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Abstract. Cache side-channel attacks have been widely utilized as an
intermediate step in some comprehensive attacks. Eviction sets, espe-
cially the minimal eviction sets, are essential components of the conflict-
based cache side-channel attacks. It is important to develop efficient
search algorithms that incur the lowest latency with the highest success
rate. Several fast search algorithms have been proposed in recent years,
among which conflict test (CT) achieves the highest success rate with
the lowest latency. In this paper, we have conducted the first systematic
feasibility analysis of the CT algorithm. Besides failing on the commonly
known cache architectures where the last-level cache (LLC) is exclusive
or non-inclusive, CT is also found and verified failing on two inclusive
LLC architectures if it is running in single-core mode. We have further
explored three optimizations for improving the speed performance of the
CT algorithm, two of which are newly proposed in this paper.
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1 Introduction

As an effective way of obtaining sensitive information from the cache system [10,
18, 24], cache side-channel attacks have been widely utilized as an intermedi-
ate step in some comprehensive attacks, such as reconstructing cryptographic
keys [1, 6, 11, 29, 30, 37], disarming the address space randomization [7, 8] in
control-flow attacks, retrieving the leaked information at the end of a transient
execution attack [14, 15], and constantly striking a row of the off-chip memory
in a rowhammer attack [9].

Eviction sets, especially the minimal eviction sets [32], are essential compo-
nents of the conflict-based cache side-channel attacks [34]. In such attacks, an
attacker and her victim share the same cache space, typically certain cache sets
in the last-level cache (LLC). The attacker needs to control the state of these
shared cache sets to monitor the memory accesses of her victim, which are then
used to infer security-critical information. To be specific, the attacker occupies
(primes) a cache set by accessing an eviction set [9]; therefore, her victim’s access



to this cache set must incur a cache miss, refilling of the missing cache block,
evicting an address from the eviction set, and eventually a prolonged access.
Both the address eviction and the prolonged access latency might be observable
and used to infer the access of her victim.

All addresses in a minimal eviction set are congruent with (mapping to)
the targeted cache set [32]. At least W addresses are required for a W -way
set-associative cache. Obviously, the key for constructing an eviction set is to
find enough congruent addresses. Unfortunately, this is not an easy task on
modern processors. LLC is indexed by physical addresses but attackers control
only virtual addresses. A complex addressing scheme is utilized by modern In-
tel processors [17] to randomize the mapping from physical addresses to LLC
slices. Attackers are usually forced to search eviction sets at runtime from a
large amount of random addresses. It is important to develop efficient search
algorithms that incur the lowest latency with the highest success rate. Sev-
eral fast search algorithms have been proposed in recent years, including group
elimination (GE) [16, 27, 32], prime, prune and probe (PPP) [19, 22], conflict
test (CT) [23] and write-after-write (W+W) [28]. Among these algorithms, CT
achieves the highest success rate with the lowest latency (see Table 1), and be-
comes one of the most widely utilized search algorithms [20,21]. However, there
lacks a systematic analysis on the feasibility and the potential optimization of
CT while similar analyses have been done for GE [27] and PPP [19].

In this paper, we have conducted the first systematic feasibility analysis of
the CT algorithm. Besides sharing a commonly known limitation with other
algorithms, that CT fails to work on exclusive or non-inclusive LLCs, CT also
fails on two inclusive LLC architectures if the algorithm is running in single-core
mode. Based on the result of the feasibility analysis, we have further explored
three techniques for further optimizing the CT algorithm, two of which are newly
proposed in this paper. Overall, this paper makes the following contributions:

– Conduct a systematic feasibility analysis on CT. For the first time, two
inclusive cache architectures are identified as infeasible for single-core CT.

– Optimize the performance of CT by improving the efficiency of the cacheback
technique and propose two new techniques.

– Practically evaluate the optimization techniques on both real processors and
a behavioral-level cache model.

2 Background

Modern processors are multicore processors adopting a two/three-level cache
structure. Each processing core contains a pair of private level-one (L1) instruc-
tion and data caches. Some processors, especially the Intel ones, equip each
core with a uniformed level-two (L2) cache. A large LLC (L2 or L3) is shared
among all cores. This LLC might be divided into multiple slices, whose mapping
with physical addresses is decided by an undisclosed hash function (complex ad-
dressing scheme [17]) in Intel processors. All levels of caches are set-associative



writeback allocated caches. According to [31], all cache levels in the early gener-
ations (Haswell and earlier) and the L1 caches in recent Intel processors utilize
the pseudo-LRU (PLRU) replacement policy [5], while L2 and LLC in recent
Intel processors adopt some policies derived from RRIP [13]. The situation is
similar for most other commercial processors, such as AMD ones. In some rare
cases, random replacement policy is used in embedded-level processors [26]. In all
cache architectures, LLC acts as the coherence hub. LLC and the private L1/L2
caches maintain either an inclusive relation (Intel’s consumer processors), where
all cache blocks in the private caches are also stored in the LLC, or a non-
inclusive relation (Intel’s Xeon and AMD’s Ryzen), where cache blocks stored
in private caches may not be concurrently stored in the LLC.

Cache side-channel attacks normally fall in two categories: flush-based and
conflict-based attacks. Flush-based attacks use explicit flush instructions (clflush
on x86 [36]) to invalidate a targeted data out of the cache architecture. These
attacks are accurate but require the targeted data is accessible by the attacker,
which is a rather strict requirement infeasible in most cross-process side-channel
attacks. As an alternative, conflict-based attacks can achieve the similar effect.
They evict the targeted data out of the LLC by occupying the corresponding
LLC cache set with a collection of attacker’s controlled cache blocks, typically
called an eviction set. An eviction set is a collection of addresses (cache blocks)
that contain enough addresses congruent with the targeted data. A sufficiently
large number of addresses are also an eviction set as they can evict any cache
block by priming the whole caches [33]. However, this type of untargeted eviction
introduces undesirable noise [9] and brings down the attack speed [7]. What is
really desirable is a minimal eviction containing only the congruent addresses.
For simplicity, an “eviction set” beyond this point refers to a minimal eviction
set. This paper concentrates on the algorithms for searching eviction sets.

Existing search algorithms for eviction sets can be classified into two cate-
gories: pruning algorithms which begin with an untargeted eviction set contain-
ing a large number of random addresses and prune it into a minimal one, and
inserting algorithms which begin with an empty collection and gradually fill it
with newly found congruent addresses until it becomes an eviction set.

GE and PPP are the two widely utilized pruning algorithms. GE prunes the
initial large eviction set in a multi-round process. In each round, the remaining
N addresses are divided into W + 1 groups. Since a minimal eviction set con-
tains only W addresses, at least one group contains none of the W addresses
and should be removed. By sequentially testing whether the address collection
remains an eviction set without a certain group, the removable group is found
and removed. The prune process continues until a minimal set is produced. GE
is robust in tolerating environment noise, as indicated by the high success rate
shown in Table 1, but the multi-round prune is slow.

PPP reduces the prune latency by manipulating the PLRU replacement pol-
icy [22,23]. It first tries to store addresses of the initial large eviction set into the
LLC concurrently by gradually removing the addresses causing self-evictions.
The resulted (reduced) eviction set is still untargeted but may fully occupy the



Table 1. Speed comparison of different search algorithms for eviction sets.

CPU GE PPP W+W CT

latency rate latency rate latency rate latency rate

i7-3770 58± 32ms 74% 0.69± 1.7ms 8.8% 33± 41ms 6.1% 6.0± 3.4ms 69%
i7-6700 82± 66ms 79% 1.0± 2.9ms 0.9% 10± 5.3ms 5.3% 23± 21ms 16%
i7-9700 115± 92ms 85% 0.65± 0.68ms 11% 159± 8.5ms 2.0% 20± 17ms 21%
i7-11700 642± 586ms 24% 0.81± 0.04ms 7.0% 3± 1.4ms 0.4% 12± 4.4ms 2.1%

targeted cache set. Then the attacker incurs an eviction in the targeted cache
set by accessing the targeted address, following with a timed re-access of the re-
duced eviction set. Due to the PLRU replacement policy, it is likely that exactly
W addresses (just enough for an eviction set) are found missing in the LLC.
However, the probability that the reduced eviction set occupying the targeted
cache set is actually low in a large LLC with many cache sets. As shown in
Table 1, the success rate of PPP is much lower than GE.

CT is the mostly utilized inserting algorithm. It was initially proposed only
for LLCs adopting the random replacement policy [23]. In this case, a congruent
address has a 1/W probability to evict the targeted cache block. As a random
address is a congruent address by a probability of 1/S, where S is the num-
ber of cache sets, one congruent address can be found by probing around SW
random addresses. Finding eviction set with W congruent addresses therefore
requires probing O(SW 2) random addresses. This algorithm is also effective for
permutation-based replacement, such as LRU and RRIP. Instead of finding con-
gruent addresses by detecting the eviction of the targeted cache block, detecting
the prolonged write latency due to the LLC enforced serialization of parallel
writes to the same cache set was also found effective [28]. The resulted algo-
rithm, namely W+W, was claimed faster than the GE algorithm. However, the
accuracy of such serialization detection is found extremely noisy and unstable,
which results in low success rates as shown in Table 1.

To compare the speed performance of these algorithms, they are ported to
four Intel processors and the result is shown in Table 1. CT seems to provide
the most balanced performance in latency and success rate. The search latency
is significantly lower than GE while the success rate is much higher than PPP
(except for i7-11700). The search latency of W+W is shorter than CT only on
i7-6700 and i7-11700 but the success rate is much lower on both processors. This
paper concentrates on improving the CT algorithm.

3 Feasibility Analysis

This section conducts a systematic analysis on the feasibility of the CT algorithm
on different cache architectures. For the first time, the CT algorithm is found
infeasible on two inclusive cache architectures.



3.1 Threat Model

For an eviction set search algorithm, we define a successful attack as finding
an eviction set. We assume that the search algorithm is run by an attacker in a
restricted user mode environment with the following capabilities and limitations:

– The targeted LLC is shared between the attacker and her victim.
– The amount of memory acquirable by the attacker is not limited by the

system, so the attacker can access an arbitraily large range of addresses.
– The attacker either runs in the same core with her victim or occupies a

separate core.
– The attacker can flush her own data out of the LLC.
– The attacker can accurately trick her victim into accessing a target address

without incurring a large amount of noise.
– Some parameters regarding the cache system are made available, such as the

replacement policy, the inclusiveness relation, and the number of sets and
ways of each cache level, but neither the virtual to physical page mapping
nor the Intel complex addressing scheme [17] is reverse-engineered.

3.2 Necessary Working Conditions

Algorithm 1 illustrates the baseline CT algorithm. Different with other pa-
pers [20,23], we explicitly specify the cores running the victim and the attacker.
When Ca = Cv, the attacker and her victim are running on the same core or
even in the same process/thread. This is the typical case for cache side-channel
attacks that tries to break the user-mode address randomization [8], leak infor-
mation through transient execution [14, 15], and constantly hammer a targeted
DRAM row [9]. We call this the single-core case while the traditional cross-core
(process) attack as the cross-core case. As we will soon discover in Section 3.3,
CT may fail to work on some inclusive cache architectures when running in the
single-core case while remains feasible for cross-core.

According to Algorithm 1, a random address a is found congruent with the
targeted address x only if accessing a (line 6) causes a miss in the targeted cache

Algorithm 1: The baseline CT algorithm
Input: x, target address; W , number of ways; (Ca, Cv), cores running the attacker and

her victim.
Output: E, an eviction set for x.

1 function ct(x, W , Ca, Cv)
2 E ← ∅ // eviction set
3 Cv:access(x)
4 while |E| < W do
5 a← random()
6 Ca:access(a)
7 if not Cv:probe(x) then
8 E

⋃
{a}

9 end
10 end
11 return E
12 end
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Fig. 1. Purging x (cross-core case) after accessing a7 by Ca in a 2-level inclusive cache
architecture. (WL1 = 4,WLLC = 8, all caches use LRU)

set and the cache block containing x is evicted for refilling a. In addition, the
eviction of x can be observed by probing x (code highlighted in blue): a timed
access of x. If the probe latency is longer than a pre-defined threshold, x is
assumed missing and a is identified as congruent. Two necessary conditions for
the success of CT can be derived from Algorithm 1:

Condition 1: Inclusion victim effect. When an LLC is the targeted cache,
the targeted cache block stored in a private L1 cache (the potential inclusion
victim [12]), such as the x stored in Cv:L1 depicted in Fig. 1a, must be purged
from the cache architecture when its copy in the LLC is evicted due to a conflict,
such as the access of a7 by Ca shown in Fig. 1b. In other words, CT works only
when the targeted LLC is inclusive. Note that this condition is required for the
single-core case as well, since x is also purged by a conflict in the LLC.

Condition 2: Cache filter effect. When the CT algorithm is used to target
an LLC adopting LRU/RRIP replacement policies, the probing of x is observed
by the LLC only after x is successfully evicted in the LLC, such as probing x
after accessing a7 as shown in Fig. 1b. The cache filter effect is a by-product
of the hierarchical cache architecture where memory accesses hitting in private
caches are invisible to the LLC. When the LLC adopts PLRU/RRIP replacement
policies, the target address x is possible to be evicted by a fresh access of a
new random address a only when x is pushed to the LRU position, as shown
in Fig. 1a, by a number of accesses (random addresses) to the cache set after
the previous access of x is observed by the LLC. According to Algorithm 1,
x is accessed once in the probe for each random address. All of these accesses
must be filtered from the LLC (served by private L1/L2 caches); otherwise, x is
repeatedly accessed in the LLC and cannot be pushed to the LRU position. This
is the first time that such condition has been discovered and we will show in the
next section (Section 3.3) why CT fails on some inclusive cache architectures
(satisfying condition 1) due to the lack of this cache filter effect.

3.3 Feasibility on Different Cache Architectures

Utilizing the two necessary conditions discovered in Section 3.2, we have con-
ducted a systematic survey on the feasibility of CT on different cache architec-
tures. We consider the following cache parameters:

– Cache levels: cache architectures that have two or three levels of caches.
– Inclusiveness: inclusive (L1 ⊆ LLC), exclusive (L1 ̸= LLC) or non-

inclusive (L1 ⊈ LLC) relation between cache levels.



Table 2. Feasibility on different cache architectures.

Architecture Example Attack Feasible

Exclusive or Non-inclusive LLCa. AMD Zen 2 and later (Ryzen-7
5700G)

cross-core No
single-core No

Inclusive LLCb with private caches
using LRU/RRIP.

Intel Processors (i7-6700 and
Xeon 4110b)

cross-core Yes
single-core Yes

Three levels of inclusive caches
using LRU/RRIP.

Early quad/hexa-core processors
(Intel Dunnington [2, 25])

cross-core Yes
single-core No

Inclusive LLC using LRU/RRIP
with private caches using random.

A customized Rocket-Chip
processor (Section 5.1)

cross-core Yes
single-core No

aA non-inclusive LLC may adopt an inclusive directory and CT becomes feasible, such as the Intel
Xeon processors [35]. These cache architectures are counted as inclusive LLCs without
differentiating the directory from the cache.
bInclude the non-inclusive LLCs adopting inclusive directories.
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Fig. 2. A failing example of single-core CT in a 3-level inclusive cache using LRU.
(WL1 = 4,WL2 = 8,WLLC = 16)

– Cache sets and ways: when the LLC is inclusive, it is assumed that the
number of ways in the LLC (WLLC) is no less than it in in private caches:
WLLC ≥ WL2 if L1 ⊆ L2 or WLLC ≥ WL1 +WL2 otherwise.

– Replacement policy: the replacement policy of individual cache can be
independently selected among LRU, RRIP or random.

– Attack scenario: both cross-core and single-core attacks are considered.

In total, we have surveyed 168 different cache architectures (scenarios) and iden-
tified four categories of representative cache architectures as revealed in Table 2:

Exclusive or Non-inclusive LLC: When the LLC is exclusive or non-
inclusive, the target x stored in L1 cannot become an inclusion victim and CT
fails to work. Nearly all recent AMD Zen 2 and later processors fall in this cate-
gory and are naturally immune to the CT algorithm. Intel Xeon processors adopt
a non-inclusive LLC but utilize an inclusive directory. Due the inclusiveness of
the directory, they are still vulnerable to CT. We count them as inclusive LLCs.

Inclusive LLC with private caches using LRU/RRIP: This is the
common category for nearly all Intel processors. The inclusive LLC ensures the
inclusion victim effect. As for the cache fitler effect, since LRU/RRIP is adopted
by the private caches, the repeatedly probing of x ensures that x is pinned in
the L1 and all accesses to x are invisible to LLC until x is evicted from the LLC.
Note that we deliberately leave an exception here for simplicity. As described by
the next category, a three-level inclusive LLC using LRU/RRIP can break the
condition for the cache filter effect.

Three levels of inclusive caches using LRU/RRIP: This is an excep-
tion of the previous category. CT works in the cross-core case but fails in the



single-core case due to the lack of the filter effect. A failing example is presented
in Fig. 2. After accessing seven congruent addresses (a0 to a6) and probing x,
the state of the three-level cache is depicted in Fig. 2a. Note the repeated prob-
ing of x is filtered by L1 and invisible to both L2 and LLC. As a result, x is
pushed to the LRU position in L2. As demonstrated in Fig. 2b, the following
access of a7 thus evicts x from L2, which consequently purges x also from L1 as
it is an inclusion victim. As x is purges from both L1 and L2, the probing of x
is observed by LLC, which moves x to the MRU position in LLC and CT fails.
The rooting cause is that the probing of x is invisible to the inclusive L2 while
WL2 < WLLC. Early generations of the Intel quad/hexa-core multiprocessors,
such as the Intel Dunnington architecture [2, 25] adopts such a three-level in-
clusive cache architecture. The L2 cache in later generations becomes exclusive,
which unfortunately makes them vulnerable to single-core CT.

Inclusive LLC using LRU/RRIP with private caches using random:
This architecture is uncommon as most L1 caches adopt LRU/RRIP replacement
policies. However, the single-core CT fails in such an architecture as x is likely
evicted from the private caches before it is evicted from the LLC due to the
random replacement, which makes the following probing of x observed by the
LLC. CT therefore fails due to the lack of the filter effect. In Section 5.1, we
have configured the cache architecture of a dual-core Rocket-Chip accordingly
as a demonstrative example for the failing of single-core CT.

4 Performance Optimization

This section begins with a performance analysis of the baseline CT algorithm.
Based on the analysis, three optimization techniques are proposed to improve
the efficiency of the CT algorithm.

4.1 Performance Analysis of the Baseline Algorithm

Let us consider a cross-core attack on a two-level inclusive cache using the LRU
replacement policy. The latency (L) of searching one eviction set of W congruent
addresses can be estimated as:

L = (NRA +W ) · tmem + (Nv −W ) · tL1 +Nv ·∆cross (1)

where NRA and Nv are the numbers of accessing random addresses and the
victim address x, respectively, while tmem, tL1 and ∆cross are the time for one
memory access, the time for one access hitting in L1, and the time overhead for
one cross-core access, respectively. The total number of LLC misses is NRA +W
and Nv −W times of probing x should hit in L1 due to the perfect filter effect.

Due to the LRU replacement policy, the target address x is evicted from the
LLC every time when W congruent random addresses are accessed. A total of
W 2 congruent random addresses are searched before obtaining an eviction set.



We call this number NCA. Since random address is a congruent address with x
by a probability of 1/S, NRA and Nv can be estimated as:

NRA = Nv = NCA · S = SW 2 (2)

where S is the number of LLC sets. Using Equation 1, L is rewritten to:

L = (SW 2 +W ) · tmem + (SW 2 −W ) · tL1 + SW 2 · tcross (3)

= SW 2 · [tmem + (tL1 +∆cross)] +W · (tmem − tL1) (4)
= S ·NCA · (tmem + tv) +W ·∆miss (5)

where tv and ∆miss are the time for one (cross-core) probing of x and the time
overhead of one cache (both L1 and LLC) miss, respectively. According to Equa-
tion 5, the key for reducing L is to decrease NCA, the number of congruent
random addresses requiring to be accessed, as all others are constants.

Equation 5 holds true for cross-core attacks on all feasible cache architec-
tures, even when the LLC adopts the random replacement policy. In this case,
Equation 2 remains the same as a random address is a congruent address with x
by a probability of 1/S, accessing a congruent address evicts x by a probability
of 1/W , and x is evicted for W times during the whole search. Consequently,
Equation 4 and 5 remain untouched.

For single-core attacks, Equation 5 remains valid as long as the L1 adopts
LRU/RRIP replacement policies because LRU/RRIP guarantees the perfect fil-
ter effect. tv is reduced to tL1 as the cross-core overhead is removed. When both
L1 and LLC adopt the random replacement policy, accessing a random address
evicts x from the L1 cache by a probability of 1/(SL1 · WL1). Therefore, extra
latency is introduced in Equation 4 and 5:

L = SW 2 · (tmem + tL1) +W · (tmem − tL1) +
SW 2

SL1 ·WL1
· (tLLC − tL1) (6)

= S ·NCA · (tmem + tv) +W ·∆miss +
S ·NCA

SL1 ·WL1
·∆L1-miss (7)

where tv = tL1 and ∆L1-miss = tLLC−tL1, which is the time overhead of accessing
LLC when L1 misses. Similarly, the key for reducing L is to decrease NCA as all
others are constants.

4.2 Cacheback : Reducing the Number of Random Accesses

Cacheback is an optimization capable of reducing NCA when the LLC adopts
an LRU/RRIP replacement policy. In the baseline CT algorithm, every time the
target address x is evicted from the LLC, a total of W congruent addresses are
accessed but only the last one is identified by the algorithm, because it finally
evicts x. When a number of congruent addresses are identified and stored in
E (line 8 in Algorithm 1), these addresses can be used to push x to the LRU
position and reduce the total number of congruent addresses (NCA) needed in the



Algorithm 2: Cacheback after a successful probe
1 if not Cv:probe(x) then
2 E

⋃
{a}

3 for e in E do
4 Ca:access(e)
5 end
6 end

L1

LRU MRU

L2

LLC e0 e1 e2e3 e4 e5 e6 a3

x

e8 e9e7 e10e11 a0 a1 a2

e8 e9 e10e11 a3a0 a1 a2

e5 e6 e7 e2

x

(a) After accessing a3.

L1

LRU MRU

L2

LLC e0 e1e2e4 e5 e6

x

e8 e9e7 e10e11 a0 a1 a2

e2a1 a2

x

e0 e1a0 a3

e9 e10e11 e8

a3

(b) After accessing e2.

Fig. 3. Problem of cacheback when the order observed by LLC (L2) mismatching with
the program order. (According to i7-6700, WL1 = 8,WL2 = 4,WLLC = 16, L2 is
exclusive, L2 and LLC adopt RRIP)

search. This cacheback procedure is described in the code extraction of the probe
illustrated in Algorithm 2 (replacing the code highlighted blue in Algorithm 1)
with the optimization highlighted in red. After the i-th congruent address (ei) is
identified by CT, the number of congruent addresses needed for identifying the
next one is reduced to W − i. Therefore, NCA is reduced to:

NCA =

W−1∑
i=0

(W − i) =
W 2 +W

2
(8)

Compared with Equation 2, the total number of congruent addresses needed in
the search is roughly reduced by half, so does the search latency.

This optimization is first proposed in the Prime+Scope attack [20]. By further
investigation, we find out that the optimization works but not as effective as it
should be. There are two reasons for this reduced efficiency: mismatching access
order and broken filter effect. Let us consider an example of single-core attack
on a three-level cache depicted in Fig. 3. The access order observed by the LLC
might not match with the access order issued by the program. As a result, when
the target address x is evicted by accessing address a3 in Fig. 3a, the access order
observed (more importantly the replacement order) by L2 and LLC mismatches
with the program order for address e2,3 assuming 12 congruent addresses (e0 to
e11) have been identified, stored in E , and used for cacheback. a3 is identified as a
congruent address and stored in E after probing x (refill x to L1 and LLC as well).
According to the cacheback optimization, e0 to e11, along with a3 are accessed

3 Many reasons can cause the mismatch in access order. The filter effect itself is a po-
tential cause as soon shown in Fig. 3b. The imperfect pseudo-LRU used in hardware
and the RRIP derivative policies used in L2 and LLC [31] also cause mismatching
replacement order and access order. Finally, the L2 in this case (also in modern
Intel processor) is exclusive, whose replacement order is also affected by the block
swapping between L2 and L1 when a block hits in L2.



Algorithm 3: Flush before cacheback
1 if not Cv:probe(x) then
2 E

⋃
{a}

3 for e in E do
4 Ca:flush(e)
5 end
6 for e in E do
7 Ca:access(e)
8 end
9 end

Algorithm 4: Interleavedly re-access target during cacheback
1 if not Cv:probe(x) then
2 E

⋃
{a}

3 for e in E do
4 Ca:flush(e)
5 end
6 for e in E do
7 Ca:access(e)
8 Cv:access(x) // single-core, Cv = Ca

9 end
10 end

to push x towards the LRU position in LLC. When the cacheback proceeds to
e2, this address hits in L2 and is swapped to L1 rather than accessing from LLC
due to the order mismatch. Consequently, the access of e2 is invisible to LLC,
reducing the effectiveness of the cacheback and the access order in L2 and LLC
diverse further away from the program order. To avoid the mismatching access
order, we propose to flush all the addresses stored in E before caching them back,
as highlighted in the code extraction of the probe part illustrated in Algorithm 3
(replacing the code highlighted blue in Algorithm 1). In this way, each accessing
of ei forces an insertion at the MRU position in the LLC.

The other problem is the broken filter effect in single-core CT attack when
the number of addresses in E is larger than the associativity of the inner caches:
|E| ≥ WL1 +WL2 for the cache architecture shown in Fig. 3. Let us consider the
situation after the cacheback process is finished, the target x is actually evicted
from L1 and L2, because the total number of addresses in E becomes 13 after
adding a3. As a result, LLC observes a re-access of x soon after probing for the
next random address. This would put x to the unfavorable MRU position if LLC
adopts the LRU replacement. It is even worse for the RRIP replacement policy as
a re-access of x promotes it to higher replacement priority [13], which would fail
the CT algorithm. To avoid such problem, we propose to interleavedly re-access
the target address x during the cacheback process, as shown in Algorithm 4
(replacing the code highlighted blue in Algorithm 1). In this way, CT ensures
that x is never evicted from L1.

4.3 Extended Probing : Increasing the Probability of Probing

Cacheback is effective only when the LLC adopts an LRU/RRIP replacement
policy. If the policy is random, the probability of evicting the target address x
is independent for every random address being tested. Cacheback is therefore



Algorithm 5: Extended probing
1 r = TRUE
2 r = r and Cv:probe(x)
3 for e in E do
4 r = r and Ca:probe(e)
5 end
6 if not r then
7 E

⋃
{a}

8 end

useless. In this situation, we propose to directly improve the probability of iden-
tifying a congruent address in the probing. Instead of probing only the target
address x, an attacker can additionally probe all the found congruent addresses
stored in E , as they all stored in the same LLC cache set. Algorithm 5 demon-
strates the probe (code highlighted blue in Algorithm 1) optimized with the
extend probing. If any of the target address x or the addresses stored in E is
probed missing in the LLC, r becomes FALSE, and the random address a is then
identified as congruent and added to E .

Assuming the size of E is |E|, the probability of identifying a congruent ad-
dress increases from 1

W to 1+|E|
W , which approaches to 64% when |E| = 15 for a

16-way LLC. Consequently, NCA is reduced from 256 to 54.1, achieving a 79%
reduction. However, the search latency does not drop proportionally to the re-
duction of NCA. In fact, the latency benefit eventually drops to negative with
the increasing of |E|, because the total number of accesses issued by probes rises
proportionally to |E|. They incur a significant latency overhead when |E| → W .
When |E| < WL1, addresses in E likely hit in L1. The extra accesses introduced
by the extended probing are served by L1 and the latency overhead is small.
When |E| ≥ WL1, the extended probing begins to experience significant amount
of L1 misses. The latency overhead would gradually becomes intolerable. There
should be an optimal number of addresses applied with the extended probing.

4.4 Surrogate Targets: Reducing Victim Accesses

The final optimization is related to reduce the number of probing the target
address x. In certain attack scenarios, tricking the victim to probe the tar-
get address x (normally cross-core) is a time consuming and noisy procedure
(∆cross ≫ tL1 in Equation 4), especially when the victim is non-cooperative or
the victim probe is likely bulky (containing unrelated code). As a result, the total
time required for constructing an eviction might not be decided by the complex-
ity of the search algorithm but largely by the number of victim accesses [22].

According to Equation 2, the number of victim access Nv = NCA·S, which is a
fairly large number. We would like to significantly reduce Nv. Instead of probing
the target address x, an attacker can replace x with a found congruent address
as the surrogate target, such as e0 stored in E . The number of total victim access
Nv is therefore reduced to the number of victim accesses required for identifying
the first congruent address, which is only S ·W . Note that this effectively convert
an originally cross-core attack into a single-core one. Therefore, it is viable only



Table 3. Cache misses incurred by testing 1000 random addresses.

Scenario C0 L1 miss C0 L2 miss C1 L1 miss C1 L2 miss LLC miss

cross-core 1000± 0.0 1000± 0.0 1.3± 0.5 1.3± 0.5 1001± 0.5
single-core 1016± 1.3 1016± 1.3 0± 0 0± 0 1000± 0.03

for the cache architectures feasible for the single-core case. It is also worthwhile
to point out, this technique is universally effective for all inserting algorithms.

5 Performance Evaluation

The performance of CT with various optimizations is evaluated by running them
on actual processors whenever possible. The two assumed failing cache architec-
tures for the single-core case (Section 3.3) are first verified. Consequently, the
speed benefits of the optimizations proposed in Section 4 are measured.

5.1 Feasibility Verification

It is widely understand that CT fails on exclusive/non-inclusive cache architec-
tures. This section concentrates on verifying of the two inclusive cache architec-
tures identified in Table 2 (Section 3.3) where the single-core CT fails.

For the three levels of inclusive caches using LRU/RRIP, we verify
the failing single-core case using a behavioral cache model [27] as we do not have
any of the early Intel machines or any open processor implementation adopting
a three-level cache architecture. The cache model is configured with two cores.
(Ca, Cv) = (C0, C1) for the cross-core case. Each core contains a 64-set 8-way L1
and an private 512-set 8-way L2, while a 4096-set 12-way LLC is shared between
cores. All caches adopt the LRU replacement policy.

The baseline CT is used to test 1000 random addresses for both cross-core
and single-core cases. Complying with the analysis provided in Table 2, 1∼2
congruent addresses are found in the cross-core case but none in the single-core
case. Table 3 reveals the cache misses recorded in all caches. In the cross-core
case, testing 1000 random addresses incurs ∼1001 misses in the LLC, where the
extra 1∼2 misses are caused by the eviction of the target addresses x from the
LLC, which is confirmed by the matching missing number on core C1 (Cv). In
the single-core case, the number of cache misses incurred by testing 1000 random
addresses is ∼1016 on L1 but exactly 1000 on LLC. The 16 extra misses on L1
is caused by the eviction of the target address x from the L2, which would lead
to re-accessing x on the LLC (broken filter effect). As a result, x is never pushed
to the LRU position in the LLC, and CT fails.

For the inclusive LLC using LRU/RRIP with private caches using
random, we manage to configure a dual-core Rocket-Chip [3,4] with a two-level
cache architecture where the 1024-set 16-way LLC is inclusive using LRU while
the 64-set 8-way L1 uses random. The Rocket-Chip is ported to a FPGA dev
board, runs at 50MHz, and boots with a Linux kernel (ver. 5.11.0).
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Fig. 5. Search latency and success rate on Intel i7-6700 when various cacheback opti-
mizations are applied.

The baseline CT algorithm runs on this dual-core Rocket-Chip for both cross-
core and single-core cases. The cross-core case successfully finds eviction sets with
a probability of 13% while the single-core case fails, complying with Table 2. To
verify this result, the latency distribution of probing the target address x has
been collected and depicted in Fig. 4. For the cross-core case, 99.5% probes hit
in L1 (∼4 cycles), while ∼0.4% probes miss in LLC (>45 cycles). The tested CT
algorithm uses random addresses sharing the same page offset with the target
address x, providing a theoretical conflicting rate of 1/256 (0.391%). The 0.4%
LLC miss rate matches perfectly with the theory. For the single-core case, only
87.4% probes hit in L1, 12.4% probes hit in LLC (∼25 cycles), and none misses
in the LLC. Due to the random replacement policy used in L1, the target address
x shall be evicted from the L1 by a probability of 1/8 (12.5%), in theory. This
matches with the 12.4% probes hitting in the LLC. Due to this effect, x is never
pushed to the LRU position in LLC, and CT fails.

5.2 Speed Optimization Results

Cacheback (Section 4.2) reduces NCA along with the search latency in inclusive
LLCs adopting LRU/RRIP replacement policies. We use Intel i7-6700 as our de-
fault processor for analyzing the different techniques for improving the efficiency
of cacheback while the final performance of CT with the optimized cacheback is
compared on all the four Intel processors.

Fig. 5 demonstrates the search latency and success rate on Intel i7-6700
when different optimization techniques are applied to the cacheback process. In
the cross-core case, applying the basic cacheback alone without flushing before
cacheback (labeled as “flush”) or interleavedly re-access (labeled as “int-re-acc”)
already raises the success rate from 22% to 28% and reduces the search latency
from 49ms to 46ms. Since the target address x is accessed by Cv rather than
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Fig. 6. Search latency and success rate on Intel processors when cacheback is applied.

Table 4. Cross-core CT on Intel processors using cacheback and surrogate targets.

CPU Baseline Cacheback Surrogate Target

latency rate latency rate latency rate victim-acc. reduction

i7-3770 13± 4.5ms 80% 9.5± 7.6ms 81% 6.4± 2.6ms 64% 3.4K 89%
i7-6700 49± 47ms 22% 46± 54ms 28% 31± 44ms 16% 44K 68%
i7-9700 44± 39ms 20% 33± 39ms 24% 29± 36ms 22% 43K 62%
i7-11700 72± 54ms 4.8% 69± 58ms 6.6% 63± 50ms 2.3% 125K 37%

Ca, caching back E would not evict x out of the Cv:L1 and the thrashing access
pattern observed by the private L1 and L2 caches means the benefit of flush is
marginal. As shown in Fig. 5, flush reduces the search latency but also incurs
a drop on the success rate. int-re-acc is unnecessary for the cross-core case. We
therefore choose the basic cacheback (without flush or int-re-acc) as the default
cacheback optimized CT algorithm. In the single-core case, caching back E has a
much higher probability to evict the target address x out of the private L1 and
L2 caches than in the cross-core case. Consequently, applying cacheback itself
leads to an substantial drop on the success rate. By applying both flush and
int-re-acc, the success rate is raised from 16% to 19% while the search latency
drops from 23ms to 15ms. We consequently define the cacheback with both flush
and int-re-acc as the default cacheback optimized CT algorithm for single-core.

Fig. 6 demonstrates the performance improvement of cacheback optimized
CT compared with the baseline CT on all the four Intel processors. The detail
performance figures are also revealed in Table 4 for the cross-care case and
Table 5 for the single-core case. The success rate is improved substantially on
the more recent processors (later than the 6th generation) and this increase is
most visible for the latest i7-11700 where the success rate is raised by 90% for the
single-core case. As for the search latency, cacheback is able to reduce the search
latency for all processors earlier than the 9th generation. Overall, cacheback is
able to significantly improve the speed performance of CT on all the four tested
Intel processors.

The surrogate targets (Section 4.4) optimization can significantly reduce
the number of victim accesses by replacing the probing target from the target
address x to the first found congruent address e0 stored in E . We have tested the
CT using surrogate targets on the four Intel processors and the detailed result
is revealed in the right-most columns in Table 4. The number of victim accesses
is reduced by 37% to, as high as, 89%. This reduction proves the effectiveness
of the optimization. The search latency is also significantly reduced to the range
achieved by the single-core case. The reason is simply, once the probe target is



Table 5. Single-core CT on Intel processors using cacheback.

CPU Baseline Cacheback

latency rate latency rate

i7-3770 6.0± 3.4ms 69% 5.1± 5.8ms 65%
i7-6700 23± 21ms 16% 15± 19ms 19%
i7-9700 20± 17ms 21% 16± 18ms 25%
i7-11700 12± 4.4ms 2.1% 13± 9.8ms 3.9%
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Fig. 7. Success rate and search latency (both single-test and accumulated) of CT run-
ning a dual-core Rocket-Chip (L1 LRU and LLC random) with extended probing.

replaced with e0, the time consuming cross-core probe becomes the much faster
single-core probe. However, the success rate drops to slightly lower than the
single-core case. The success rate of single-core case is typically lower than the
cross-core case due to its higher noise level. In addition, probing the surrogate
targets suffers from a slightly reduced success rate as the found e0 might not be
congruent with x by a small probability due to false-positive errors.

Finally, we demonstrate the performance benefit of the extended probing
(Section 4.3) again using a dual-core Rocket-Chip and configuring the replace-
ment policies of the L1 cache to LRU and the LLC to random. Fig. 7 depicts the
success rate and the search latency when the probing target is extended with 0
to 16 found congruent addresses stored in E . The search latency is labeled as
the “single-test latency” while the accumulated latency for eventually finding an
eviction set (latency divided by success rate) is labeled as the “accu. latency”. For
both cross-core and single-core cases, extending the probe with found congruent
addresses reduces the single-test search latency by increasing the success prob-
ability of probes. However, the success rate gradually drops with the number
of extended probed addresses due to the increased probability of self-evicting
the probe targets. The overall impact of applying extended probing is better
presented by the accumulated search latency for finding an eviction set. Extend-
ing the probe with 2 to 6 addresses reduces the accumulated latency by around
20% for the cross-core case while extending the probe with 4 addresses reduces
the accumulated latency by 18% for the single-core case. The result confirms
that extending the probe with a small number of found congruent addresses can
improve speed when the LLC adopts the random replacement policy.



6 Conclusion

In this paper, we have conducted the first systematic feasibility analysis of the CT
algorithm. Besides the commonly known failing case where the LLC is exclusive
or non-inclusive, two inclusive cache architectures are identified and verified
as failing cases for the single-core CT. Three optimizations have been studied.
The performance of the cacheback optimization has been significantly improved
(especially for the single-core CT) by introducing flushing before cache back and
interleaved re-access during the cacheback. The other two are newly proposed
in this paper. Extended probing is effective in reducing the search latency by
increasing the success probability of probes on cache architectures where the LLC
adopts the random replacement policy. Surrogate targets is effective in reducing
the number of victim accesses, which is hugely beneficial when the cross-core
probing of the victim address is time consuming.
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