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Preface

We have entered an era of multicore processors as the single-core
performance has reached its ceiling along with the slowing down
of the Moore’s Law. Current mainstream commercial processors,
such as Intel Core and Xeon, and AMD Ryzen and Epyc, are all
multicore processors which contain up to 64 processing cores. In the
foreseeable future, the number of cores in a processor will continue
to increase.

When the number of cores reaches tens to hundreds, a sig-
nificant portion of the total design effort would be dedicated to
making the core-to-core communication speed and energy efficient.
Although currently almost all processors use synchronous on-chip
networks built by synchronous circuits, asynchronous on-chip net-
works may become useful or even necessary in the near future. In
synchronous on-chip networks, the global clock needs to be dis-
tributed over long distances with little clock skew, which becomes
a challenge as the network scales. It is estimated that the clock
tree could consume 20% to 50% of the total power in synchronous
circuits while the synchronous on-chip network could consume 33%
to 36% of total power. To reduce the total power consumption, it
is common to let individual processing cores implemented in their
own clock and power domains, and run at their own clock frequen-
cies dynamically tuned according to real-time work load. In this
scenario, an asynchronous on-chip network might be a better can-
didate than a synchronous one.

This is a book about how to design a high throughput and fault-
tolerant asynchronous on-chip network for multicore and many-
core processors. The state-of-the-art way of designing and optimiz-
ing asynchronous on-chip networks is to mimic the structure of
synchronous on-chip networks. However, the timing division mul-
tiplexing (TDM) techniques extensively utilized in synchronous

xv
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networks introduce extra synchronization and largely increase the
speed penalty in asynchronous on-chip networks. Instead of TDM,
we would like to introduce spatial parallelism into asynchronous
networks to improve their throughput performance without incur-
ring the synchronization penalties.

There is one annoying problem with the asynchronous on-chip
networks built by quasi-delay-insensitive (QDI) circuits: They are
sensitive to faults. A fault does not only corrupt a data packet, it
also obstructs the handshake protocol essentially needed for cor-
rect data transmission, disrupts the normal data flow and may fi-
nally produce a deadlock paralyzing the whole network. The second
half of this book is dedicated to this issue. A fault-tolerant coding
method is proposed to tolerate transient faults. When a deadlock
is caused by a fault, the location of the fault is first accurately
pinpointed using a fault detection circuit and the network is then
functionally resumed by isolating the faulty components.

This book is intended for researchers, engineers and students
who research QDI and speed-independent (SI) circuits, asyn-
chronous on-chip networks and switching networks built on QDI
and SI circuits, fault-tolerant QDI circuits and finally the fault-
tolerant asynchronous on-chip networks.

The organization of the book follows a self-contained manner.
Chapters are carefully ordered in a way that necessary background
knowledge and related topics are introduced and discussed before
an advanced technique is described. Readers can read through the
book without resorting to related research papers and books, but
they are provided in the bibliography for further references.

Introduction provides a context for the topics described in this
book, including our motivation in doing these researches, their ap-
plications in current and future computer systems and the state of
the art in related areas.

Asynchronous Circuits introduces the concept of asynchronous
circuits, the timing assumptions used in different types of asyn-
chronous circuits and the implementation of asynchronous circuits.

Asynchronous Networks-on-Chip describes all the general con-
cepts of on-chip interconnects necessary for understanding this
book. This chapter also introduces asynchronous on-chip networks.
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Optimizing Asynchronous On-Chip Networks improves the
throughput performance of asynchronous on-chip networks by in-
troducing spatial parallelism into the router design.

Fault-Tolerant Asynchronous Circuits begins to analyze the ef-
fect of faults on asynchronous circuits, and presents the state-of-art
fault-tolerant techniques for asynchronous circuits. It shows that
faults not only corrupt data but can also bring down the whole
asynchronous network.

Fault-Tolerant Coding introduces the fault-tolerant encoding
for asynchronous circuits and proposes a fault-tolerance delay-
insensitive redundant check code for QDI interconnections that can
tolerate transient faults.

Deadlock Detection describes how to detect a deadlock caused
by a fault on asynchronous on-chip networks and how to locate the
faulty link. This is the prerequisite for a network to recover from a
fault-caused deadlock.

Deadlock Recovery presents deadlock recovery techniques, in-
cluding an asynchronous router design and on-chip network design
that can recover from a deadlock caused by faults.

Summary concludes the book and introduces the future work.

This book is based on our Ph.D. research work done in the
Advanced Processor Technologies (APT) group in the School of
Computer Science at the University of Manchester. We are greatly
indebted to our supervisors, Dr. Doug Edwards and Dr. Jim Gar-
side. They brought us into the world of asynchronous circuit de-
signs, carefully guided us with their wide knowledge and insight
and constantly encouraged us using their deep passion in research.
We would like to express our gratitude also to the colleagues in the
APT group for their direct and indirect help to this research.

Wei Song and Guangda Zhang
October 2021
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C H A P T E R 1

Introduction

The advancing semiconductor technology makes it possible to in-
tegrate more and more processing cores on a single chip to achieve
continuously increasing chip performance, posing a growing de-
mand for scalable and efficient interconnection. On-chip networks
(OCNs) or Networks-on-Chip (NoCs) have emerged as a promis-
ing candidate to support large-scale on-chip communication. Most
existing NoCs are built synchronously, which could be restricted
by issues induced by the growing clock distribution as the network
scales. As an alternative, event-driven asynchronous circuits which
are controlled by handshake protocols rather than global clocks,
can be employed to implement NoCs. Removing the clock, asyn-
chronous NoCs have many attractive advantages over synchronous
ones.

In the deep sub-micron era, reliability has become a challenge
faced by the scaling electronics. Accompanied with the shrinking
device dimensions, factors like the lowering voltage supply, the in-
creasing clock frequency and the growing density of chips, have
a negative impact on the chip reliability. Electronic systems are
more susceptible to faults. Fault tolerance has become an essential
objective for critical digital systems.

Fault tolerance has been systematically studied in traditional
synchronous NoCs, but rarely in asynchronous ones. Using one
timing-robust class of asynchronous circuits — the quasi-delay-
insensitive (QDI) circuits — to implement the NoC, QDI NoCs can
naturally tolerate delay variation, which is attractive for large-scale
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NoCs. Faults have more complicated and devastated impact on QDI
NoCs compared with synchronous NoCs, which is a challenging is-
sue needed to be resolved. This book talks about the fault-tolerant
on-chip networks implemented by asynchronous circuits, and tar-
gets providing holistic, efficient, resilient and cost-effective fault-
tolerant solutions to asynchronous NoCs.

1.1 ASYNCHRONOUS CIRCUITS

Asynchronous circuits work in a clockless and self-timed manner.
They are designed under certain timing assumptions, which de-
scribe their tolerance to the delay variance of gates and wires.
This book concentrates on one specific timing-robust type of asyn-
chronous circuits, the quasi-delay-insensitive (QDI) circuit, which
tolerates arbitrary positive delay on all gates and wires except for
some forks that are assumed isochronic (wires that have equal la-
tency to all its fanouts). Since its strong tolerance to delay varia-
tion, QDI circuit remains functioning under extreme working con-
ditions, such as sub-threshold supply voltage and ultra low/high
temperature, naturally tolerates process variation which becomes
increasingly troublesome for synchronous circuits, and requires less
static timing analysis than all other types of asynchronous circuits,
not to mention the synchronous ones. In addition, QDI circuit is
presumably low power because it wastes no power on the clock tree
and consumes nearly zero power when it is not actively in use.

Although asynchronous circuits have a long history of over 50
years [163], most very large-scale integration (VLSI) circuits are
synchronous due to the mature electronic design automation (EDA)
support. Since registers and latches in synchronous circuits are syn-
chronized by the global clock, they are the natural timing bound-
aries by which a circuit can be divided into paths. All these paths
are driven by the same clock and operate concurrently and indepen-
dently. EDA tools, especially synthesis tools, are therefore able to
improve speed by optimizing these paths individually. On the other
hand, the latches in asynchronous circuits are driven by handshake
protocols (circuits). The operation of one latch is normally triggered
by events generated from other latches. It is difficult to optimize
the speed of asynchronous circuits due to the lack of clear timing
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boundaries to break large circuits into small analyzable pieces as in
synchronous circuits. Some asynchronous synthesis tools have been
proposed recently, such as Petrify [57] and Balsa [73], to translate
behavioral hardware descriptions into low level netlists. However,
high-speed asynchronous circuits are almost always manually de-
signed [182, 212, 219].

Shrinking transistor geometry brings opportunities for asyn-
chronous circuits. As the number of transistors in a single die in-
creases corresponding to the prediction of Moore’s Law, the area
and power overhead of synchronizing the whole chip with one global
clock is unacceptable and beyond the control of current EDA tools.
Future multicore processors should be globally asynchronous and
locally synchronous (GALS) designs where synchronous intellectual
property (IP) blocks talk with each other using an asynchronous
communication infrastructure. 49% of the global signals will be
driven by asynchronous circuits by the year 2024 [104]. Variation
is another problem. The decreasing transistor size increases power
density which leads to temperature and power variations [98]. Pro-
cess variation worsens the situation with non-deterministic cell la-
tency. The worst case timing analysis in synchronous circuits gener-
ates over-pessimistic speed estimation [31]. Asynchronous circuits
are tolerant to variations and provide average speed performance.

Designing asynchronous circuits is not an easy task compared
with their synchronous counterparts. Without the mature support
of commercial EDA tools, asynchronous circuits are usually fully or
partially manually crafted. For this reason, this book demonstrates
how to design QDI circuits from scratch by describing all imple-
mentations in gate-level Verilog HDL using normal gates available
in any standard cell libraries.

1.2 ASYNCHRONOUS ON-CHIP NETWORKS

Current multicore processors use on-chip networks as their com-
munication fabric. Most networks-on-chip (NoCs) are synchronous
networks where network components are driven by the same or sev-
eral global clocks. Thanks to the timing assumptions allowed by the
global clock and mature EDA tools, these synchronous NoCs are
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fast and area efficient. However, there are several design challenges
in synchronous NoCs that are difficult to resolve:

• Support for heterogeneous networks: Unlike chip multi-
processor (CMP) systems where every network node is a ho-
mogeneous processor element, a multiprocessor system-on-
a-chip (MPSoC) is a heterogeneous system where network
nodes are IP blocks with different functions and hardware
structures. These IP blocks are provided and tested with dif-
ferent clock frequencies, area sizes and even working voltages.
These differences complicate the network topology, compro-
mise the latency performance of synchronous networks and
make chip timing closure difficult to reach.

• Low power consumption: It is crucial to reduce the power con-
sumption of an SoC as it determines the maximum standby
time of a device. The clock tree of synchronous on-chip net-
works consumes a significant amount of energy [153], and it
is getting worse along with the shrinking transistor geometry.

• Tolerance to variation: Process, temperature and voltage
variations affect future sub-micron VLSI designs signifi-
cantly [133, 138]. According to the international technology
roadmap for semiconductors, the delay uncertainty caused
by variations in the sign-off timing closure will reach 32% in
2024 [104]. Traditional static timing analysis is going to be
replaced with statistical timing analysis methods [31] to cope
with the dropping yield rate and the over-conservative tim-
ing estimation. Synchronous on-chip networks alleviate this
effect by considering variations in their task mapping pro-
cedure [138]. However, this works only in homogeneous net-
works and the routers are still working at the worst estimated
speed.

Instead of using synchronous on-chip networks, asynchronous
on-chip networks are a promising solution to the above challenges.
The communication components in an asynchronous on-chip net-
work are built with clockless asynchronous circuits. Data are trans-
mitted according to certain handshake protocols largely insensitive
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to delay variations [231]. Because of this delay insensitivity, the in-
terface between all IP blocks to the global asynchronous on-chip
network is unified by the same synchronous to/from asynchronous
interface. The fact that all synchronous blocks are isolated by the
asynchronous network simplifies chip-level timing closure. Also,
thanks to the delay insensitivity, an asynchronous on-chip network
is naturally tolerant to all variations as the delay uncertainty caused
by these variations cannot affect the function of those handshake
protocols. Finally, since no clock is needed in asynchronous circuits,
an asynchronous on-chip network consumes zero dynamic power
when no data is in transmission.

However, asynchronous networks [11, 22, 28, 67, 75] are often
slower than the synchronous on-chip networks with similar struc-
tures and resources [153]. Although the global clock in synchronous
circuits is power consuming, it is a speed- and area-efficient ap-
proach to synchronize combinational operations. Asynchronous cir-
cuits rely on handshake protocols to control data transmission.
Combinational operations are explicitly detected and guarded to
ensure the insensitivity to delay. The circuits used in detecting
combinational operations introduce area and speed overhead. De-
lay insensitive asynchronous circuits are intrinsically slow.

Another issue is that the state-of-the-art way of designing
asynchronous on-chip networks is to asynchronously reproduce the
structures of synchronous on-chip networks. As synchronous on-
chip networks synchronize data with no speed penalty, timing di-
vision multiplexing (TDM) techniques [58] are extensively utilized.
Simply reproducing such TDM structures in asynchronous on-chip
networks introduces extra completion detection circuits and causes
speed penalties.

Although the speed penalty of completion detection is unavoid-
able, as the promising advantages of asynchronous circuits are de-
rived from those delay insensitive handshake protocols, the scale of
the synchronization in asynchronous circuits can be limited to small
transmission units, such as a single pipeline. The speed penalty is
therefore alleviated. The following question is how to build asyn-
chronous networks with such limited synchronization.

This book introduces techniques to improve network through-
put by employing spatial parallelism in asynchronous on-chip
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networks at different levels. Channel slicing is a new pipeline struc-
ture that alleviates the speed penalty of synchronization by re-
moving it in bit-level data pipelines. It is also possible to further
improve speed using the lookahead pipeline style if the QDI timing
assumption is slightly relaxed. Spatial division multiplexing (SDM)
is a flow control method that improves network throughput by re-
moving the synchronization between flits of different packets, which
is required by TDM methods on the contrary. The main cost of us-
ing SDM is a significantly increased crossbar inside each router. To
reduce this area overhead, the crossbar can be replaced with novel
switch structures, such as a novel 2-stage Clos switch dynamically
reconfigured by an asynchronous dispatching algorithm.

1.3 FAULT-TOLERANT ASYNCHRONOUS ON-CHIP
NETWORKS

On one hand, the advancing semiconductor technology boosts the
chip performance and permits more processing cores to be inte-
grated. On the other hand, accompanied with the shrinking device
dimensions, all of the factors like the lowering power voltage, the
increasing clock frequency and the growing density of chip impose
a negative impact on the chip reliability [37].

In the deep sub-micron era, variations in manufacturing and op-
erating conditions have a proportionately greater effect than before.
Shrinking transistor dimensions means that variations in the actual
manufacturing, such as dopant levels and crystal boundaries, influ-
ence transistor and wire properties with time [37]. Growing chip
density results in a high heat flux across the die, creates hot spots
with a high temperature, which affects the circuit performance and
accelerates the device aging process. Reducing supplying voltage
gives greater susceptibility to various noise sources [37, 56]. In-
creasing clock frequency raises the probability that noise creates
faults on circuits. As a result, the sensitivity of electronic devices
to environmental variations is significantly increased and the device
aging process is accelerated.

It has been reported that the mean values of soft error rate
(SER) of three circuits under a 40 nm process are 2.2E-4 FIT, 4.7E-
4 FIT and 1.2E-4 FIT, respectively (1 FIT = 1 fail per 1 billion



Introduction � 7

hours) [257]. The 24 MByte of Level 3 Cache in an Intel Processor
encountered 0.2∼2 errors per year under the SER of 0.0001∼0.001
FIT/bit [221]. An SER in the order of 0.001 FIT/bit has also been
observed on the Altitude SEE test European platform [10]. It was
predicted that the SER per logic state bit could increase 8% in each
technology generation [95]. The SER in static random-access mem-
ory would increase 6∼7× from 130 nm to 22 nm process [102]. In
65 nm technology, the radiation can cause a 6.45× increase in SER
when the supply voltage decreases from 1.0 V to 0.33 V [187]. It
is believed that both the SER and the aging speed would increase
as the technology continues scaling [37, 56, 84, 173]. Although re-
searchers disagree on the absolute number of faults in particular
circuits on particular processes, they all agree that the trend is for
faults to increase as processes shrink. Electronic systems are more
susceptible to faults [18], including transient, intermittent and per-
manent faults depending period of lasting [162]. The 2015 ITRS
takes reliability as one main challenge faced by the next generation
electronics and stresses the importance of a runtime protection [39].
Consequently, fault tolerance has become an essential design objec-
tive for critical digital systems, especially in highly specialized fields
such as aerospace, military and medical equipment.

The fault tolerance of synchronous NoCs has been extensively
studied. Faults typically cause data errors (or packet loss). These
errors can normally be detected and corrected within several clock
cycles. A clock signal provides a timing reference for error detection
and correction. Detecting the error or packet loss, a retransmission
can be requested to obtain the right packet [229]. However, there is
no such timing reference in an asynchronous NoC. The QDI imple-
mentations are robust to timing variations but not to faults. A fault
may pollute a transmitting packet, corrupt the handshake protocol
and disrupt the normal data flow, which is a new challenge faced
by asynchronous circuit designers. A single fault could even break
the handshake protocol and results in a fault-caused physical-layer
deadlock. This deadlock is different from the well-known network
layer one induced by the cyclic dependence of multiple compet-
ing packets [61, 63]. Most conventional fault tolerant or deadlock
management techniques for synchronous NoCs cannot work in a
deadlocked state. The fault tolerance of asynchronous NoCs has
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not been thoroughly studied. Various styles of asynchronous NoCs
have been proposed but rarely do they have fault-tolerance capa-
bilities [11, 30, 67, 75, 200, 212].

Faults can be classified into transient, intermittent and perma-
nent faults depending on their duration [56]. Transient faults usu-
ally last for a short time and behave as positive or negative glitches
(0→1→0 or 1→0→1) [18, 111]. Permanent faults will influence the
victim gates or wires forever. Most permanent faults can be mod-
eled as “stuck-at” faults [5, 137], where the logic level of a net is
always 0 or 1. Intermittent faults usually happen as an early man-
ifestation of permanent ones with the aging process [56]. They can
appear as either transient or permanent during error detection or
correction.

In the presence of faults, QDI NoCs behave differently from
synchronous ones. A fundamental difference between synchronous
and QDI circuits is the timing reference used in the transmission
of data symbols.

• In synchronous circuits, a data symbol typically has a con-
stant time per bit which can be agreed — and maintained
for a known time — between the transmitter and the re-
ceiver. Corruption of the transmission will therefore affect
a known number of bits. Thus faults on a synchronous NoC
may corrupt packets being transmitted, lead packets to wrong
destinations, result in packet loss or cause data errors. Nev-
ertheless, the erroneous data symbol or faulty behavior can
be easily detected and further corrected or recovered.

• There is no such timing reference in QDI circuits. Faults can
insert or possibly delete symbols besides corrupting them.
Managing these faulty cases represents a new challenge faced
by QDI NoCs. Meanwhile, it is obvious that a permanent fault
will stall the handshake and cause a physical-layer deadlock.
Its detection and recovery has not been thoroughly studied in
a NoC environment. More seriously, a transient fault cannot
only cause data errors but also deadlock a QDI NoC, which
has been neglected by the asynchronous community. These
all increase the challenge of fault detection and recovery in
QDI NoCs.
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Figure 1.1 Network-layer and physical-layer deadlocks in a QDI
NoC.

Deadlock is fatal to a NoC without any management mech-
anisms [61]. It can reduce the network performance, paralyze its
function and eventually cause the chip to be discarded. The well-
known network-layer deadlock due to the cyclic dependence of
packets or restricted routings [63] can happen in all NoCs. Fig-
ure 1.1a shows an example where four packets hold and request
network resources in a cyclic fashion, which is a network-layer dead-
lock. It can be resolved by using specific turn models or providing
extra escape channels [63]. This network-layer deadlock is com-
mon in all NoCs and not the target of this book. In QDI NoCs,
a fault may break the handshake protocol, resulting in a physical-
layer deadlock, which is particular to QDI NoCs. Taking a simple
(req, ack) handshake process for example, if the sender sends out
a request to the receiver but without getting acknowledged, the
sender does not know whether this is caused by a fault or delay be-
cause QDI circuit is insensitive to delay variations. It would keep
waiting for the lost ack, resulting a physical-layer deadlock. Fig-
ure 1.1b illustrates a faulty case that a fault on a transmitting
packet deadlocks the reserved data path in the network. Note that
it is the adaptability of a QDI circuit to timing variations that
makes it more vulnerable to this kind of deadlock-type faults. This



10 � Asynchronous On-Chip Networks and Fault-Tolerant Techniques

physical-layer deadlock cannot be easily resolved by higher-layer
techniques for network-layer ones.

This book studies the impact of different faults on QDI NoCs,
including transient and permanent ones, and proposes thorough
and systematic fault-tolerant solutions to protect QDI NoCs. The
achieved fault-tolerance capability and the incurred performance
and hardware overhead are two main factors considered in the eval-
uation.

1.3.1 Protection for QDI Links

A large-scale NoC may contain a large number of long link wires,
which are common in large-scale Systems-on-Chip (SoCs). Exposed
to the external environment, they can be easily affected by various
noise or fault sources and become the victim of timing variations or
transient faults [14]. These chip-level long interconnects can be im-
plemented as QDI pipelines to achieve high bandwidth and timing-
robustness. However, a transient fault can be accepted as a valid
signal in a QDI system, leading to the insertion, deletion or corrup-
tion of a data symbol. Fault-tolerant codes have been widely used to
protect on-chip communication [229]. Codes also perform an impor-
tant role in QDI circuits where delay-insensitive (DI) codes are used
to build data symbols to encode the timing information. Most exist-
ing state-of-the-art fault-tolerant codes proposed for asynchronous
circuits either compromise the timing-robustness of QDI circuits or
incur large area and speed overhead. This book presents a novel
delay-insensitive redundant coding (DIRC) scheme to protect QDI
communication from transient faults, which can be easily adopted
by existing DI or QDI interconnects without destroying their intrin-
sic timing-robustness. The protected QDI links can be constructed
flexibly to satisfy various fault-tolerance requirement, with a mod-
erate and reasonable hardware overhead.

1.3.2 Deadlock Detection

Both permanent and transient faults could break the handshake
process in QDI NoCs and generate a physical-layer deadlock, which
has more serious consequences to the system than pure data er-
rors. The management of this fault-caused physical-layer deadlock
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is significantly important to the chip life-span but it has barely
been studied. To resume from a physical-layer deadlock, the net-
work must go through two phases: deadlock detection and recovery.
Detection of a fault-caused physical-layer deadlock is difficult in a
QDI NoC. In a deadlocked state, error syndromes for fault analy-
sis cannot be easily collected. Locating a specific defective wire or
gate is difficult. The ideal situation is that the faulty component
can be precisely located so that a recovery method can be further
applied to bypass or replace the faulty component, which conse-
quently resumes the network functionality. Therefore, an efficient
and flexible detection method is necessary. It should be able to not
only precisely locate the fault in the QDI NoC, but also differentiate
the fault-caused physical-layer deadlock from other similar network
scenarios, including the upper network-layer deadlock and the net-
work congestion. When both transient and permanent faults are
considered, an accurate model is needed to differentiate deadlocks
caused by different faults, so as to enable the fault diagnosis. The
proposed techniques should be able to detect, diagnose and locate
the fault as long as the fault deadlocks the network.

1.3.3 Network Recovery

As the fault position has been located, the next step is to re-
cover the network function according to the deadlocked state of the
handshake protocol and the network protocol. Figure 1.1b shows
one possible deadlock case where a fault deadlocks a reserved long
packet path composed of the faulty link and other healthy network
sources. A direct system reboot can temporarily remove this dead-
lock, but it is expensive and cannot deal with the deadlock caused
by permanent faults. Therefore, a fine-grained recovery strategy is
necessary to remove the deadlock and isolate the faulty component.
The recovery contains two main processes: (1) deadlock removal,
which recovers the stalled packet flow in the deadlocked packet
path, releasing blocked healthy network resources and eliminating
the deadlock and (2) faulty link isolation: instead of using upper
network-layer methods such as fault-tolerant routings to detour the
faulty link, this book proposes a fine-grained recovery technique at
the lower physical layer to isolate the faulty component and restore
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the network function. Upper layer recovery techniques can further
be used to improve the network performance after the loss of the
faulty component. When transient and intermittent faults dead-
lock the network, the isolated link should be resumed when the
fault fades.
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