
Transplantable CANopen Master Based on
Non-preemptive Task Scheduler*

Wei Song, Shizhen Yan, Zhe Xu, and Suiming Fang
College of Electronic Information and Control Engineering

Beijing University of Technology
100 Ping Le Yuan, Beijing 100022, P.R.China

{benjaminweber, shizhenyan}@emails.bjut.edu.cn, {xu2002, suiming}@bjut.edu.cn

 Abstract – Since CANopen master is required to run real-
timely, concurrently and dynamically, multi-task solution
is a feasible choice. An ANSI C non-preemptive task
scheduler is proposed, and then a transplantable and
standard compatible CANopen master is implemented.
Experimental results show that CANopen master based on
non-preemptive scheduler meets timing constraints of
internal control system of hybrid electric vehicles.

 Index Terms – Controller Area Network (CAN), real-time
scheduling, distribute real-time system, embedded systems.

I. INTRODUCTION

 CANopen is an application layer protocol based on the
Controller Area Network (CAN) serial bus system [1]. It
provides several promising features. A detailed defined group
of entries − object dictionary (OD) is the kernel of CANopen.
Every node in CANopen network possesses an OD in which
all communication parameters and processing data are stored.
Service data object (SDO) defines a communication by which
a node can read or write OD entries of other nodes, a way to
configure network. Process data object (PDO) provides a real-
time and synchronous means to exchange data among nodes.
Besides, CANopen defines synchronisation object (SYNC)
and timer object to synchronize all nodes, and network
management (NMT) messages to control and trace node
statuses.
 Since CANopen is partially free of charge and easy to be
applied into industrial control systems, it has been widely
employed in numerous applications equipped with internal
control networks. Especially, the CANopen network is
expected to be used in the internal control system of the
hybrid electric vehicle (HEV).

II. TASK SCHEDULER

A. Field Requirements of CANopen Master
 CANopen master is the master node performing a
combined role of NMT master, SYNC producer, time
producer, even the SDO manager and configuration manager
[2]. Required by network features, master node runs real-
timely, concurrently and dynamically.
 1) Real-time: According to basic timing specifications in
[1], communication period is measured in microseconds. Also

estimated in [3], data exchange rate requirement for various
modes in HEV control system is of the order of 500
microseconds to one millisecond. Thus, 500 microseconds is
the foreseeable minimal communication period.
 2) Concurrency: Fulfilling the role of several managers in
CANopen network, master node processes SDO, PDO and
NMT messages from all slave nodes simultaneously. During
network boot-up stage, master node paralleled launches boot-
up check for each slave node [2]. Under operational mode,
arrivals of PDOs are randomized by their transmission types,
and this randomization causes message bursts and system
variable jitters [4]. Although some message scheduling
algorithms [4, 5] have been proposed to alleviate these
problems, they intensely rely on the processing capability of
concurrent messages.
 3) Dynamic Adjustment: Unlike slave nodes, master node
has no foresight of the number of SDO and PDO pairs
required. A new entering node or a new PDO pair configured
by high-level control software definitely change the PDO and
SDO pairs during run-time. Therefore, undefined number of
slave nodes and run-time configurations make the dynamic
run-time adjustment a must.

B. Method of Task Scheduling
 Common operating systems use thread scheduling to meet
task response deadlines [6]. The thread naturally depicts a
processor for an event. Besides, it is easy to add new threads
into system. However, some schedulers provided by common
operating systems do not satisfy timing requirements, one
message per 500 microseconds. Systems like Linux and
Windows do not support microsecond level scheduling.
Besides timing issues, it is extremely complicated to
transplant a multi-thread program from one operating system
to another, while master node in HEV system can reside on
different platforms under different conditions, e.g. it can be
sited in the central monitor running WinCE, or in the vehicle’s
central controller without an operating system.
 Hence, a task scheduler implemented by pure ANSI C is
proposed. Because this scheduler only uses ANSI C, it runs on
any platforms that provide C compiler. Besides, it merely
realizes the CANopen related features, thus it runs faster than
normal scheduling algorithms. Admittedly, a manually
designed scheduler increases coding burden and it is almost
impossible to build preemptive scheduling methods without

* This work is supported by combined grand from Beijing Education Committee and Beijing Science Foundation #KZ20041000501.

the help of assembling languages. Nevertheless, following
part of this paper will prove that, CANopen master calls for
simple scheduling algorithms and structures. Meanwhile, the
non-preemptive scheduler meets timing requirements.

C. Task Object
 The basic idea in task scheduler is enclosing an event
procedure into a data structure, which can be inserted into and
deleted from queues, like the task_struct in Linux [7]. Here,
it is called task object
 Task object comprises of necessary components to
implement a minimal scheduler. Fig. 1 provides the detailed
definition.

Fig. 1 Definition of task object

 1) Priority: Task object provides eight different priorities,
from the highest “0” to lowest “7”, stored in runPrio. They
tightly relate to the event types.

TABLE I
DEFINITION OF PRIORITIES

Priority Type of Task
0 CAN driver and SYNC Producer
1 PDO message distributor
2 PDO processor
3 SDO message distributor
4 SDO Processor
5 NMT Error Control distributor
6 Heart beat and node guard processor
7 User interface

 CANopen is a strictly priority scaled protocol, which can
be derived from the definitions of function identifications [1].
As a result, fixed priorities to different message processors
will keep messages of higher priority always being treated
before messages of lower priority. That is, emergency
messages are directly analyzed by CAN driver, PDO messages
are mapped before SDO messages, and NMT status messages
are checked only other messages are processed.
 2) Trigger: Time and event are two kinds of triggers in
this scheduler.
 Obviously, CANopen especially emphasizes time request.
Every message more or less has its timing constraints, and
some of these constraints are accurate to microsecond. To
avoid overflow, task object defines a 64-bit time stamp
(timeHigh and timeLow) recording the microseconds past
from power up. All time stamps are synchronized to a kernel
timer, and the stamp of every task object blocked in waiting
queue represents the resume time in future. Therefore, by
comparing stamps in waiting queue with kernel timer,

scheduler moves resumed tasks from waiting queue to
runnable queue, only one accurate timer is required.
 Event is the other trigger. Commercial operating systems
define events by complex structures, even assembling
languages. To avoid the transplanting issues brought by
assembling languages, task object uses a pointer runEvent to
represent events. When the number runEvent pointing to is
non-zero, event is set, and task is triggered. Admittedly, this
method cannot trigger tasks immediately after events, but pure
ANSI C cannot implement a preemptive scheduler either. The
non-preemptive method does not need immediate triggers.
 Both time stamp or event can trigger a task. Combining
them, this scheduler realizes conditional triggers like cycled
run, waiting an outside event, mutual synchronization between
tasks, and timeout when waiting for an event.
 3) Task Function and Data Space: In every task object,
pFun points to the function executing the task. Meanwhile,
since scheduler may block tasks waiting for next trigger, task
function needs its own exclusive data space to save its
involatile data, an integer group Argu.
 4) Doubly Linked List: Like Linux kernel [7], task object
uses the doubly linked list structure. Since there are numerous
queue operations during scheduling process, and doubly
linked list costs fixed time when adding and deleting nodes, it
saves operating time when task number is huge.

D. Scheduling Algorithm
 There are two important queues in CANopen Master:
waiting queue and runnable queue. Waiting queue is a doubly
linked list, which stores all blocked task objects. Runnable
queue stores all resumed task objects. Once a running task
voluntarily releases or blocks itself, scheduler finds and
launches a task with the highest priority in runnable queue.
 Unlike waiting queue, runnable queue has eight sub-
queues, illustrated in Fig. 2. Every sub-queue stores tasks
objects with the same priority, and corresponding flag
indicates queue’s non-empty. Under this structure, the job of
finding task object with the highest priority is just finding the
first non-empty sub-queue from queue one to queue eight,
then the first task object in this sub-queue is the next task to
run. Demonstrated in [7, 8], as searching time is irrelevant to
the number of task objects in runnable queue, it is an O(1)
algorithm to find next task to run.

Fig. 2 Runnable queue

 However, scheduler needs to scan all task objects in
waiting queue. As mentioned above, triggers are defined by
pRunEvent, timeH and timeL in task objects, and it is

scheduler’s job to move every newly resumed task from
waiting queue to corresponding sub runnable queue.
Scheduler must check the triggers of every task object in
waiting queue. Although several methods are proposed [7, 9-
11] to mix trigger checking and task searching, they induce
huge coding burden which is unnecessary in CANopen.
 The whole scheduling algorithm is shown in Fig. 3.
Firstly MoveTaskToRun() scans all task objects in waiting
queue to move resumed task objects to runnable queue. This is
an O(n) algorithm, while n represents the number of task
objects blocked in waiting queue. Then,
SelectTaskForRun() uses fixed time method finding the next
runTask and executes pFun of it. When task returns,
according to its return value, TASK_WAIT or TASK_OK,
scheduler blocks or releases this task, and then continues the
next scheduling cycle.

Fig. 3 Scheduling algorithm

III. CANOPEN MASTER

A. Processors for Received Messages
 CANopen master uses interruption request (IRQ) function
to receive messages. Part of the flow is presented in Fig. 4.
Items with bold circle are tasks, while items with thin circle
are data structures.
 CANopen has three doubly linked receiving message
queues, RPDO, RSDO and RNMT queues. Non-empty of
these queues will awake their distributors who process the
messages.

M
essage R

eceiver

M
essage FIFO

C
A

N
 R

ecv IR
Q

 Function

Fig. 4 Process flow of receiving messages

 Awaked by non-empty of RPDO queue, PDO distributor
analyzes all RPDO messages. To each PDO message, PDO
distributor compares its communication object identifier
(COB-ID) and that of all RPDO parameters stored in OD. If
there is a match, data in this RPDO are directly mapped into
OD according to mapping parameters.

 SDOs are slightly different. One SDO communication
comprises of a sequence of SDO messages. For each
sequence, CANopen master has an SDO status, in SDO status
queue to record sequence status, and an individual SDO
processor processing messages belong to this sequence.
Therefore, SDO distributor scans all nodes in SDO status
queue to find an existed sequence, and awakes corresponding
SDO processor. If no match in this search, distributor scans
client SDO parameters in OD, and generates new SDO status
and SDO processor. After all, distributor deletes this SDO
message under the condition that no match can be found in
SDO status queue and client SDO parameters.
 As the NMT master in network, CANopen master is in
charge of the slave node status tracing [2]. During initial
process, master builds a node status in node status queue for
each slave known in network. When receiving a NMT
message, NMT distributor scans node status queue to find a
match, and awake corresponding node status processor. In
case the message comes from a new slave, distributor
dynamically generates node status and status processor to boot
up this node and keep tracing.
 Considering the procedure of receiving messages from
IRQ functions and inserting them into three receiving message
queues, atomic process is an important issue. Since IRQ stops
CANopen in an uncontrollable manner, and deleting or
inserting a node in doubly linked list is not an atomic
operation, directly inserting messages into receiving queues
by IRQ functions could damage the queue structure.
Therefore, procedure of message receiving and queue
inserting are divided into two parts. IRQ function only
receives messages from CAN controller. Message receiver
task analyzes these messages and inserts them into receiving
queues. IRQ function and message receiver are connected by a
message FIFO.

B. Processors to Transmit Messages
 CANopen master sends five kinds of messages: SYNC,
acyclic TPDO, cycled TPDO, TSDO and TNMT messages.
Specially, only during synchronous window can cycled TPDO
be transmitted, while acyclic PDO is transmitted whenever an
event happens. Master only send TNMT message requesting
node status under node guard protocol. Indicated by different
COB-ID groups, messages are priority scaled. In particular,
SYNC message is sent before any other messages, and remote
requests for node status can only be sent when no other
messages are waiting. There are five transmitting queues in
CANopen master, depicted in Fig. 5.
 Non-empty of any transmitting queue awakes message
sender task. According the underlying priories, message
sender guarantees messages of lower priority waiting in queue
before transmission of messages in higher priority queues.
However, the only exception is cycled TPDOs. Outside
synchronous window, message sender does not check the
cycled TPDO queue. As cycled TPDOs may stay in queue,
SYNC producer task awakes message sender every
communication period, ensuring the transmission of cycled
TPDOs left in queue. Meanwhile, message sender uses

transmission IRQ. IRQ function always awakes message
sender after a transmission until empty of all five transmitting
queues.

SYNC Queue

Acyclic
TPDO Queue

Cycled
TPDO Queue

TSDO Queue

TNMT Queue

SYNC Producer

Transmission PDO
Processor

SDO Processor

Node Status Processor
Fig. 5 Flow of sending messages

C. SYNC producer
 SYNC producer generates SYNC message periodically.
Fig. 6 explains the algorithm of SYNCProducer().

char SYNCProducer(TaskObj)
state = TaskObj.Argu[0]; // read current state
switch(state)
case INIT: // initial parameters

cobID = GetODEntry(0x1005,0);
syncPeriod = GetODEntry(0x1006,0);
syncWin = GetODEntry(0x1007,0);
if(syncPeriod > 0) // SYNC enabled

SetWait(syncPeriod); // wait for a SYNC period
TaskObj.Argu[0] = GEN_SYNC;

else // SYNC disabled
SetWait(INFINITE); // block task forever

end;
return TASK_WAIT;

case GEN_SYNC: // generate SYNC
 sendSYNC(); // send a SYNC message

Global.SYNCWinFlag = 1; // set global flag
 TriggerPDO(); // update SYNC counters
 TriggerMsgSender(); // awake message sender

if (syncWin<syncPeriod) && (syncWin>0)
SetWait(syncWin); // wait a sync period
TaskObj.Argu[0] = WAIT_WIN;

else // sync window disabled
SetWait(syncPeriod); // wait a sync window
TaskObj.Argu[0] = GEN_SYNC;

end;
return TASK_WAIT;

case WAIT_WIN: // sync window over
Global.SYNCWinFlag = 0; // reset global flag
SetWait(syncPeriod – syncWin); // wait to next sync
TaskObj.Argu[0] = GEN_SYNC;
return TASK_WAIT;

end;

Fig. 6 Algorithm of SYNC producer task

 OD entry 1005h defines the COB-ID of SYNC message,
1006h defines communication period and 1007h defines
synchronous window length. Modifications of OD entries
1005h~1007h reset SYNCProducer to state INIT and make it
to refresh COB-ID, communication period and synchronous
window length. Then, SYNCProducer transfers to state
GEN_SYNC and enter its normal procedure. During state

GEN_SYNC, SYNCProducer sends out SYNC message and
sets global flag SYNCWinFlag. If configuration of
synchronous window is valid, SYNCProducer enters state
WAIT_WIN to reset SYNCWinFlag, which keeps message
sender from sending cycled TPDOs.

D. Transmission PDO processor
 Although received cycled and acyclic PDOs are
processed equally, transmissions are different.
 Every TPDO has a TPDO processor, generated after
configuration of PDO pair. In Fig. 6, SYNCProducer calls
TriggerPDO(), increasing SYNC counter, and waking up
cycled TPDO processors every communication period. Thus,
cycled TPDO processors run every communication period
with updated SYNC counter. When this value equal with or
bigger than PDO transmission type in operational mode,
TPDO processor assembles a new PDO message and send it.
 However, acyclic TPDO is another case. According to
definitions, a modification in OD entry mapped into an acyclic
TPDO immediately results in a new TPDO transmission [1].
Unfortunately, TPDO mapping is a one-direction relationship.
From an OD entry, CANopen master cannot tell the TPDO
mapping the entry without searching all TPDO mapping
parameters. To avoid this time consuming search, a new field
is added into OD entry to record the PDO number if mapped
into an acyclic PDO. Configuration of TPDO is responsible
for initializing this field. Hence, when acyclic TPDO mapped
OD entry changes, CANopen master can directly identify and
awake the related TPDO processor by the PDO number
stored. As a sword has two blades, any modifications of PDO
mapping and transmission type should clear the PDO number
field before set new values, avoiding error triggers to TPDO
processors.

E. SDO processor
 SDO communication is the major method to configure
OD entries in slave nodes. Numerous events launch SDO
communications, such as commands from high-level software,
modifications in OD, or node boot-up sequences.
 To launch an SDO communication, a new SDO processor
and an SDO status are generated and initialized with
communication parameters. SDO processor generates TSDO
messages, uploading or downloading SDO entries, and
analyzes RSDO messages to check the communication results.
SDO status stores the sequence of SDO communication and
helps SDO distributor to find corresponding SDO processor.
 When the SDO communication finished, SDO processor
is responsible for releasing the SDO status, and writing back
result of this communication to the task which launched this
communication.

F. Network management
 As shown in Fig. 4, every slave in network has its own
node status in node status queue, which records node mode
and its node state processor. According to the selection
between heart beat and node guard protocol, node state
processor periodically checks the heart beat messages received
or sends out remote request for node statuses.

 When CANopen master enters pre-operational mode from
power up, all slaves indicated as mandatory node by 1F81h in
OD [2] are booted up by a sequence shown in Fig. 7. Optional
nodes are also tried with this sequence but network can enter
operational mode without them. During operational mode,
arrival of boot-up message also launches this sequence.

Read slave 1000h and
check device type
stored in master 1F84h.

Read slave 1017h to
check the heart beat
support.

Support
heart beat?

Generate node status,
rewrite heart beat time
and start heart beat.

Generate node status,
and start node guard.

Heart beat
correct?

Node guard
correct?

Inform high level
the entering of
node.

Error in
boot-up.

N

N

N

Y

Y

Y

Fig. 7 Simplified boot-up check sequence

 However, this is a simplified boot up sequence compared
to that defined in [2]. Functions like software version
checking and program downloading are not implemented,
currently unnecessary in HEV system.

IV. PERFORMANCE

A. Capability for Transplanting
 Although major part of CANopen master is coded in
ANSI C, three parts require modification during transplanting:
driver for CAN controller, implementation of a microsecond
timer, and interface with high-level software.
 On operating system supported platform, driver for CAN
controller, task scheduler, and high-level software run as three
threads. Priority of scheduler is higher than high level
software but lower than driver. Tasks for CANopen are
scheduled as sub thread in a system level thread. However, the
scheduling algorithm of operating system could compromise
real-time performance of CANopen. Scheduler should try to
sleep at preferred uncritical time, reducing the probability of
being unexpectedly blocked by operating system. Therefore,
function MoveTaskToRun() in Fig. 3 is modified to return
the maximal allowable sleep time. When runnable queue is
empty, scheduler is allowable to sleep this time without
performance degradation.
 When no operating system, driver for CAN controller
runs in IRQ function as mentioned. However, the high-level
software may run along with CANopen master in the form of
task or on other processors by communication of UART of

ether net. Therefore, interface with high-level software is a
communication interface.

B. Real-time Performance
 Latency from releasing last task to launching new task is
scheduling time. Test results of scheduling time under
different platforms are described in Table II.

TABLE II
SCHEDULING TIME PERFORMANCE

Platform Clock
Frequency

Average
Scheduling Time

Pentium 4 3.0GHz 2.28μs
ARM7 LPC2294 44.2368MHz 12.63μs

 As a non-preemptive scheduler, scheduling time cannot
fully define response time. As mentioned, the highest
exchanging rate in HEV system is once per 500 microseconds;
therefore, the maximal number of receiving PDO processed in
a communication period determines the real-time
performance. Shown in Fig.8, even on ARM7 with the
44.2368MHz main clock, CANopen master can analyze and
map five receiving PDOs in one communication period. In
fact, transmission time for five PDOs on CAN bus may
already exceed 500 microseconds, and system is unlikely to
require the updates of all PDOs every communication period.
Therefore, CANopen master meets the timing requirements of
HEV control system.

200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

45

50

55

60

Communication Period (microseconds)

 ARM7 LPC2294
 Pentium4 Windows

Fig.8 RPDO processed in one communication period

C. Standard Conformance
 Table III provides the detailed conformance. Since the
use of task scheduler, there is no limitation for concurrent
SDO communications and PDO pairs. All CANopen standards
required functions are capable to be implemented in this
master, except for the electronic data sheet (EDS) storage
related functions, which call for support of file system.
However, the EDS storage is not necessary for embedded
control system.

TABLE III
STANDARD CONFORMANCE

Function Description
Node type Master node only.

SYNC Producer.

SDO Unlimited SDO sever and client; normal,
expedited download and upload support.

PDO Unlimited PDO receive and transmit; remote
request, cycled and acyclic PDO support.

NMT Heart beat and node guard support. Automatic
boot up check.

Time Time producer.
Emergency Directly inform high level.

V. CONCLUSION

 In this paper, by analyzing the behaviors of CANopen
network, we maintain that real-time and concurrent processing
along with dynamically run-time adjustment capability are
basic features of CANopen master. Apparently, task scheduler
is a feasible solution. To provide transplanting capability, we
propose a non-preemptive ANSI C task scheduler. This task
scheduler merely implements CANopen related items, utilizes
the scaled runnable queue from Linux kernel, and realizes a
microsecond level non-preemptive O(n) scheduling algorithm.
 Based on this scheduler, we build up a standard
compatible CANopen master which supports unlimited SDO
communication and PDO pairs. Experimental result proves
that this CANopen master meets the timing requirement of
HEV control system.

ACKNOWLEDGMENT

 Authors would like to thank Professor Jianmin Duan who
initialized this research, Mingjie Zhang, Zhuo Zhang, Jinjun
Xiao and Tao Chen who participated into the design work.

REFERENCES
[1] CAN in Automation e. V., CANopen - Application Layer and

Communication Profile, CiA Draft Standard 301, Version 4.0.2, February
2002.

[2] CAN in Automation e. V., CANopen - Framework for CANopen
Managers and Programmable CANopen Devices, CiA Draft Standard
Proposal 302, Version 3.1.2, June 2002.

[3] Renji V Chacko, Dr. Z V Lakaparampil, and Chandrasekar.V, “CAN
based distributed real time controller implementation for hybrid electric
vehicle,” 2005 IEEE Conference on Vehicle Power and Propulsion, pp.
247-251, September 2005.

[4] Junbo W, Bugong X, and Qingyang W, “Analysis and optimization of
message scheduling based on the CANopen protocol,” Proceedings of the
25th Chinese Control Conference, pp. 1815-1819, August 2006.

[5] G. Cena and A. Valenzano, “Efficient polling of devices in CANopen
networks,” Proceedings of the ETFA03 IEEE Conference, pp. 123-130,
September 2003.

[6] Krishna, C.M. and Yann-Hang Lee, “Scanning the issue - special issue on
real-time systems,” Proceedings of the IEEE, vol. 91, pp. 983-985, July
2003.

[7] S. Molloy and P. Honeyman, “Scalable linux scheduling,” Proceedings of
the FREENIX Track: 2001 USENIX Annual Technical Conference, pp.
285-296, June 2001.

[8] R. Love. Linux Kernel Development, Sams Publishing, 2004.
[9] Shlomi Dolev and Alexander Keizelman, “Non-preemptive teal-time

scheduling of multimedia tasks,” Real-Time Systems, vol. 17, pp. 23-29,
July 1999.

[10] Kevin Jeffay, Donald F. Stanat, Charles U. Martel, “On non-preemptive
scheduling of periodic and sporadic tasks,” Proceedings of the Twelfth
IEEE Real-Time Systems Symposium, pp.129-139, December 1991.

[11] Aloysius K. Mok, Wing-Chi Poon, “Non-preemptive robustness under
reduced system load,” 2005 Real-Time Systems Symposium, pp. 1-10,
December 2005.

[12] Robert Love, “Kernel korner: the new work queue interface in the 2.6
kernel,” Linux Journal, vol. 2003, pp. 9, November 2003

[13] Jianmin Duan, Jinjun Xiao, and Mingjie Zhang, “Framework of CANopen
protocol for a hybrid electric vehicle,” 2007 IEEE Intelligent Vehicles
Symposium, in press.

[14] Olaf Pfeiffer, Andrew Ayre, and Christian Keydel, Embedded Networking
with CAN and CANopen, RTC Books, San Clemente, CA, 2003.

[15] J. Roberson, “UlE: A modern scheduler for FreeBSD,” In Proceedings of
BSDCon’03, pp. 17–28, September 2003.

[16] K.M. Zuberi and K.G. Shin, “Non-preemptive scheduling of messages on
controller area network for real-time control applications,” Proc. Real-
Time Technology and Applications Symposium, pp. 240-249, May 1995.

[17] Laurent George, Nicolas Rivierre, Marco Spuri, “Preemptive and non-
preemptive real-time uni-processor scheduling,” Tech. Rep. RR-2966,
INRIA: Institut National de Recherche en Informatique et en
Automatique, 1996.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

