
Methods of Extracting Parameters
of the Processor Caches

Sihao Shen1,2, Zhenzhen Li1,2, and Wei Song1,2(B)

1 State Key Laboratory of Information Security, Institute of Information
Engineering, CAS, Beijing, China

songwei@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China

Abstract. As attack scenarios and targets are constantly expanding,
cache side-channel attacks have gradually penetrated into various daily
applications and brought great security risks. The success of a cache
side-channel attack relies heavily on the pre-knowledge of some impor-
tant parameters of the target cache system. Existing methods for reading
cache parameters have their limits. In this paper, a series of tests are pro-
posed to extract cache parameters at runtime, which provides a method
for launching existing cache side-channel attacks in some restricted cases
and reduces the cost of attacks. They have been used to extract cache
parameters on four processors using three different architectures, as well
as in a restricted virtual machine environment. The extracted parameters
match with the publicly available information, including some parame-
ters unavailable from the CPUID instruction.

Keywords: hardware security · cache side-channel · micro-architecture

1 Introduction

Cache side-channel attacks have become an important way of leaking critical
information in modern computer systems, especially after their employment in
the Meltdown [1] and Spectre attacks [2]. The attack scenario has been broadened
from a single core to multicore processors, virtual machines (VMs) [3] and trusted
execution domains [4–6]. The targets of attacks also grow from just the secrets
of crypto-algorithms to users’ private data [7,8], the mapping of virtual and
physical address spaces [9] and manipulating data bits in memory [10].

The success of a cache side-channel attack relies heavily on the pre-knowledge
of some important parameters of the target cache system. The access latency of
the target cache is used as the time reference for inferring cache states [11]. The
size of a cache and the number of cache sets affect the probability in finding
an address conflicting with the target address [12]. Attacking using the minimal
eviction set is crucial for a clean and stealth attack [13], while the size of this
eviction set is decided by the number of ways in each cache set in set-associative
caches [12,13]. The replacement policy asserts significant impact on the way of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C.-M. Cheng and M. Akiyama (Eds.): IWSEC 2022, LNCS 13504, pp. 47–65, 2022.
https://doi.org/10.1007/978-3-031-15255-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15255-9_3&domain=pdf
http://orcid.org/0000-0001-5649-1580
https://doi.org/10.1007/978-3-031-15255-9_3

48 S. Shen et al.

using eviction sets. For permutation-based policies [14], such as the widely used
pseudo LRU (Least Recently Used) [15], sequentially accessing an eviction set
is sufficient to dislodge the target. However, repeated and complicated accessing
methods are required when scan-resistant policies, such as RRIP (Re-Reference
Interval Prediction) [16], are adopted by modern processors [17]. In addition, it is
found that the replacement policy also decides the optimal method for searching
eviction sets [18].

Before launching the actual attack, attackers need to collect the aforemen-
tioned parameters with some investigation. Some parameters, such as the size of
cache, might be publicly available if the processor information can be precisely
identified through the CPUID instruction of x86-64 or the lscpu command on
Linux. Other parameters, usually the access latency of individual cache levels,
could be calculated by running tests on the target system [11,13,19]. However,
the existing methods have some limitations. Not all architectures provide the
CPUID instruction. Even when it is available to user land, it might be virtualized
to mask the cache related information or even provide wrong information [20].
System commands, such as lscpu, might not be available as attackers have no
method to open a shell. Testing the access latency at runtime might be prob-
lematic if all high-resolution timers, like the RDTSC of x86-64, are disabled [21].
Finally, attacks might be launched in a restricted environment [7] where attack-
ers have almost no direct access to machine level instructions or resources.

To address these issues, this paper proposes a series of tests to extract the
required cache parameters at runtime. These tests do not rely on accessing any
of the files, commands and instructions leaking the cache information or the
processor model. Instead of utilizing existing timing sources on the target system,
a high-resolution timer is created and utilized to measure the access latency of
all cache levels. Consequently, these tests have the potential to be ported across
different computer architectures and running in restricted environments, which
provides a method for launching existing cache side-channel attacks in some
restricted cases and reduces the cost of attacks. In fact, we have already run the
same tests on four processors over three different instruction sets (ISAs) including
x86-64, AArch64 and RISC-V, as well as in a virtual machine environment. The
tests have successfully extracted almost all the aforementioned cache parameters,
including some parameters unavailable from the CPUID instruction.

2 Background

2.1 Cache Architecture

In modern processors, caches adopt a multi-level hierarchical structure. Taking
the recent Intel processors as an example, level-one (L1) and level-two (L2)
caches are privates caches accessible only by the local core, while level-three cache
(L3 $), acting as the LLC (last-level cache), is shared by all cores. Normally,
caches located near the processor core pipeline (inner caches), such as L1 $,
operate at a higher speed and smaller size than those far away from the core
(outer caches), such as the LLC. A memory access always starts from the inner
caches and inquires the outer caches only when data misses in the inner ones.

Methods of Extracting Parameters of the Processor Caches 49

Fig. 1. A virtually indexed and physically tagged cache

Fig. 2. Process of Prime+Probe attack

Almost all caches use a set-associative internal structure. The cache space
is divided into cache sets and each set contains multiple ways of fixed sized
cache blocks. Figure 1 depicts a virtually indexed and physically tagged cache
normally used as the L1 $. The 2s cache sets are indexed by a segment of the
virtual address (VA[b+s-1:b]) while the lower b bits (VA[b-1:0]) are used as the
cache block offset and the higher bits (VA[63:12] assuming the 4KB page size)
are used by the translate lookaside buffer (TLB) for generating the physical page
number also used as the tag for the cache way matching. Each cache set contains
w cache blocks, i.e., w ways. When accessing a data, a cache set is selected by
the VA and all cache blocks inside this set are simultaneously checked with the
tag provided by the TLB. If the data is cached, one of the cache blocks would
match with the tag; otherwise, the data is uncached (a miss) and will be fetched
from the outer cache. Consequently, this missing block is stored in the cache set
at either an unoccupied way or a cache block, chosen by a replacement policy,
is evicted to the outer cache to make a room.

2.2 Cache Side-Channel Attacks

Cache side-channel attacks are based on the difference in time, where the latency
is small when an attacker accesses a cached address but large when this address is
evicted from the cache [22,23]. Attackers can obtain a lot of sensitive information
from this time difference, which leads to information leakage.

50 S. Shen et al.

Commonly used cache side-channel attacks are mostly divided into two
categories: flush-based attacks and conflict-based attacks. The flush-based
attacks [24–26] require explicit cache control instructions to invalidate the target
cache block, such as the clflush [24] on x86, in addition to requiring the target
cache block must be shared between the attacker and the victim. This type of
attack is simple and accurate but it relies too much on memory sharing and
cache control instructions, making this attack unsuccessful in many restricted
situations. If either of the above conditions is not satisfied, the attacker could
launch conflict-based attacks to achieve similar effect [12]. This type of attack
exploits the fact that each cache set holds only a fixed number of cache blocks,
and blocks mapped to the same set conflict with each other [27–30]. The attacker
can thus control the state of a cache set by occupying it completely. After the
victim program is executed, victim information can be inferred by rechecking
whether the cache set is still fully occupied.

Prime+Probe [31] is the most classic conflict-based cache side-channel attack.
The attack process can be roughly divided into three stages, as shown in Fig. 2:
(1) Prime: The attacker accesses a pre-prepared eviction set to occupy the
target cache set to evict all victim data. (2) Wait: The attacker waits for a
period of time, during which the victim executes the program and reoccupies
the cache. (3) Probe: The attacker accesses the eviction set again and records
the access latency. If the victim accesses the target cache set while waiting, some
of the attacker’s cache blocks are evicted from the target cache set. They must
be reloaded from memory during probe resulting prolonged access latency.

In a conflict-based cache side-channel attack, an important step is to con-
struct the eviction set, which consists of a collection of (virtual) addresses that
are all congruent to each other with the target address [12,13], i.e., all mapping
to the same cache set.

Definition 1. If and only if two virtual addresses x and y map to the same cache
set, Set(x) = Set(y) [13], but are not on the same cache block, Cb(x) �= Cb(y),
then the addresses x and y are said to congruent to each other:

Congruent(x, y) ⇐⇒ Set(x) = Set(y) ∧ Cb(x) �= Cb(y) (1)

Definition 2. [x] denotes the collection of all congruent addresses with address
x. Suppose the number of ways for the cache set is w. For a target address x, a
collection of virtual addresses S is an eviction set for x if x /∈ S, and at least w
addresses in S are congruent with x [13]:

x /∈ S ∧ |[x] ∩ S| ≥ w (2)

3 Threat Model

We assume unprivileged attackers with the ability to launch a multi-thread
program on the target system and allocate consecutive memory in the virtual
memory space. All files, commands and instructions that might leak the cache

Methods of Extracting Parameters of the Processor Caches 51

Fig. 3. Construct the randomized sequence of addresses

Algorithm 1: Latency measurement
1 function latency(Sr)
2 start = timer()
3 foreach p in Sr do p = ∗p
4 return (timer() − start)/len(Sr)

5 end

information or the processor model has been disabled on the target system,
attackers cannot get these information directly by reading files or executing
commands such as lscpu. Attackers cannot directly launch a flush-based attack.
The parameters of the target platform are not known to attackers in advance
and need to be obtained through actual measurements. Attackers may be in a
virtual environment. Meanwhile, sources of high-resolution timers, such as the
RDTSC of x86-64, might be removed or made unusable.

4 Measuring Cache Access Latency

The access latency of a cache is the foremost crucial parameter required for time
side-channels while also the easiest one to obtain. It is therefore chosen as the
first cache parameter to be extracted.

4.1 Random Cache Scan

The main idea of estimating the access latency of a cache is by measuring the
overall latency of accessing a pre-constructed sequence of addresses. In order to
accurately measure the access latency while effectively circumventing the various
optimization implemented in modern processors, the access latency is averaged
from the overall time of traversing a long and randomized sequence of addresses
Sr constructed according to Fig. 3 [17]. A consecutive memory space So is initially
allocated from the virtual address space. According to a predefined stride, a
consecutive address sequence Ss is constructed from So and then randomized
to form the final Sr. A final step is to link Sr into a linked-list by storing the
next address in the memory pointed by the current address, which is the key in
disabling instruction level parallelism as described by Algorithm 1.

Before actually extracting the cache access latency using Algorithm 1, Sr

is accessed for multiple times to ensure the maximum number of addresses of

52 S. Shen et al.

Sr have already been cached. The final round of traverse is a timed run. Inside
the traverse, the next address is decided by reading the content of the current
address (line 3); therefore, the processor pipeline cannot accurately predict the
next address and the overall traverse time is an accumulation of individual mem-
ory accesses. Naturally, the averaged cache access latency is averaged from the
overall time. Conceptually, this latency can be considered as the optimal cache
performance for a certain size of data (So) after the cache system is properly
warmed. The detailed method to extract the cache access latency of individual
cache levels will be revealed in Sect. 5.

4.2 A Portable Timer

The latency of cache accesses ranges from a couple to several hundreds of
nanoseconds [11]. To accurately measure this latency, especially for the L1
caches, we need high-resolution timers. On x86-64 processors, such a timer can
be conveniently built from the RDTSC instruction. Other processor architectures
are nevertheless lack of such high-resolution source of time in user land. We
summarize the applicable architectures of commonly used timer resources and
their approximate accuracy in Table 2 in Sect. 6.

In order to achieve the portability across architectures, we choose to construct
a virtual time stamp (VTS) as firstly introduced in [32] for all processors. The
detailed method is illustrated in Algorithm 2. Assuming the processor under test
is a multicore processor, a separated child timer thread is attached to a unique
core, which does nothing else but constantly increases a global counter cnt. In the
main thread, the latency measurement process then utilizes cnt as a wall clock
for timing. Since self-increasing is usually faster than memory accesses, this wall
clock should be quick enough as long as it is not disturbed by context switching.1
Additionally, each time the global variable cnt is incremented, it requires access-
ing memory twice. Actually, it is possible to reduce the number of memory
accesses by executing the self-increment operation directly through assembly
instructions [28]. This means that the global variable cnt can be incremented
faster in the same time, thus improving the resolution. The actual resolution of
this virtual time stamp is evaluated in Sect. 6.

Furthermore, we did not attach threads to a certain core (without using CPU
affinity) in the actual experiments. According to our observations, the probability
of threads being migrated to other cores is very low and is a small probability
event. If the counting thread has core migration, we believe that there will be an
impact on the clock accuracy within a short period of time when the migration
occurs, but these effects will be averaged over multiple samples in the experiment
and have little effect on the final result. Of course, using CPU affinity to attach
the counting thread on one core will improve the accuracy of the algorithm, but
it will also inevitably reduce the cross-platform capability of the algorithm.

1 Such context switching can be detected by software as it usually leads to outstanding
measurement errors.

Methods of Extracting Parameters of the Processor Caches 53

Algorithm 2: Virtual time stamp
1 global variable cnt ← 0
2 //child timer thread
3 while(true) do cnt + +
4

5 //main thread
6 function latency’(Sr)
7 start = cnt
8 foreach p in Sr do p = ∗p
9 return (cnt − start)/len(Sr)

10 end

Fig. 4. Extracting basic parameters using random cache scan

5 Methodology of Extraction

This section describes the series of tests used to extract individual cache param-
eters. To better illustrate the details of each test, we provide actual test results
collected from an Intel i7-3770 using RDTSC as the timing source. In addition,
the virtual time stamp are used as the timer to detect replacement policies in
Figs. 6 and 7 since ARM and RISC-V architecture processors are involved. The
experimental results of using the virtual time stamp and running on other more
recent processor architectures are revealed in Sect. 6.

5.1 Cache Size and Latency of All Levels

The parameter extraction starts with a series of cache scans using a relatively
small stride (such as 64B) but with different sizes of So. An exemplary test on
an Intel i7-3770 is depicted in Fig. 4a. The number of cache levels, the access
latency and the size are the first batch of parameters to be extracted.

When So is smaller than the size of L1 $, the access latency l denotes the
L1 access latency as all accesses hit in L1 $. When So grows well beyond the
size of L1 $, nearly all access miss in L1 because the long scan pattern leaves no
locality for the L1 $ to explore. Consequently, all accesses are served by the L2
$ and l equates to the access latency of the L2 $. Similarly, we can extract the

54 S. Shen et al.

L3 access latency using an even larger So. However, we need to first figure out
the sizes of individual cache levels.

According to Fig. 4a, the latency l increases with So at a varying speed. When
So grows just surpassing the size of a cache, l jumps from the access latency of
the current level to the next. The number of cache levels can be extracted by
counting the number of these latency jumps. It is found that such jumps can be
clearly detected by analyzing the slope curve, which measures the first order of
derivative of l calculated as:

f(i) =
li+1 − li

2
+

li − li−1

2
(3)

where f(i) denotes the increasing speed of l at x-axis location i. Note that the x-
axis and the y-axis for the slope curve in Fig. 4a are both logarithmized. We use
x-axis location i as the function input while the corresponding So and l are li and
So,i respectively. A value of l is sampled every time that So is increased by

√
2.2

As shown in the slope curve, three peaks unambiguously reveal the existence of
three levels of caches. More interestingly, the peaks locate exactly in the vicinity
of the sizes of individual caches. This is because when the size of So exceeds the
cache size, the cache generates a large number of capacity misses [33] and the
average access latency of the sequence increases sharply. Using the related So

of a peak as a rough estimation and correcting it using common sense, such as
the number of sets should be 2’power, we can infer the sizes of individual cache
levels. Moreover, the latency of a cache level can be estimated using the latency
li at location of the lowest f(i) related to the cache level.

5.2 Size of a Cache Block

A cache block is the smallest portion of data being communicated between
caches. Although almost all modern processors adopt a uniformed block size
of 64 bytes to ease the implementation of cache coherence, some processors use
non-64 uniformed block size or even different block sizes across cache levels. We
cannot simply assume that the block size is 64 bytes universally.

The way to extract the block size at a certain cache level is to pinpoint a
match between the block size and a stride. If the chosen stride is smaller than
the block size, each cache block has multiple addresses contained in Sr while
only one address is contained if the stride is equal to or larger than the block
size. When So grows just beyond the cache size, part of cache accesses begin to
miss and the average latency starts to rise. In this situation, the average access
latency using a smaller stride is lower than using a larger stride. Since multiple
addresses of the same cache block is contained in Sr using a small stride and a
whole cache block is refilled when missed, each cache refill is effectively a prefetch

2 Introducing extra samples in between each pair of basis points (×2) sharpens the
peaks in the slope curve, which makes the peaks easy to detect but leads to long
running time. As a trade-off, only one extra sample is added at the middle (

√
2) of

the basis points on the logarithmized x-axis.

Methods of Extracting Parameters of the Processor Caches 55

Fig. 5. Extracting the number of ways

for the remaining addresses not yet accessed to the same block, which then leads
to the reduced latency. If we sweep stride from a small value to a value larger
than the block size, a gradual rise of the latency curve should be observable
until the stride is equal to the block size. Any further increase on stride results
in a similar latency curve. Consequently, the first stride fails to raise the latency
curve is equal to the block size.

In our test, the stride is gradually doubled from 8 to 256 bytes. The latency
curves for strides from 32 to 128 bytes are depicted in Fig. 4b. The Intel i7-3770
adopts a uniformed block size of 64 bytes. The latency using a stride of 32 bytes
is indeed lower than the latency of stride 64 and 128 bytes while the latency
curve of the latter mostly identical. However, it is difficult to check whether two
curves are identical by a program. Instead, we check whether the peaks of two
slope curves are co-located with a small error. Also shown in Fig. 4b, the peaks
of the slope curves of stride 64 and 128 bytes perfectly co-located for all cache
levels, which reveals that all cache levels use the same block size of 64 bytes. The
extra benefit of using the slope curve is the enlarged distance between peaks.
For the peaks using stride less than 64 bytes, the height of the peak is noticeably
lower and the location is pushed rightwards, thanks to the much milder latency
jumps produced by them.

5.3 Number of Cache Ways and Sets

The random cache scan can be used to extract the number of ways in a L1 cache
set provided the L1 $ is set-associative. As shown in Fig. 5a, the latency curve
moves rightwards when the stride grows beyond 4KB. This is because all the
addresses in the 32KB Sr (stride = 4KB) are congruent [13] and mapped to the
same cache set due to the hardwired cache set index VA[b+s-1:b] as illustrated
in Fig. 1, and they are just enough to fill the whole set. When the stride increased
to 8KB, the number of addresses is halved. To fill the whole set then requires a
Sr covering 64KB. Note that the size Sr divided by the stride is both 8 for the
two cases, revealing the number of ways in the L1 $ is 8. We can explain it from
another angle. Since the L1 $ is virtually indexed, by choosing addresses with
the same stride, we effectively create an eviction set for a set. Detecting the shift

56 S. Shen et al.

of curve thus reveals the minimum number of addresses required for an eviction
set, which is exactly the number of ways for set-associative caches [13,34].

However, this method is only suitable for L1 $ because all outer caches are
physically indexed and addresses apart from the same stride on longer guaranteed
of mapping to the same set. For the outer caches, we extend the group elimination
search algorithm [13,34] to search for congruent addresses instead of using the
random cache scan. At the beginning, the number of congruent addresses a is
large enough to fill the whole set to create an eviction set. However, it cannot
create an eviction set anymore when a is less than the number of ways. By
gradually reducing the number of congruent addresses in an eviction set, we can
derive the minimum number of addresses, which is also the number of ways.
Figure 5b shows the results of extracting the number of ways of the L3 $ on both
i7-3770 and a latest i7-9700. When the number of addresses is set to less than the
minimum number (the number of ways), the success rate of finding an eviction
set immediately drops to zero. The result clearly reveals that the numbers of
ways are 16 and 12 for the L3 $ on Intel i7-3770 and i7-9700 respectively.

The detailed steps is illustrated in Algorithm 3. The input candidate set C is
divided into a+1 groups (a is the number of congruent addresses). Since the evic-
tion set contains a congruent addresses, there must be a certain group among the
a+1 groups that does not contain the addresses in the eviction set. For each group
G, if the target address x can still be evicted after removing it from the candidate
set C, it means that the addresses in the group G are irrelevant to the eviction set,
then remove the group G. Conversely, keep the group G and continue to detect
whether the next group G can be removed. Until a group G that can be removed
from the candidate set C is found, then the current round of detection is ended.
The remaining candidate set C continues to be divided into a+ 1 groups to start
the next round of detection until the number of congruent addresses inC is exactly
equal to a, thus the eviction set S is successfully obtained.

Finally, since cache size equates the production of number of sets, number of
ways and block size, it is straightforward to calculate the number of sets once
the other three parameters are extracted, i.e. cache size = set∗way ∗block size.

5.4 Replacement Policy

In a cache side-channel attack, dislodging the target address by traversing
an eviction set is literally a thrashing access pattern [16] whose effectiveness
is closely related to the replacement policy adopted by the target cache. A
couple of traverses are usually enough for permutation-based policies, such as
LRU [35]. Increasing the number of traverses is sufficient to defeat random
replacement policies. Complicated traverse algorithms [12] would be required
for scan-resistant policies, such as RRIP [16,36]. Instead of detecting the exact
types of policies [19], this paper tries to classify replacement policies into three
categories: permutation-based, random and scan-resistant policies.

It is relatively easy to differentiate permutation and non-permutation poli-
cies. Figure 6 depicts the jump of access latency when Sr grows beyond the size
of the L1 $ on Intel i7-3770 and the HiFive unleashed board (RISC-V proces-
sor). The virtual time stamp is used to measure the access latency. As indicated

Methods of Extracting Parameters of the Processor Caches 57

Algorithm 3: Group elimination search
Input: C, candidate set; x, target address; a, number of congruent addresses.
Output: S, eviction set for x.

1 function group_reduction(s, x, a)
2 while |C| > a do
3 G1, . . . , Ga+1 ← split(C, a + 1)
4 i ← 1
5 while ¬ TEST (C\Gi, x) do
6 i ← i + 1
7 end
8 C ← C\Gi

9 end
10 S ← C
11 return S

12 end

 0

 1

 2

 3

 4

 8 16 32 64 128

8 addresses in Sr

9 addresses in Sr

A
ve

ra
ge

 a
cc

es
s

la
te

nc
y

(V
T

S
 c

yc
le

)

Size of So (KB)

Permutation, stride = 4KB, x86-64
Non-permutation, stride = 4KB, RV64GC

Fig. 6. Differentiating permutation and non-permutation policies

by the result, the two L1 $ certainly adopts different replacement policies. Intel
i7-3770 likely uses a permutation-based policy because the access latency sud-
denly increases when Sr just grows beyond the cache size (32KB), indicating
the cache scan with 9 addresses can easily dislodge all the 8 cache blocks. As for
the RISC-V processor, much more congruent addresses are required for evicting
the whole cache set, denoting the use of a non-permutation policy.

To further differentiate scan-resistant and random policies, we have done
a modified cache scan as described by Fig. 6 in [17] on the RISC-V processor
whose caches adopting non-permutation policies. The sequence Sr is divided
into a short and a long sequence. The short sequence should fit in the target
cache and are initially traversed multiple times to mimicking a access pattern
with temporal locality. The whole sequence is then used in a normal cache scan
but only the access latency of the short sequence is measured. If a scan-resistant
policy is adopted, addresses belonging to the long sequence are replaced before
the short ones, and the latency curve is pushed rightwards, as described in [17].

In summary, permutation and non-permutation policies are detected using
a normal cache scan. A permutation policy is used if the latency curve shows a
narrow and sharp jump at the size of the cache; otherwise, a non-permutation
policy is used. A modified cache scan is then applied. If the latency curve of
the short sequence is noticeably pushed rightwards from the size of the cache, a
scan-resistant policy should be used; otherwise, it is likely to be a random one.

58 S. Shen et al.

 0

 50

 100

 150

 200

 10 20 30 40 50 60 70 80

N
um

be
r

of
 e

xp
er

im
en

ts
 (

64
00

0
tim

es
)

Access latency (VTS cycle)

 Accessing victim

(a) Detecting if victim is evicted
from L2 $

 0

 500

 1000

 1500

 2000

 2500

 3000

 20 40 60 80 100 120 140

N
um

be
r

of
 e

xp
er

im
en

ts
 (

64
00

0
tim

es
)

Access latency (VTS cycle)

L1 hit
L2 miss

(b) Obtaining the latency of access-
ing memory

Fig. 7. Detecting the random replacement policy by latency distributions

Furthermore, there is a way to verify the use of a random policy by calculating
whether the substitution rate is completely random through a large number of
repeated experiments. Take the L2 $ on the Jetson Nano (ARM architecture) as
an example, the number of its ways is 16. If the L2 $ adopts uses a random policy,
then the probability of successfully evicting the target address to memory should
be only 1/16 when using a congruent address to evict the target address. By
repeating the experiment we can obtain this probability and thus infer whether
the cache adopts a random policy. We first need to find two addresses called
attacker and victim that map to the same cache set on both L1 and L2 $.
Then the eviction set of attacker and victim is constructed. Each address in the
eviction set must be in the same set as these two addresses in L1 $ but in a
different set in L2 $, in order to ensure that no additional noise is introduced
when evicting the target address to the L2 $.

First, access the eviction set to evict the victim to the L2 $, and then re-
access the eviction set to evict the attacker to the L2 $ as well. Since attacker
and victim are congruent with each other, victim may be evicted from the L2 $
to memory during this process. Finally, the state of the victim in the cache is
inferred according to its access latency. The above experiments were performed
64,000 times and the access latency of the victim was counted. This experiment
uses the virtual time stamp as the timer and the results are shown in Fig. 7a.
According to the analysis, the probability that the attacker successfully evicts
the victim to memory is 1/16 (the reciprocal of the numbers of ways for the L2
$) if the L2 $ adopts a random policy. In this case, the access latency of victim
is the time it takes to fetch data from memory.

To obtain the access latency of memory, we need to count the cache access
latency in different states. A certain target address is accessed multiple times
to make it cached, and then it is evicted from the cache through the cache
flush instruction. These two different states of access latency are recorded and

Methods of Extracting Parameters of the Processor Caches 59

the results are shown in Fig. 7b. We can intuitively obtain the access latency of
memory (L2 miss) is about 30 or more.3

We then calculated the frequency of access latency greater than 30 in Fig. 7a,
which is about 1/18 of the total number of experiments (the practically possi-
ble number of ways closest to this value is 16). Only the random policy has a
replacement rate of 1/16, so we can infer that the L2 $ does adopt a random
policy based on this result. This experiment exploits the law of large numbers,
i.e., repeating the experiment many times under the same conditions, the fre-
quency of a random event will approximate its probability. That is why we need
a sufficient number of experiments to ensure accuracy, and this also brings a
long time-consuming problem. How to detect the random policy more quickly
and accurately is also one of our subsequent research goals.

6 Experiment Results

We have chosen four representative processors using three different architectures
to conduct the experiments. The processor information is illustrated in Table 1.
Besides the relatively old i7-3770, a latest i7-9700 processor is also tested. We
have also managed to run the tests on two non-x86 processors which we have
access to. One is a Jetson Nano board mounted with an Arm Cortex-A57 proces-
sor and the other one is a HiFive Unleashed board mounted with a SiFive u540
processor. All processors run a Linux operating system while tests are compiled
with the default GNU GCC compiler. In order to further verify the usability of
this method in some restricted environments, such as cloud computing, browser
sandboxes, etc., we installed a virtual machine on the i7-9700 processor and per-
formed the same cache parameter extraction experiments in the virtual machine
environment.

The methods of measuring time varies across architectures and the commonly
used time resources are shown in Table 2. The resolution may vary within the
same architecture due to extra factors such as dynamic frequency scaling. Among
them, the RDTSC register has the highest precision, which can reach 0.3 ns on the
i7-9700 processor, but it is only applicable to the x86 architecture. The ARM
architecture can use the cntvct_e10 register for timing, which has an accuracy
of about 52 ns on the Jetson Nano processor. Both the time and cycle registers
can be used for timing on the RISC-V architecture, and their accuracy is 1 µs
and 1 ns respectively on HiFive Unleashed processor. While the virtual time
stamp we used is applicable to all three architectures above.

We verify the resolution of the virtual time stamp by calculating the increase
of the global variable cnt during a certain runtime period, the details are as
follows: In the main thread, we accurately control the running time through a
sleep function and record the increment of the global variable cnt in the child
timer thread during this period. Dividing the running time by the increment
produces the resolution of the virtual time stamp, which indicates how long
3 This latency is not consistent with Table 3 as extra delay is caused by the operations

to clean states at the beginning of each test.

60 S. Shen et al.

Table 1. Processor information and timer resolution

Intel Intel Intel (VM) Jetson Nano Unleashed
Processor i7-3770 i7-9700 i7-9700 Cortex-A57 SiFive u540
Arch. x86-64 x86-64 x86-64 ARMv8.0-A RV64GC
OS Ubuntu 16.04 Ubuntu 18.04 Ubuntu 16.04 Ubuntu 18.04 OpenEmbeded
GCC ver. 5.4 5.4 5.4 7.5 10.2
Resolution 1.9ns 1.2ns 1.2ns 5.0ns 11.0ns

Table 2. Comparison of time resources under different architectures

RDTSC cntvct_e10 time cycle virtual time stamp (VTS)
Arch. x86 ARM RISC-V RISC-V x86/ARM/RISC-V
Resolution 0.3ns 52.0ns 1.0us 1.0ns 1.2-11.0ns

it takes for the global variable cnt to increase by one unit. In addition, the
child timer thread will increase the single-core CPU overhead to over 90%, thus
this timer runs at the highest frequency. The resolution achieved by the virtual
time stamp method is revealed on the final row of Table 1. It is shown that the
virtual time stamp achieves nanosecond resolution on all processors. All of the
experiment results provided in this section are collected from tests using this
virtual time stamp.

Taking the virtual time stamp as the precise timer, we extract the access
latency at all cache levels by scanning the random address sequence on the four
processors. The specific latency as well as its slope variation is shown in Fig. 8
and Table 3 along with the extracted cache parameters. Although the L1 access
latency on all processors is less than the resolution of the virtual time stamp,
the latency of the L2 $ is always longer than 1. Note that the we only need to
differentiate a L1 hit from miss, as long as the measured difference between the
L1 and L2 latency is longer than 1, the resolution of the virtual time stamp is
high enough.

Intel processors normally adopt a three-level cache hierarchy but only two
levels are found on the two non-x86 processors. The proposed tests successfully
produce an estimation on all cache parameters except for the numbers of sets and
ways for the L2 $ on Intel processors. These L2 $ caches are found to be phys-
ically indexed caches. As described in Sect. 5.3, the test extracts the number of
ways by trying to figure out the minimum number of congruent addresses needed
by an eviction set. However, the group elimination algorithm [12] suffers from
significant error rate and fails to produce any eviction sets. With some inves-
tigation, we suspect the L2 $ on these Intel processors might be non-inclusive
with regarding to the L1 $.

The non-inclusive structure means that when the data in the upper-level
cache is evicted, this evicted data will be written back to the next-level. It ensures
that the current cache only holds data that is not in the upper-level cache. The
design and implementation of non-inclusive cache are more complex but improve
security by making the eviction set construction much more difficult [37]. The
current trend in cache design is a shift from inclusive to non-inclusive, such

Methods of Extracting Parameters of the Processor Caches 61

 0

 10

 20

 30

 8 16 32 64 128
 256

 512
 1024

 2048
 4096

 8192
 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

A
ve

ra
ge

 a
cc

es
s

la
te

nc
y

(V
T

S
 c

yc
le

)

S
lo

pe

Size of So (KB)

i7-3770 (x86-64), stride = 64B
slope, stride = 64B

(a) i7-3770 (x86-64)

 0

 10

 20

 30

 8 16 32 64 128
 256

 512
 1024

 2048
 4096

 8192
 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

A
ve

ra
ge

 a
cc

es
s

la
te

nc
y

(V
T

S
 c

yc
le

)

S
lo

pe

Size of So (KB)

i7-9700 (x86-64), stride = 64B
slope, stride = 64B

(b) i7-9700 (x86-64)

 0

 10

 20

 30

 8 16 32 64 128
 256

 512
 1024

 2048
 4096

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

A
ve

ra
ge

 a
cc

es
s

la
te

nc
y

(V
T

S
 c

yc
le

)

S
lo

pe

Size of So (KB)

Jetson Nano (ARM), stride = 64B
slope, stride = 64B

(c) Jetson Nano (ARM)

 0

 10

 20

 30

 8 16 32 64 128
 256

 512
 1024

 2048
 4096

 8192
 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

A
ve

ra
ge

 a
cc

es
s

la
te

nc
y

(V
T

S
 c

yc
le

)

S
lo

pe

Size of So (KB)

unleashed (RISC-V), stride = 64B
slope, stride = 64B

(d) Hifive unleashed (RISC-V)

Fig. 8. Extracting cache latency through virtual time stamp (VTS)

as Intel’s Skylake architecture, which has designed the L3 $ as a non-inclusive
structure. Although it is reported possible to construct eviction sets for L3 $
using directory-based coherence policy [37], it is unlikely for a non-inclusive and
private L2 $ to use directory. Finding eviction sets on it thus remains an open
question requiring further research.

In the virtual machine environment, we extracted the same cache parameters
as the i7-9700 processor in the normal environment except for the number of
ways for the L3 $. This is because the two-layer address translation mechanism
in the virtual machine (VM VA to host VA, and then from host VA to host
PA) leads to an increase in TLB pressure and a significant increase in miss rate.
Previous studies have shown that this noise can significantly affect the success
rate of the eviction set search algorithm [38]. It was found that the existing
opensourced algorithms, such as the group elimination algorithm [13] and the
random algorithm [12], cannot work directly in the virtual environment for the
time being. How to address such problems in a restricted environment is also
one of our future work.

We have compared the extracted parameters against the information avail-
able from CPUID and lscpu. All the parameters match with the publicly avail-
able information while the correctness on the extracted types of replacement
policies remains unclear. It is partially verified by a separate research [19] that
the Intel processors do adopt scan-resistant policies on the L3 $ and even the
L2 $ for recent processors. Whether the L2 $ of i7-3770 indeed adopting a scan-
resistant policy would need further investigation. Some counter-intuitive results

62 S. Shen et al.

Table 3. Extracted cache parameters

i7-3770 i7-9700 i7-9700 (VM) Jetson Unleashed

Latency 0.59 0.72 0.73 0.52 0.31
Size 32KB 32KB 32KB 32KB 32KB

L1 Block 64B 64B 64B 64B 64B
Set/Way 64/8 64/8 64/8 256/2 64/8
Replace permu. permu. permu. permu. random

Latency 1.76 2.18 2.21 3.34 3.63
Size 256KB 256KB 256KB 2MB 2MB

L2 Block 64B 64B 64B 64B 64B
Set/Way ? ? ? 2048/16 1024/32
Replace scan-res. scan-res. scan-res. random permu.

Latency 5.58 8.83 8.94
Size 8MB 12MB 12MB

L3 Block 64B 64B 64B
Set/Way 8192/16 16384/12 ?
Replace scan-res. scan-res. scan-res.

are found on the RISC-V processors as it uses a random replacement policy on
the L1 $. Since the L1 $ has high performance requirements, permutation-based
replacement policies (such as LRU, etc.) are usually adopted. We have double-
checked our experiment result. The opensourced implementation of the SiFive
u540 (Rocket-Chip) does show the possibility to set the policy to random for L1
$ but it is still an odd choice for performance concerns.

7 Conclusion

A series of tests have been proposed in this paper to extract the cache param-
eters crucial for cache side-channel attacks. With the help of a virtual time
stamp timer, the proposed tests have the potential to be ported across different
computer architectures and running in restricted environments, which provide a
method for launching existing cache side-channel attacks in some restricted cases
and reduces the cost of attacks. We have conducted experiments on four rep-
resentative processors using three different architectures, as well as in a virtual
machine environment. Nearly all cache parameters have been extracted except
for the number of ways of the L2 $ on Intel processors because these caches
are suspected non-inclusive, which makes the construction of the eviction set
extremely difficult. All the extracted parameters match with the publicly avail-
able information using CPUID and lscpu. How to effectively construct an eviction
set in a non-inclusive cache or virtual machine environment is currently a chal-

Methods of Extracting Parameters of the Processor Caches 63

lenge in the field of cache side-channel attacks, which is also one of our next
research goals.

Acknowledgements. The HiFive Unleashed board was kindly borrowed from
Xiongfei Guo. This work was partially supported by the National Natural Science
Foundation of China under grant No. 62172406 and No. 61802402, the CAS Pioneer
Hundred Talents Program, and internal grants from the Institute of Information Engi-
neering, CAS. Any opinions, findings, conclusions, and recommendations expressed in
this paper are those of the authors and do not necessarily reflect the views of the
funding parties.

References

1. Lipp, M., et al.: Meltdown: reading kernel memory from user space. In: Proceedings
of the USENIX Security Symposium, August 2018, pp. 973–990 (2018)

2. Kocher, P., et al.: Spectre attacks: exploiting speculative execution. In: Proceedings
of the IEEE Symposium on Security and Privacy, May 2019, pp. 19–37 (2019)

3. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: Proceedings of the
ACM Conference on Computer and Communications Security, November 2009, pp.
199–212 (2009)

4. Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K., Capkun, S., Sadeghi, A.-
R.: Software grand exposure: SGX cache attacks are practical. In: Proceedings of
the USENIX Workshop on Offensive Technologies, August 2017

5. Hähnel, M., Cui, W., Peinado, M.: High-resolution side channels for untrusted
operating systems. In: Proceedings of the USENIX Annual Technical Conference,
July 2017, pp. 299–312 (2017)

6. Schwarz, M., Maurice, C., Gruss, D., Mangard, S.: Fantastic timers and where to
find them: high-resolution microarchitectural attacks in JavaScript. In: Proceedings
of the International Conference on Financial Cryptography and Data Security,
January 2017, pp. 247–267 (2017)

7. Oren, Y., Kemerlis, V.P., Sethumadhavan, S., Keromytis, A.D.: The spy in the
sandbox: practical cache attacks in JavaScript and their implications. In: Proceed-
ings of the ACM SIGSAC Conference on Computer and Communications Security,
October 2015, pp. 1406–1418 (2015)

8. Page, D.: Theoretical use of cache memory as a cryptanalytic side-channel. Cryp-
tology ePrint Archive (2002)

9. Gras, B., Razavi, K., Bosman, E., Bos, H., Giuffrida, C.: ASLR on the line: Prac-
tical cache attacks on the MMU. In: Proceedings of the Network and Distributed
System Security Symposium, February 2017

10. Kim, Y., et al.: Flipping bits in memory without accessing them: an experimental
study of DRAM disturbance errors. In: Proceedings of the International Sympo-
sium on Computer Architecture, June 2014, pp. 361–372 (2014)

11. Hund, R., Willems, C., Holz, T.: Practical timing side channel attacks against ker-
nel space ASLR. In: Proceedings of the IEEE Symposium on Security and Privacy,
May 2013, pp. 191–205 (2013)

12. Song, W., Liu, P.: Dynamically finding minimal eviction sets can be quicker than
you think for side-channel attacks against the LLC. In: Proceedings of the Inter-
national Symposium on Recent Advances in Intrusion Detection, September 2019,
pp. 427–442 (2019)

64 S. Shen et al.

13. Vila, P., Köpf, B., Morales, J.: Theory and practice of finding eviction sets. In:
Proceedings of the IEEE Symposium on Security and Privacy, May 2019 (2019)

14. Jain, A., Lin, C.: Cache Replacement Policies. Morgan & Claypool Publishers, San
Rafael (2019)

15. Berg, C.: PLRU cache domino effects. In: Proceedings of the International Work-
shop on Worst-Case Execution Time Analysis, June 2006

16. Jaleel, A, Theobald, K.B., Steely, S.C.Jr., Emer, J.S.: High performance cache
replacement using re-reference interval prediction (RRIP). In: Proceedings of the
International Symposium on Computer Architecture, June 2010, pp. 60–71 (2010)

17. Wong, H.: Intel Ivy Bridge cache replacement policy, January 2013. http://blog.
stuffedcow.net/2013/01/ivb-cache-replacement/

18. Qureshi, M.K.: New attacks and defense for encrypted-address cache. In: Proceed-
ings of the International Symposium on Computer Architecture, June 2019, pp.
360–371 (2019)

19. Vila, P., Ganty, P., Guarnieri, M., Köpf, B.: CacheQuery: learning replacement
policies from hardware caches. In: Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, June 2020, pp. 519–532
(2020)

20. Nakajima, J., Mallick, A.K.: Hybrid-virtualization – enhanced virtualization for
Linux. In: Linux Symposium, vol. 2, June 2007, pp. 87–96 (2007)

21. Martin, R., Demme, J., Sethumadhavan, S.: TimeWarp: rethinking timekeeping
and performance monitoring mechanisms to mitigate side-channel attacks. In: Pro-
ceedings of the International Symposium on Computer Architecture, June 2012,
pp. 118–129 (2012)

22. Deng, S., Xiong, W., Szefer, J.: A benchmark suite for evaluating caches’ vul-
nerability to timing attacks. In: Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating Systems, 2020,
pp. 683–697 (2020)

23. Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A survey of microarchitectural timing
attacks and countermeasures on contemporary hardware. J. Cryptogr. Eng. 8(1),
1–27 (2016). https://doi.org/10.1007/s13389-016-0141-6

24. Yarom, Y., Falkner, K.: FLUSH+RELOAD: a high resolution, low noise, L3 cache
side-channel attack. In: Proceedings of the USENIX Security Symposium, 2014,
pp. 719–732 (2014)

25. Zhang, X., Xiao, Y., Zhang, Y.: Return-oriented flush-reload side channels on arm
and their implications for android devices. In: Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security, 2016, pp. 858–870 (2016)

26. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-tenant side-channel
attacks in PaaS clouds. In: Proceedings of the ACM SIGSAC Conference on Com-
puter and Communications Security, 2014, pp. 990–1003 (2014)

27. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006). https://doi.org/10.1007/11605805_1

28. Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S.: ARMageddon: cache
attacks on mobile devices. In: Proceedings of the USENIX Security Symposium,
2016, pp. 549–564 (2016)

29. Yan, M., Gopireddy, B., Shull, T., Torrellas, J.: Secure hierarchy-aware cache
replacement policy (SHARP): defending against cache-based side channel attacks.
In: Proceedings of the ACM/IEEE Annual International Symposium on Computer
Architecture, pp. 347–360. IEEE (2017)

http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/
https://doi.org/10.1007/s13389-016-0141-6
https://doi.org/10.1007/11605805_1

Methods of Extracting Parameters of the Processor Caches 65

30. Irazoqui, G., Eisenbarth, T., Sunar, B.: S$A: a shared cache attack that works
across cores and defies VM sandboxing - and its application to AES. In: Proceedings
of the IEEE Symposium on Security and Privacy, pp. 591–604. IEEE (2015)

31. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: Proceedings of the IEEE Symposium on Security and
Privacy, May 2015, pp. 605–622. IEEE (2015)

32. Percival, C.: Cache missing for fun and profit. In: BSD Conference Ottawa (2005)
33. Smith, A.J.: Cache memories. ACM Comput. Surv. 14(3), 473–530 (1982)
34. Song, W., Li, B., Xue, Z., Li, Z., Wang, W., Liu, P.: Randomized last-level caches

are still vulnerable to cache side-channel attacks! But we can fix it. In: Proceedings
of the IEEE Symposium on Security and Privacy, May 2021

35. Abel, A., Reineke, J.: Reverse engineering of cache replacement policies in intel
microprocessors and their evaluation. In: Proceedings of the IEEE International
Symposium on Performance Analysis of Systems and Software, pp. 141–142. IEEE
(2014)

36. Qureshi, M.K., Jaleel, A., Patt, Y.N., Steely, S.C., Emer, J.: Adaptive insertion
policies for high performance caching. ACM SIGARCH Comput. Arch. News 35(2),
381–391 (2007)

37. Yan, M., Sprabery, R., Gopireddy, B., Fletcher, C.W., Campbell, R.H., Torrellas,
J.: Attack directories, not caches: side-channel attacks in a non-inclusive world.
In: Proceedings of the IEEE Symposium on Security and Privacy, May 2019, pp.
888–904 (2019)

38. Genkin, D., Pachmanov, L., Tromer, E., Yarom, Y.: Drive-by key-extraction cache
attacks from portable code. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018.
LNCS, vol. 10892, pp. 83–102. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-93387-0_5

https://doi.org/10.1007/978-3-319-93387-0_5
https://doi.org/10.1007/978-3-319-93387-0_5

	Methods of Extracting Parameters of the Processor Caches
	1 Introduction
	2 Background
	2.1 Cache Architecture
	2.2 Cache Side-Channel Attacks

	3 Threat Model
	4 Measuring Cache Access Latency
	4.1 Random Cache Scan
	4.2 A Portable Timer

	5 Methodology of Extraction
	5.1 Cache Size and Latency of All Levels
	5.2 Size of a Cache Block
	5.3 Number of Cache Ways and Sets
	5.4 Replacement Policy

	6 Experiment Results
	7 Conclusion
	References

