steinegger, Antoon Purnal, Maria Eichlseder, Thomas Unter-
luggauer, Stefan Mangard, and Daniel Gruss. 2023. Scatter and Split Securely:
Defeating Cache Contention and Occupancy Attacks. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P’23). IEEE.

[5] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano Giuffrida. 2017.
ASLR on the line: Practical cache attacks on the MMU. In Proceedings of the
Network and Distributed System Security Symposium (NDSS’17). Internet Society.

[6] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. 2016. Rowhammer.js:
A remote software-induced fault attack in JavaScript. In Proceedings of the Con-
ference on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA’16). Springer, 300–321.

[7] John L. Henning. 2006. SPEC CPU2006 benchmark descriptions. SIGARCH
Computer Architecture News 34, 4 (2006), 1–17.

[8] Ralf Hund, Carsten Willems, and Thorsten Holz. 2013. Practical timing side
channel attacks against kernel space ASLR. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P’13). IEEE, 191–205.

[9] Mehmet Sinan İnci, Berk Gulmezoglu, Gorka Irazoqui, Thomas Eisenbarth, and
Berk Sunar. 2016. Cache attacks enable bulk key recovery on the cloud. In
Proceedings of the Conference on Cryptographic Hardware and Embedded Systems
(CHES’16). 368–388.

[10] Aamer Jaleel, Eric Borch,Malini Bhandaru, SimonC. Steely Jr., and Joel Emer. 2020.
Achieving non-inclusive cache performance with inclusive caches: Temporal
locality aware (TLA) cache management policies. In Proceedings of the Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO’10). IEEE.

[11] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely Jr., and Joel S. Emer. 2010. High
performance cache replacement using re-reference interval prediction (RRIP). In
Proceedings of the International Symposium on Computer Architecture (ISCA’10).
ACM, 60–71.

[12] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
2019. Spectre attacks: Exploiting speculative execution. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P’19). 19–37.

[13] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading kernel memory from user
space. In Proceedings of the USENIX Security Symposium (Security’18). USENIX
Association, 973–990.

[14] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-
level cache side-channel attacks are practical. In Proceedings of the IEEE Sympo-
sium on Security and Privacy (S&P’15). IEEE.

[15] Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann, Olivier Heen,
and Aurélien Francillon. 2015. Reverse Engineering Intel Last-Level Cache Com-
plex Addressing Using Performance Counters. In Proceedings of the International
Symposium on Research in Attacks, Intrusions, and Defenses (RAID’15). Springer,
48–65.

[16] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D.
Keromytis. 2015. The spy in the sandbox: Practical cache attacks in JavaScript
and their implications. In Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security (CCS’15). ACM Press.

[17] Colin Percival. 2005. Cache missing for fun and profit.

[18] Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid Verbauwhede. 2021. Sys-
tematic analysis of randomization-based protected cache architectures. In Pro-
ceedings od the IEEE Symposium on Security and Privacy (S&P’21). IEEE, 987–1002.

[19] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede. 2021. Prime+Scope:
Overcoming the observer effect for high-precision cache contention attacks. In
Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security (CCS’21). ACM, 2906–2920.

[20] Antoon Purnal and Ingrid Verbauwhede. 2019. Advanced profiling for prob-
abilistic Prime+Probe attacks and covert channels in ScatterCache. (2019).
arXiv:1908.03383v1 [cs.CR]

[21] Moinuddin K. Qureshi. 2018. CEASER: Mitigating conflict-based cache attacks
via encrypted-address and remapping. In Proceedings of the Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO’18). 775–787.

[22] Moinuddin K. Qureshi. 2019. New attacks and defense for encrypted-address
cache. In Proceedings of the International Symposium on Computer Architecture
(ISCA’19). ACM, 360–371.

[23] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. 2009. Hey,
you, get off of my cloud: Exploring information leakage in third-party compute
clouds. In Proceedings of the ACM Conference on Computer and Communications
Security (CCS’09). ACM, 199–212.

[24] Gururaj Saileshwar and Moinuddin K. Qureshi. 2021. MIRAGE: Mitigating
conflict-based cache attacks with a practical fully-associative design. In Pro-
ceedings of the USENIX Security Symposium (Security’21). USENIX Association,
1379–1396.

[25] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Prateek Mittal,
Yossi Oren, and Yuval Yarom. 2019. Robust website fingerprinting through the
cache occupancy channel. In Proceedings of the USENIX Security Symposium
(Security’19). USENIX Association, 639–656.

[26] Wei Song, Boya Li, Zihan Xue, Zhenzhen Li, Wenhao Wang, and Peng Liu. 2021.
Randomized last-level caches are still vulnerable to cache side-channel attacks!
But we can fix it. In Proceedings of the IEEE Symposium on Security and Privacy
(S&P’21). IEEE, 955–969.

[27] Wei Song and Peng Liu. 2019. Dynamically finding minimal eviction sets can be
quicker than you think for side-channel attacks against the LLC. In Proceedings
of the International Symposium on Research in Attacks, Intrusions and Defenses
(RAID’19). USENIX Association, 427–442.

[28] Jan Philipp Thoma and Tim Güneysu. 2022. Write me and I’ll tell you secrets
— Write-after-write effects on Intel CPUs. In Proceedings of the International
Symposium on Research in Attacks, Intrusions and Defenses (RAID’22). ACM.

[29] Thomas Unterluggauer, Austin Harris, Scott Constable, Fangfei Liu, and Carlos V.
Rozas. 2022. Chameleon cache: Approximating fully associative caches with
random replacement to prevent contention-based cache attacks. In Proceedings
of the IEEE International Symposium on Secure and Private Execution Environment
Design (SEED’22). IEEE, 13–24.

[30] Stephan van Schaik, Kaveh Razavi, Ben Gras, Herbert Bos, and Cristiano Giuffrida.
2017. RevAnC: A framework for reverse engineering hardware page table caches.
In Proceedings of the European Workshop on Systems Security (EuroSec’17).

[31] Tarunesh Verma, Achilleas Anastasopoulos, and Todd M. Austin. 2022. These
aren’t the caches you’re looking for: Stochastic channels on randomized caches.
In Proceedings of the IEEE International Symposium on Secure and Private Execution
Environment Design (SEED’22). IEEE, 37–48.

[32] Pepe Vila, Pierre Ganty, Marco Guarnieri, and Boris Köpf. 2020. CacheQuery:
Learning replacement policies from hardware caches. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’20). ACM.

[33] Pepe Vila, Boris Köpf, and Jose Morales. 2019. Theory and practice of finding
eviction sets. In Proceedings of the IEEE Symposium on Security and Privacy
(S&P’19). IEEE, 39–54.

[34] Zhenghong Wang and Ruby B. Lee. 2008. A novel cache architecture with
enhanced performance and security. In Proceedings of the Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO’08). IEEE Computer Society,
83–93.

[35] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz, Daniel
Gruss, and Stefan Mangard. 2019. ScatterCache: Thwarting cache attacks via
cache set randomization. In Proceedings of the USENIX Security Symposium (Secu-
rity’19). USENIX Association, 675–692.

[36] Henry Wong. 2013. Intel Ivy Bridge cache replacement policy. http://blog.
stuffedcow.net/2013/01/ivb-cache-replacement/.

[37] Mengjia Yan, Bhargava Gopireddy, Thomas Shull, and Josep Torrellas. 2017. Se-
cure hierarchy-aware cache replacement policy (SHARP): Defending against
cache-based side channel atacks. In Proceedings of the Annual International Sym-
posium on Computer Architecture (ISCA’17). ACM, 347–360.

[38] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, ChristopherW. Fletcher, RoyH.
Campbell, and Josep Torrellas. 2019. Attack directories, not caches: Side-channel
attacks in a non-inclusive world. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P’19). IEEE, 888–904.

[39] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A high resolution,
low noise, L3 cache side-channel attack. In Proceedings of the USENIX Security
Symposium (Security’14). USENIX Association, 719–732.

https://github.com/comparch-security/ctpp
https://arxiv.org/abs/1908.03383v1
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/

	Abstract
	1 Introduction
	2 Background
	2.1 Cache Architecture
	2.2 Cache Side-Channel Attacks
	2.3 Fast Search Algorithms for Eviction Sets
	2.4 Randomized Caches

	3 Motivation
	3.1 Slowness of Existing Search Algorithms
	3.2 Detectable Footprint of Cache Evictions

	4 Threat Model
	5 The CTPP Algorithm
	5.1 Obtain a Perfect Prime Set Using CT
	5.2 Stealth Probe
	5.3 Match Access Order
	5.4 Deal with Noise
	5.5 Work on Randomized Caches

	6 Performance Evaluation
	6.1 Search Speed
	6.2 Noise Tolerance
	6.3 Escape Detection

	7 Discussion
	8 Conclusion
	Acknowledgments
	References

