
Stateful Forward-Edge CFI Enforcement with
Intel MPX

Jun Zhang1,3, Rui Hou2, Wei Song2, Zhiyuan Zhan2,3, Boyan Zhao1,3, Mingyu
Chen1,3, and Dan Meng2

1 State Key Laboratory of Computer Architecture, ICT, CAS, Beijing, China
2 Institute of Information Engineering, CAS, Beijing, China
3 University of Chinese Academy of Sciences, Beijing, China

Abstract. This paper presents a stateful forward-edge CFI mechanism
based on a novel use of the Intel Memory Protection Extensions (MPX)
technology. To enforce stateful CFI policies, we protect against malicious
modification of pointers on the dereference pathes of indirect jumps or
function calls by saving these pointers into shadow memory. Intel MPX,
which stores pointer’s bounds into shadow memory, offers the capability
of managing the copy for these indirect dereferenced pointers. There are
two challenges in applying MPX to forward-edge CFI enforcement. First,
as MPX is designed to protect against every pointers that may incurs
memory errors, MPX incurs unacceptable runtime overhead. Second, the
MPX defense has holes when maintaining interoperability with legacy
code. We address these challenges by only protecting the pointers on
the dereference pathes of indirect function calls and jumps, and making
a further check on the loaded pointer value. We have implemented our
mechanism on the LLVM compiler and evaluated it on a commodity Intel
Skylake machine with MPX support. Evaluation results show that our
mechanism is effective in enforcing forward-edge CFI, while incurring
acceptable performance overhead.

Keywords: Code-reuse attacks · Control-flow integrity · Shadow stack
· Shadow memory · MPX · LLVM.

1 Introduction

Code-reuse attacks (CRA) [1,2,3,4,5] exploit memory corruption vulnerabilities
to redirect the intended control-flow of applications to unintended but valid code
sequences. As these attacks require no code injection, they can defeat the defen-
ses in mainstream computing devices [6,7], such as StackGuard [8], DEP [9] and
ASLR [10]. Control-flow integrity (CFI) [11,12] is considered as a general and
promising method to prevent code-reuse attacks. CFI restricts the control trans-
fers along the edges of the programs’s predefined Control-Flow Graph (CFG),
which is constructed by statically analyzing either the source code or the binary
of a given program. The control-transfers caused by indirect jumps and function
calls are corresponding to forward-edge control-flow. Backward-edge control-flow
represents transfers caused by ret instructions.

2 J. Zhang et al.

Shadow stack is considered as an essential mechanism to enforce stateful
backward-edge CFI policies [11,13]. It keeps track of the function calls by sto-
ring the return addresses in a dedicated protected memory region. Most of the
forward-edge CFI enforcement technologies follow a two-phase process. During
the analysis phase, all the legal target(s) of each indirect control-transfer are
abstracted from the protected program’s CFG. The enforcement phase ensures
that each control-transfer target belongs to the legal targets set. However, even
the context/field sensitive static analysis still over-approximates the targets of
indirect control-transfers [13,14,15]. Recent researches show that just the inten-
ded legal targets are enough for a successful attack [13,14,15]. The weakness
of current forward-edge CFI mechanisms is that conformance to the CFG is a
stateless policy [13]. To conduct control-flow hijack attacks without violate the
CFG restriction, attackers still have to maliciously overwrite (craft) the targets
of indirect control-transfers [13,15]. Malicious modifications can be detected by
verifying the runtime control-flow information [16,17].

In this paper, we introduce a novel stateful forward-edge CFI mechanism.
Unlike the traditional CFI mechanisms, which check only whether each control-
transfer target belongs to legal targets set [11,12,18,19,20,21], our mechanism
checks the integrity of all pointers on the dereference pathes of indirect jumps
and function calls. We call the pointers on the dereference pathes of indirect
jumps and function calls as control-transfer related pointers. To support this
method, we protect against malicious modification on control-transfer related
pointers by saving these pointers in a disjoint shadow memory1 when they are
stored into memory. When a control-transfer related pointer is dereferenced, its
copy is loaded from the shadow memory and compared with itself. If the integrity
check passes, no action is taken; if the check fails, the program control transfers
to the error handler. This process is similar to shadow stack. To facility the
copy management and integrity checking, we implement our mechanism based
on a new, commercially available hardware feature called Memory Protection
Extensions (MPX) on Intel CPUs [25,26,27]. In MPX, every pointer stored in
memory has its associated bounds stored in a shadow memory, which is only
accessible via bndstx and bndldx instructions.

In particular, we make the following contributions:

– We design a stateful forward-edge CFI mechanism, which protects the control-
transfer related pointers by saving a copy into shadow memory. When a
control-transfer related pointer is dereferenced, the copy is used to check its
integrity similar to the shadow stack.

– Intel MPX is reused to manage the copies of control-transfer related pointers.
We implement our mechanism on the LLVM compiler framework. A com-
piler pass is developed to identify the control-transfer related pointers and
instrument integrity check codes for them. A runtime library is developed to
facility the MPX hardware initialization and check code instrumentation.

– We evaluated our mechanism on a commodity Intel Skylake machine with
MPX support. The evaluation shows that our mechanism is effective in en-

1 Shadow memory is a memory space paralleling the normal data space [22,23,24].

Stateful Forward-Edge CFI Enforcement with Intel MPX 3

forcing stateful forward-edge CFI, while incurring acceptable performance
overhead.

2 Intel MPX

Intel MPX [25,26,27] was first announced in 2013 and became available as part
of the Skylake microarchitecture in late 2015. The purpose of Intel MPX is
to protect against memory errors and attacks. When Intel MPX protection is
applied, bounds-check codes are inserted to detect out-of-bounds accesses. To
realize this goal, each level of the hardware-software stacks is modified to support
the Intel MPX technology.

At the hardware level, new MPX instructions [26] are introduced to facilitate
the bounds operations. These instructions are summarized in Table 1. To reduce
the register pressure on the general-purpose registers (GPRs), MPX introduces
a set of 128-bit bounds registers. The current Intel Skylake architecture provides
four bounds registers named bnd0-bnd3. Each of the bounds registers stores
a lower 64-bit bound in bits 0-63 and an upper bounds in bits 64-127. MPX
also introduces #BR exception to facilitate the exceptions thrown by the bounds
operations.

Table 1: Intel MPX instruction summary
Intel MPX Instruction Description
bndmk bndx, m create LowerBound and UpperBound
bndcl bndx, r/m check the pointer value in GPR/memory against the lower
bndcu bndx, r/m check the pointer value in GPR/memory against the upper
bndmov bndx, bndx/m move pointer bounds from bnd/memory to bnd
bndmov bndx/m, bndx move pointer bounds from bnd to bnd/memory
bndldx bndx, mib load pointer bounds from memory
bndstx bndx, mib store pointer bounds to memory

The memory of bounds and #BR exceptions are managed by the OS. Bounds
are stored in shadow memory, which is dynamically allocated by the OS in
a similar way of paging. Each pointer has an entry in a Bounds Table (BT),
which is comparable to a page table. The addresses of BTs are stored in a
Bounds Directory (BD), which corresponds to a page directory in analogy. As
the bounds registers are not enough for real-world programs, bounds have to
be stored/loaded to/from BT by the bndstx/bndldx instructions. When a BT
does not exist, the CPU raises #BR and traps into the OS. Then the OS allocates
a new BT for the bounds. Furthermore, the OS is in charge of bounds check
violation.

At the compiler level, new MPX transformation passes are added to in-
sert MPX instructions to create, propagate, store and check bounds. Additional

4 J. Zhang et al.

runtime libraries provide initialization/finalization routines, statistics and de-
bug info, and wrappers for functions from standard C libraries [29]. Until now,
both GCC and ICC compilers have native support for Intel MPX [25,27]. The
LLVM compiler only adds the MPX instructions and bounds registers to its
Backend [30].

There are at least two challenges in applying MPX to implement our mecha-
nism. First, MPX is designed to protect every pointers that may incur memory
errors. To enforce our mechanism, we have to identity the control-transfer re-
lated pointers before the instrumentation. Second, MPX utilizes the bndldx
instruction to load bounds from the BT. When the content of the index register
of bndldx instruction matches with the pointer value stored along with bounds
in the BT, the destination MPX register is updated with the loaded bounds.
However, if a mismatch is detected, the destination MPX register is updated as
always-true (INIT) [25,26,27]. This creates holes in MPX defense. Thus, we need
to address the problem of how to check the integrity of control-transfer related
pointers based on the loaded bounds.

3 Threat Model

In this paper, we only focus on user-space forward-edge CFI and assume that
the backward-edge CFI has been efficiently enforced by previous solutions. Since
bounds memory and #BR exceptions are managed by the OS, we assume adver-
saries have no control over the OS kernel. This assumption prevents adversaries
from directly tampering with our enforced protection. We assume that (1) at-
tackers can not control the program loading process; (2) the system deploys the
memory protection, which forbids code section and read only data to get written
at run time, and forbids a memory region to be writable and executable at the
same time. These assumptions ensure the integrity of the loaded program and
prevent code injection attacks. We assume attackers can arbitrary read appli-
cation’s code, and has the full control over the program’s stack and heap. In
other words, attackers have the following capabilities: (1) attackers can launch
information attacks and defeat the protection of ALSR; (2) they can corrupt
control data such as return address and function pointers. Our assumptions are
as strong and realistic as prior work in this area.

4 Stateful Forward-edge CFI

The goal of this paper is to enforce stateful forward-edge CFI mechanism, which
is similar to shadow stack [11,13] and incurs acceptable runtime overhead. In this
section we set up a stateful forward-edge CFI model, and discuss the enforcement
method based on this model.

To check the integrity of forward-edge control-flow, we need to understand the
low level process of control-flow transfers caused by indirect jumps and function
calls. A function call through pointer dereference is shown in Figure 1(a). The
source code is in black and the disassembly is in green. At line 8, a pointer,

Stateful Forward-Edge CFI Enforcement with Intel MPX 5

which is a return value from malloc, is assigned to heap_struct. At lines 11-12,
the execution makes sptr_p point to the address of heap_struct. At lines 15-
17, the address of function func is assigned to a structure member sfunc_ptr,
which is found by dereferencing pointer sptr_p twice. At that program point, the
pointer relationships holding between the variables and functions are illustrated
in Figure 1(b). At lines 19-23, function func is called by dereferencing pointer
sptr_p. We call this dereference path as a Dereferenced-Pointers-Flow (DPF),
which is analogous to a linked list. DPF consists of a series of elements (such as
structures, arrays, pointers). Each contains (or is) a pointer to a element con-
taining its successor. We call these pointers as control-transfer related pointers.
The last level control-transfer related pointer points to a function or a address.

1 void main(int argc, char **argv){
2 ...
3 struct add_struct *heap_struct;
4 struct add_struct **sptr_p;
5 heap_struct = (struct add_struct *)malloc(sizeof(struct add_struct));
6 804841c: c7 04 24 10 00 00 00 movl $0x10,(%esp)
7 8048423: e8 fc fe ff ff call 8048324 <malloc@plt>
8 8048428: 89 44 24 1c mov %eax,0x1c(%esp)
9 ...

10 sptr_p = &heap_struct ;
11 804843c: 8d 44 24 1c lea 0x1c(%esp),%eax
12 8048440: 89 44 24 40 mov %eax,0x40(%esp)
13 ...
14 (*sptr_p)->sfunc_ptr=&func;
15 80484d6: 8b 44 24 40 mov 0x40(%esp),%eax
16 80484da: 8b 00 mov (%eax),%eax
17 80484dc: c7 40 0c f4 83 04 08 movl $0x80483f4,0xc(%eax)
18 (*sptr_p)->sfunc_ptr(7);
19 80484e3: 8b 44 24 40 mov 0x40(%esp),%eax
20 80484e7: 8b 00 mov (%eax),%eax
21 80484e9: 8b 40 0c mov 0xc(%eax),%eax
22 80484ec: c7 04 24 07 00 00 00 movl $0x7,(%esp)
23 80484f3: ff d0 call *%eax
24 ...
25 }

sptr_p heap_struct

sfunc_ptr func

(a) (c)

(b)

Fig. 1: Stateful forward-edge CFI model

For the whole program, the pointer relationships related to pointer sptr_p can
be abstracted by statically analyzing. As shown in Figure 1(c), the relationships
can be represented as a tree. Every node contains (or is) a control-transfer related
pointer. The root node is pointer sptr_p, and the leaf nodes are functions with
the same type. There are multiple pathes (indicated as dotted lines) from sptr_p
to the leaf nodes. But there are only one DPF (indicated by the shadow blue
arrow) at moment T1. If we can make sure that every pointer on the DPF is
trusted, we call this forward control-flow is integrity. As shown in Figure 1(a),
the DPF is selected by assigning proper value (e.g., location of a function, return
pointer from malloc, or one address in the stack) to the control-transfer related
pointer. If any pointer in the code-pointer tree is overwritten by attackers, the
pointer dereference will use another DPF, and the control-flow transfers to target
controlled by attackers. We come exactly to the conclusion that the correctness
of function call or jump through a pointer dereference depends on the integrity

6 J. Zhang et al.

of the DPF at a moment. A pointer dereference satisfies the integrity property
iff its value equals to the last legal update. We say an indirect control-transfer
satisfies the CFI property iff the DPFs are protected. If all DPFs are protected,
it is sufficient to prevent forward-edge control-flow hijack attacks.

For fine-grained CFI (such as IFCC and VTV [20]) mechanisms, they prevent
control-flow hijack attacks by ensuring that the target address of each indirect
branch is within the predefined targets set. The targets sets are computed by
static program analysis. Thus func1-func4 are all valid targets for the control
transfer at line 23 in Figure 1 at a moment. Actually, there are only one derefe-
rence path at a moment. For example, when the program in Figure 1(a) executes
at line 23, there is only one DPF as shown in Figure 1(c) at moment T1. The
false negative of fine-grained CFI mechanisms can be attributed to their stateless
target checking. In other words, the target of a control transfer depends on the
DPF which is selected by the control-transfer related pointers at a moment.

5 Implementation

We implement our stateful forward-edge CFI mechanism on the LLVM compiler
framework [30]. As shown in Figuare 2, we add an optimization pass (DFI pass)
during the optimization stage, and link the object codes with the runtime library
at the link stage.

FrontendSource
code

D
PF

 p
as

s

Co
m

m
on

Pa

ss

Co
m

m
on

pa

ss Backend Object
code

Linker
Runtime

lib

Executable
file

Fig. 2: The process of our stateful forward-edge CFI mechanism implementation.
It first identifies the DPF nodes and inserts integrity checking codes by the DPF
pass, and finally links the object codes with the runtime library.

Integrity check based on MPX instructions: As shown in Figure 3(a),
the function bound_set creates bounds at line 4. Since we set the base register
of bndmk instruction as ptr_value, ptr_value is stored in the lower bound
bnd0.LB. As shown in Figure 3(b), when we call bound_assert to check the
integrity of ptr_value loaded from ptr, we firstly load its bounds to bnd0 at
line 15. Then, we move the bonds from bnd0 to the memory space indexed by
the pointer ptr_tmp at line 17, and assign the lower bound to ptr_rst at line 18.
Finally, we compare the loaded pointer value ptr_value with the lower bound
at line 22. If a mismatch is detected between them, the control transfers to the
error_lable() function.

Runtime library: As described in the above paragraph, the bound_set()
function and bound_assert() function are added as intrinsic function calls. We
implement these functions into a runtime library. Besides these integrity checking

Stateful Forward-Edge CFI Enforcement with Intel MPX 7

1 __MPX_INLINE void __llvm__bound_set (void **ptr, void *ptr_value){
2 unitprt_t offset;
3 offset = 4;
4 __asm__ __volatile__ (bndmk (% 2, % 1), %% bnd0\n\t
5 bndstx %% bnd0, (% 0, % 2)
6 :
7 : r (ptr), r (offset), r (ptr_value)
8 : % bnd0)
9 }

10 __MPX_INLINE void __llvm__bound_assert (void **ptr, void *ptr_value){
11 __llvm__bounds bounds;
12 __llvm__bounds* ptr_tmp;
13 ptr_tmp = &bounds;
14 int ptr_rst;
15 __asm__ __volatile__ (bndldx (% 1, % 2), %% bnd0\n\t
16 mov %3, %% rax\n\t
17 bndmov %%bnd0, (%% rax)\n\t
18 mov (%% rax), %0
19 : =r (ptr_rst)
20 : r (ptr), r (ptr_value), r (ptr_tmp)
21 : % bnd0)
22 if(ptr_rst != ptr_value) error_lable();
23 }

(a)

(b)

Fig. 3: Integrity checks based on MPX instructions.

functions, we also add some functions to initialize the MPX hardware at program
startup. These functions are migrated from the libmpx library of GCC compiler.
We compile these functions into a object file and link with this object file at the
link stage.

DPF pass: We implemented the static analysis and instrumentation as an
optimization pass. The optimization pass operates on the LLVM intermediate re-
presentation (IR), which is a low-level strongly-typed language-independent pro-
gram representation tailored for static analyses and optimization purpose [30].
The LLVM IR is generated from the C/C++ source code by clang, which pre-
serves most of the type information that is required in our analysis. When
our stateful mechanism is applied, the DPF pass works as the following: (1)
DPF pass performs type based static analysis to identify any pointers that are
control-transfer related. As shown in Figure 1, control-transfer related pointers
are pointers to functions, pointers to struct or other composite types which
contain control-transfer related pointers. This method is similar to CPI [41]. (2)
Once the control-transfer related pointers are identified, the DPF pass creates
appropriate function calls to the intrinsic functions. When a value is assigned a
control-transfer related pointers, a call to bound_set is created before the store
instruction. Function bound_set saves the pointer’s value in the shadow memory
in the form of bounds. When a control-transfer related pointers is used2, a call to
bound_assert is created before this instruction. Function bound_assert check
the pointer’s integrity before being used. An example of instrumented codes are
shown in 4.
2 The control-transfer related pointers can be used to call functions, used as function

parameters, used to load pointers and so on.

8 J. Zhang et al.

1 void main(){
2 ...
3 struct students *p_to_s1;
4 struct students **ptr_ps1;
5 p_to_s1 = (struct students *)malloc(sizeof(struct students));
6 bf 18 00 00 00 mov $0x18,%edi
7 e8 94 fe ff ff callq 4004c0 <malloc@plt>
8 e8 cb 17 00 00 callq 4027f0 <__llvm__bound_set>
9 48 89 45 e8 mov %rax,-0x18(%rbp)

10 ...
11 ptr_ps1 = &p_to_s1 ;
12 e8 cb 17 00 00 callq 4027f0 <__llvm__bound_assert>
13 48 8d 45 e8 lea -0x18(%rbp),%rax
14 e8 cb 17 00 00 callq 4027f0 <__llvm__bound_set>
15 48 89 45 f0 mov %rax,-0x10(%rbp)
16 ...
17 (*ptr_ps1)->func_ptr = &func;
18 e8 cb 17 00 00 callq 4027f0 <__llvm__bound_assert>
19 48 8b 45 f0 mov -0x10(%rbp),%rax
20 e8 cb 17 00 00 callq 4027f0 <__llvm__bound_assert>
21 48 8b 00 mov (%rax),%rax
22 e8 cb 17 00 00 callq 4027f0 <__llvm__bound_set>
23 48 c7 40 10 d6 05 40 movq $0x4005d6,0x10(%rax)
24 ...
25 (*ptr_ps1)->func_ptr(a, b);
26 e8 cb 17 00 00 callq 4027f0 <__llvm__bound_assert>
27 48 8b 45 f0 mov -0x10(%rbp),%rax
28 cb 17 00 00 callq 4027f0 <__llvm__bound_assert>
29 48 8b 00 mov (%rax),%rax
30 e8 cb 17 00 00 callq 4027f0 <__llvm__bound_assert>
31 48 8b 40 10 mov 0x10(%rax),%rax
32 ...
33 ff d0 callq *%rax
34 ...
35 }

Fig. 4: An example of our stateful forward-edge CFI enforcement.

6 Evaluation

6.1 Effectiveness Evaluation

To evaluate our mechanism’s effectiveness, we use the RIPE benchmark [31]
which is developed to provide a standard way of testing the coverage of a defense
mechanism against memory errors. This program contains 850 attack forms. Our
experiment is on the Ubuntu 16.04. To make more attacks work, we disabled the
ASLR and compiled it without stack protection and data execution protection.
Even though, many exploits failed because of built-in system protection mecha-
nisms, such as changes in the runtime layout, as well as compatibility issues due
to the usage of newer-version libraries. At last, 64 attacks works. These attacks
can be divided into forward-edge control flow hijacks and backward-edge cont-
rol flow hijacks. After implementing our stateful forward-edge CFI mechanism,
only 6 attacks work. These attacks belong to backward-edge hijack attacks. It is
shown that our mechanism is effective in forward-edge control flow enforcement.

6.2 Performance Evaluation

To evaluate the performance overhead of our protection mechanism, five appli-
cations are selected from the SPEC CPU2006 benchmark suit [32]. As shown in
Table 2, these applications have different fractions of instrumented memory ope-
rations. Their allocated bounds tables and instruction overhead are also shown
in Table 2. These information is obtained by the profiler tool Perf [33]. We

Stateful Forward-Edge CFI Enforcement with Intel MPX 9

re-compile these applications with Low Level Virtual Machine (LLVM) [30] to
apply our stateful protection.

We ran our experiments on an Intel Xeon(R) E3-1280 v5 with 8 cores 3.7GHz
in 64-bit mode with 64GB DRAM. As shown in Figure 5a, the y-axis shows that
the runtime overhead normalized to the baseline, i.e., the native applications
without protection. In average, our protection mechanism incurs 9.1% runtime
degradation. The worst-case is 28.1% for h264ref. On the one hand, the per-
formance overhead can be attributed to the increase in number of instructions
executed in a protected application. Comparing Figure 5a and the IO column in
Table 2, there is a strong correlation between them. As expected, hmmer, which
has the least instructions increase, has ignorable performance overhead. h264ref,
which has the most instructions increase, has the worst performance overhead.
On the other hand, the performance overhead can be partially attributed to the
lower hit rate. Figure 5b shows the impact of our instrumentation on the data
cache hit rate. As seen from the figure, most of protected applications have lower
data cache hit rate. The exception is hmmer, which has ignorable instrumented
memory operations.

Table 2: Statistics for the selected applications: FMON represents the fraction of
memory operations instrumented; NBT represents the bounds tables allocated
for each application; IO represents the instruction overhead normalized to the
baseline.

FMOI NBT IO
401.bzip2 0.25% 1 9.49%
403.gcc 2.54% 129 17.12%
456.hmmer ≈ 0 1 ≈ 0
464.h264ref 2.42% 18 33.83%
482.sphinx3 0.06% 2 0.20%

7 Related Work

7.1 Control-Flow Integrity
CFI is proposed by Abadi et al. in 2005 [11]. It restricts the control-transfers
along the edge of the program’s predefined CFG. The initial implementation of
CFI instruments software with runtime label checks to ensure the source and
destination of indirect control transfer have the same label. As frequently called
function might have a large set of valid target addresses, CFI is generally coupled
with a protected shadow stack to ensure backward-edge CFI [13]. Researchers
mainly focus on two CFI enforcement techniques: software-based and hardware-
assisted mechansims.

Software-based approaches. Software-based CFI approaches enforce the
CFI policies by instrument the source code or legacy binaries. This can be done

10 J. Zhang et al.

0

0.05

0.1

0.15

0.2

0.25

0.3

401.bzip2 403.gcc 456.hmmer 464.h264ref 482.sphinx3 Average

Pe
rf

or
m

an
ce

 O
ve

rh
ea

d

(a)

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

401.bzip2 403.gcc 456.hmmer 464.h264ref 482.sphinx3

Ca
ch

e
hi

ts
 (w

.r
.t

 a
ll

in
st

ru
ct

io
ns

)

L1 hits L2 hits LLC hits

0

0.05

0.1

0.15

0.2

0.25

0.3

401.bzip2 403.gcc 456.hmmer 464.h264ref 482.sphinx3 Average

Pe
rf

or
m

an
ce

 O
ve

rh
ea

d

(b)

Fig. 5: (a) Performance overhead of our stateful forward-edge CFI mechanism.
(b) CPU cache behavior of baseline (bar on the left) and our stateful forward-
edge CFI mecahnism (bar on the right).

as part of a compiler optimization pass or binary rewriting. For the compiler-
based approaches [20,21,16,35,36,37], the type information is used to abstract
the indirect control transfer targets. Now, the LLVM includes an implementa-
tion of a number of CFI schemes [34]. Ge et al. [21] leveraged LLVM to enforce
fine-grained CFI for FreeBSD and MINIX kernels. The binary rewriting appro-
aches [11,18,19,38,39,40] derive the CFI policy directly form binaries and insert
checks for CFI policies enforcement. While software-based approaches are ef-
fective in enforcing CFI, they have to make a tradeoff between efficiency and
precision.

Hardware-assisted protection. To reduce the performance overhead of
software-based approaches, several hardware-assisted CFI approaches have been
designed. New CFI instructions and hardware-based shadow stack are introduce
to accelerate label checking on each indirect branch [42,42,43,44]. Intel have ad-
ded the CFI instructions and shadow stack into their Instruction Set Architecture
(ISA) [45]. kBounder [46] and PathARmor [47] utilize the Last Branch Record
(LBR) feature to build CFI defense. CFIMon [48] leverages Branch Trace Store
(BTS) to record control transfers and implement CFI checks. However, these ap-
proaches only implement coarse-grained security policies. To enforce fine-grained
CFI, CFIGuard [49] proposes to combine the LBR with the Performance Monito-
ring Unit (PMU). By program the PMU to trigger an interrupt when the LBR
stack is full, CFIGuard could check all executed indirect branches. However,
CFIGuard incurs much runtime overhead because of the frequently generated
interrupts. FlowGuard [50], GRIFFIN [51] and PT-CFI [52] leverage the Intel
Processor Trace (PT) to record the execution trace of a monitored program and
perform online control-flow checks based on the offline CFI policies. One advan-
tage of these work is that they are capable of enforcing a variety of stateful CFI
policies over unmodified binaries. Comparing to the above hardware-assisted me-
chanisms, our mechanism reuses the MPX to enforce stateful forward-edge CFI,
which do not need to construct the CFG and offline trains.

Stateful Forward-Edge CFI Enforcement with Intel MPX 11

7.2 Code Pointer Integrity

Memory errors are the root of control-flow hijack attacks. Though many of me-
mory safety mechanisms have been designed, they have not been widely adapted
by industry for their high runtime overhead. Kuznetsov et al. [41] propose the
Code Pointer Integrity (CPI) mechanism based on the observe that integrity
guarantee of code pointers is sufficient to prevent control-flow hijack attacks.
They implement CPI by storing sensitive pointers in an isolated memory region,
and further use the runtime information (such as bounds of pointers) to check the
validation of pointer dereference. There are a large body of research leveraging
cryptography to provide security for code pointers. Tuck et al. [53] protect the
pointer by encrypting the stored value. Their work is designed to protection from
buffer overflow and cannot prevent code-reuse attacks. To prevent code-reuse
attacks, Cryptographic CFI (CCFI) [16] uses MACs to check the integrity of in-
direct control-transfer targets. As the MACs contain more runtime information
than the encrypted pointers, CCFI provides CFI protection efficiently. Recently,
ARM announced the ARMv8.3-A architecture added a pointer integrity mecha-
nism, called Pointer Authentication (PA) [54]. Similar to CCFI, PA use short
cryptographic MACs to verify the integrity of pointers. Essentially, we enforce
forward-edge CFI by guarantee the integrity of control-transfer related pointers.
Different form these CPI mechanisms, we compares one control-transfer related
pointer with its copy to verify its integrity. This method is similar to shadow
stack. Furthermore, we leverage Intel MPX to facility the integrity checking.

8 Conclusions

This paper presents an efficient stateful forward-edge mechanism based on Intel
MPX. We guarantee the integrity of control-transfer related pointers by storing
these pointers into shadow memory, which is managed by OS and accessed by
the MPX bndstx and bndldx instructions. To implement our method based on
MPX, we design a LLVM pass to identify the control-transfer related pointers
and instrument the source code. We also develop a runtime library to facility
the instrumentation and initialize the MPX hardware. Our evaluation results
show that our method is effective in enforcing forward-edge CFI, while incurring
acceptable performance overhead.

References

1. Shacham, H.:The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In: ACM 14th Conference on Computer and Communi-
cations Security (CCS 2007), p.552-561 (2007)

2. Hund, R., Holz, T., Freiling, F. C.: Return-oriented rootkits: Bypassing kernel code
integrity protection mechanisms. In: USENIX 18th Security Symposium (SEC2009),
p.383-398 (2009)

12 J. Zhang et al.

3. Bletsch, T., Jiang, X., Freeh, V. W., Liang, Z.: Jump-oriented programming: A new
class of code-reuse attack. In: ACM 6th Symposium on Information, Computer and
Communications Security (ASIACCS), p.30-40 (2011)

4. Schuster, F., Tendyck, T., Liebchen, C., Davi, L., Sadeghi, A. R., Holz, T.: Counter-
feit object-oriented programming: On the difficulty of preventing code reuse attacks
in C++ applications. In: IEEE 36th Symposium on Security and Privacy (S&P
2015), p.745-762 (2015)

5. Carlini, N., Wagner, D.: Rop is still dangerous: Breaking modern defenses. In: USE-
NIX 23rd Security Symposium (SEC 2014), p.385-399 (2014)

6. Szekeres, L., Payer, M., Wei, T., Song, D.: SoK: Eternal War in Memory. In: IEEE
34th Symposium on Security and Privacy (S&P 2013), p.48-62 (2013)

7. Victor, V., Nitish, D., Lorenzo, C., Herbert, B.: Memory Errors: The Past, the
Present, and the Future. In: ACM 15th International Conference on Research in
Attacks, Intrusions, and Defenses (RAID 2012), p.86-106 (2012)

8. Cowan, C., Pu, C., Maier, D., Hintony, H., Walpole, J., Bakke, P., Beattie, S., Grier,
A., Wagle, P., Zhang, Q.: Stackguard: Automatic adaptive detection and prevention
of buffer-overflow attacks. In: USENIX 7th Security Symposium (SEC 1998), P.63-
78 (1998)

9. LNCS Microsoft Corporation: Data Execution Prevention. https://msdn.
microsoft.com/en-us/library/windows/desktop/aa366553(v=vs.85).

10. Xu, J., Kalbarczyk, Z., Iyer, R. K.: Transparent runtime randomization for security.
In: IEEE 22nd Symposium on Reliable Distributed Systems (SRDS 2003), p.260-269
(2003)

11. Abadi, M., Budiu, M., Erlingsson, ¨²lfar, Ligatti, J.: Control-flow integrity. In:
ACM 12th Computer and Communications Security (CCS 2005), p.340-353 (2005)

12. Burow, N., Carr, S. A., Nash, J., Larsen, P., Franz, M., Brunthaler, S., Payer,
M.: Control-flow integrity: Precision, security, and performance. In: ACM Comput.
Surv., vol. 50, pp.16:1-16:33 (2017)

13. Carlini, N., Barresi, A., Payer, M., Wagner, D., Gross, T. R.: Control-flow ben-
ding: On the effectiveness of control-flow integrity. In: USENIX 24th Conference on
Security Symposium (SEC 2015), p.161-176 (2015)

14. Evans, I., Long, F., Otgonbaatar, U., Shrobe, H., Rinard, M., Okhravi, H.,
Sidiroglou-Douskos, S.: Control jujutsu: On the weaknesses of fine-grained cont-
rol flow integrity. In: ACM 22nd Conference on Computer and Communications
Security (CCS 2015), p.901-913 (2015)

15. Conti, M., Crane, S., Davi£¬L., Franz, M., Larsen, P., Negro, M., Liebchen, C.,
Qunaibit, M., Sadeghi, A.-R.: Losing control: On the effectiveness of control-flow
integrity under stack attacks. In: ACM 22nd Conference on Computer and Com-
munications Security (CCS 2015), p.952-963 (2015)

16. Mashtizadeh, A. J., Bittau, A., Boneh, D., Mazi¨¨res, D.: Ccfi: Cryptographically
enforced control flow integrity. In: ACM 22nd Conference on Computer and Com-
munications Security (CCS 2015), p.941-951 (2015)

17. Zhang, J., Hou, R., Fan, J., Liu, K., Zhang, L., A.McKee, S.: Raguard: A hardware
based mechanism for backward-edge control-flow integrity. In: ACM Computing
Frontiers Conference (CF 2017), p.27-34 (2017)

18. Zhang, M., Sekar, R.: Control flow integrity for cots binaries. In: USENIX 22th
Conference on Security (SEC 2013), p.337-352 (2013)

19. Zhang, C., Wei, T., Chen, Z., Duan, L., Szekeres, L., McCamant, S., Song, D.,
Zou, W.: Practical control flow integrity and randomization for binary executables.
In: IEEE 34th Symposium on Security and Privacy (S&P 2013), p.559-573 (2013)

https://msdn.microsoft.com/en-us/library/windows/desktop/aa366553(v=vs.85)
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366553(v=vs.85)

Stateful Forward-Edge CFI Enforcement with Intel MPX 13

20. Tice, C., Roeder, T., Collingbourne, P., Checkoway, S., Erlingsson, ¨²., Lozano, L.,
Pike, G.: Enforcing forward-edge control-flow integrity GCC & LLVM. In: USENIX
23rd Security Symposium (SEC 2014), p.941-954 (2014)

21. Ge, X., Talele, N., Payer, M., Jaeger, T.: Fine-grained control-flow integrity for
kernel software. In: IEEE 1st European Symposium on Security and Privacy (Eu-
roS&P), p.179-194 (2016)

22. Devietti, J., Blundell, C., Martin, M. M. K., Zdancewic, S.: Hardbound: Archi-
tectural support for spatial safety of the c programming language. In: ACM 13th
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2008), p.103-114 (2008)

23. Nagarakatte, s., Zhao, J., Martin, M. M., Zdancewic.: Softbound: Highly compa-
tible and complete spatial memory safety for c. In: ACM 30th SIGPLAN Confe-
rence on Programming Language Design and Implementation on proceedings (2009
PLDI), pp. 245–258. ACM, Dulin, Ireland (2010)

24. Nagarakatte, S., Martin, M. M. K., Zdancewic, S.: Watchdoglite: Hardware-
accelerated compiler-based pointer checking. In: Annual IEEE/ACM International
Symposium on Code Generation and Optimization (CGO 2014), p.175-184 (2014)

25. Intel Corporation: Intel Memory Protection Extensions Enabling Guide.
https://software.intel.com/sites/default/files/managed/9d/f6/Intel_
MPX_EnablingGuide.pdf.

26. Intel Corporation: Intel memory ptrotection extensions. Intel 64 and IA-32 Archi-
tectures Software Developer¡¯s Manual, vol. 1, chap. 17 (2017)

27. Oleksenko, O., Kuvaiskii, D., Bhatotia, P., Felber, P., Fetzer, C.: Intel MPX ex-
plained: An empirical study of intel MPX and software-based bounds checking ap-
proaches. In: Arxiv CoRR, vol. abs/1702.00719 (2017)

28. GCC Wiki: Intel Memory Protection Extensions (Intel MPX) support in
the GCC compiler. https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%
20the%20GCC%20compiler

29. gcc-mirror. https://github.com/gcc-mirror/gcc/tree/master/libmpx
30. The LLVM Compiler Infrastructure. http://llvm.org/.
31. , Wilander, J., Nikiforakis, N., Younan, Y., Kamkar, M., Joosen, W.: RIPE: Run-

time Intrusion Prevention Evaluator. In: Proceedings of the 27th Annual Computer
Security Applications Conference (ACSAC 2011). p.41–50 (2011)

32. SPEC CPU2006 Benchmark. http://www.spec.org/cpu2006/.
33. Linux kernel profiling with perf. https://perf.wiki.kernel.org/index.php/

Tutorial.
34. Clang 7 documentation:Control Flow Integrity. https://clang.llvm.org/docs/

ControlFlowIntegrity.html.
35. , Wang, Z., Jiang, X.: HyperSafe: A Lightweight Approach to Provide Lifetime

Hypervisor Control-Flow Integrity. In: Proceedings of the 2010 IEEE Symposium
on Security and Privacy (S&P 2010). p.380–395 (2010)

36. , Niu, B., Tan, G.: Modular Control-flow Integrity. In: Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(OSDI 2014). p.577–587 (2014)

37. , Niu, B., Tan, G.: Per-Input Control-Flow Integrity. In: Proceedings of the 22Nd
ACM SIGSAC Conference on Computer and Communications Security (CCS 2015).
p.914–926 (2015)

38. , Payer, M., Barresi, A., Gross, T. R.: Fine-grained control-?ow integrity through
binary hardening. In: Proceedings of the 12th International Conference on Detection
of Intrusions and Malware, and Vulnerability (DIMVA 2015). p.144–164 (2015)

https://software.intel.com/sites/default/files/managed/9d/f6/Intel_MPX_EnablingGuide.pdf
https://software.intel.com/sites/default/files/managed/9d/f6/Intel_MPX_EnablingGuide.pdf
https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler
https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler
https://github.com/gcc-mirror/gcc/tree/master/libmpx
http://llvm.org/
http://www.spec.org/cpu2006/
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html

14 J. Zhang et al.

39. , Mohan, V., Larsen, P., Brunthaler, S., Hamlen, K. W., Franz, M.: Opaque
Control-Flow Integrity. In: Proceedings of The 2015 Network and Distributed Sy-
stem Security Symposium (NDSS 2015).

40. , Elsabagh, M., Fleck, D., Stavrou, A.: Strict Virtual Call Integrity Checking for
C++ Binaries. In: Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security (ASIA CCS 2015).

41. Kuznetsov, V., Szekeres, L., Payer, M., Candea, G., Sekar, R., Song, D.: Code-
pointer integrity. In: USENIX 11th Conference on Operating Systems Design and
Implementation (OSDI 2014), p.147-163 (2014)

42. Davi, L., Hanreich, M., Paul, D., Sadeghi, A. R., Koeberl, P., Sullivan, D., Arias,
O., Jin, Y.: HAFIX: Hardware-Assisted Flow Integrity eXtension. In: Proceedings
of the 52nd ACM/EDAC/IEEE Design Automation Conference (DAC 2015), p.1-6
(2015)

43. Sullivan, D., Arias, O., Davi, L., Larsen, P., Sadeghi, A.-R., Jin, Y.: Strategy Wit-
hout Tactics: Policy-agnostic Hardware-enhanced Control-flow Integrity. In: Procee-
dings of the 53rd Annual Design Automation Conference (DAC 2016), p.163:1-163:6
(2016)

44. Christoulakis, N., Christou, G., Athanasopoulos, E., Ioannidis, S.: HCFI:
Hardware-enforced Control-Flow Integrity. In: Proceedings of the 6th ACM Con-
ference on Data and Application Security and Privacy (CODASPY 2016), p.38-49
(2016)

45. Intel Corporation: Control-flow enforcement technology preview. https:
//software.intel.com/sites/default/files/managed/4d/2a/control-flow-
enforcement-technology-preview.pdf.

46. Pappas V., Polychronakis M., Keromytis A. D.: Transparent ROP Exploit Mitiga-
tion Using Indirect Branch Tracing. In: Proceedings of the 22nd USENIX Security
Symposium (USENIX Security 2013).

47. , van der Veen, V., Andriesse, D., Göktaş, E., Gras, B., Sambuc , L., Slowinska,
A., Bos, H., Giuffrida, C.: Practical Context-Sensitive CFI. In: Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security (CCS
2015). p.927–940 (2015)

48. , Xia Y., Liu Y., Chen H., Zang, B.: CFIMon: Detecting violation of control flow
integrity using performance counters. In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security (CCS 2015). p.1–12 (2012)

49. , Yuan, P., Zeng, Q., Ding, X.: Hardware-assisted ?negrained code-reuse attack
detection. In: Proceedings of the 18th International Symposium on Research in
Attacks, Intrusions, and Defenses (RAID 2015). p.66–85 (2015)

50. , Liu, Y., Shi, P., Wang, X., Chen, H., Zang, B., Guan, H.: Transparent and Ef-
ficient CFI Enforcement with Intel Processor Trace. In: 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA 2017). p.529–540
(2017)

51. , Ge, X., Cui, W., Jaeger, T.: GRIFFIN: Guarding Control Flows Using Intel
Processor Trace. In: Proceedings of the 22nd International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS 2017).
p.585–598 (2017)

52. , Gu, Y., Zhao, Q., Zhang, Y., Lin, Z.: PT-CFI: Transparent Backward-Edge Con-
trol Flow Violation Detection Using Intel Processor Trace. In: Proceedings of the
7th ACM on Conference on Data and Application Security and Privacy (CODASPY
2017). p.173–184 (2017)

https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf

Stateful Forward-Edge CFI Enforcement with Intel MPX 15

53. , Tuck, N., Calder, B., Varghese, G.: Hardware and Binary Modification Support for
Code Pointer Protection From Buffer Overflow. In: Proceedings of the 37th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO 2004). p.209–
220 (2004)

54. Qualcomm Technologies, Inc: Pointer Authentication on ARMv8.3. file:
///E:/beifeng/code%20reuse%20attack/PointerAuthentication/whitepaper-
pointer-authentication-on-armv8-3.pdf.

file:///E:/beifeng/code%20reuse%20attack/PointerAuthentication/whitepaper-pointer-authentication-on-armv8-3.pdf
file:///E:/beifeng/code%20reuse%20attack/PointerAuthentication/whitepaper-pointer-authentication-on-armv8-3.pdf
file:///E:/beifeng/code%20reuse%20attack/PointerAuthentication/whitepaper-pointer-authentication-on-armv8-3.pdf

	Stateful Forward-Edge CFI Enforcement with Intel MPX

