

A Dynamic Link Allocation Router

Wei Song, Doug Edwards Advanced Processor Group The University of Manchester

Advanced Processor Group The School of Computer Science

Overview

- The University of Manchester **Network-on-a-Reconfigurable-Chip**
 - The Dynamic Link Allocation Flow control method
 - The Dynamic Link Allocation Router (DyLAR)
 - Conclusion

The NoRC Platform

- NoRC: network on a reconfigurable chip
- Running multimedia applications
- Connection oriented
- Stochastic routing algorithm
- GALS: fully asynchronous
 routers linked by CHAIN

Advanced Processor Group The School of Computer Science

Connection Oriented Routing

Time

Flit Definitions

Request Flit

data request content flit type flit header	•			
	data	request content	flit type	flit header

Other Flits

data	flit type	flit header
------	-----------	-------------

The High Retry Rate

Simulation results of a 6x6 NoC with 12 functions in network.

Virtual Channels are required to reduce to retry rate.

Advanced Processor Group The School of Computer Science

Overview

- The University of Manchester Network-on-a-Reconfigurable-Chip
 - The Dynamic Link Allocation Flow control method
 - The Dynamic Link Allocation Router (DyLAR)
 - Conclusion

Major Design Targets

- The University of Manchester Implement some kind of virtual channels
 - Increase the bandwidth of CHAIN links
 - Reduce the area and power of the router

The University of Manchester

Increase the bandwidth

Asynchronous Links work better with the lower wire count.

Advanced Processor Group The School of Computer Science

Increase the bandwidth

Increase the bandwidth B \bigcap Α \square

Spatial division multiplex (SDM) is a good choice for asynchronous NoCs.

Advanced Processor Group The School of Computer Science

Problems of SDM

SDM has the low bandwidth efficiency.

Advanced Processor Group The School of Computer Science 2014/5/13

Slave

Problems of SDM

Advanced Processor Group The School of Computer Science 2014/5/13

The University of Manchester

Dynamic Link Allocation

- The University of Manchester Divide the sub-link allocation apart from the path reservation
 - Allocate idle sub-link to active communications that reserved this link
 - All communications fairly compete for the bandwidth

Overview

- The University of Manchester Network-on-a-Reconfigurable-Chip
 - The Dynamic Link Allocation Flow control method
 - The Dynamic Link Allocation Router (DyLAR)
 - Conclusion

Dynamic Link Allocation Router (DyLAR)

Advanced Processor Group The School of Computer Science

Path Reservation Stage

Advanced Processor Group The School of Computer Science

Data Transmission Stage

Head-of-line (HOL) Problem

Backpressure

The University of Manchester

> Advanced Processor Group The School of Computer Science

Backpressure

Overview

- The University of Manchester Network-on-a-Reconfigurable-Chip
 - The Dynamic Link Allocation Flow control method
 - The Dynamic Link Allocation Router (DyLAR)
 - Conclusion

Pros and Cons (comp. to SDM)

- Lupon Lupon
 Advantages
 Smaller late
 - Smaller latency under zero load
 - Larger overall throughput under heavy load
 - Smaller retry rate (smaller power consumption)
 - Disadvantages
 - An extra request switch in each router
 - Extra control logic
 - Increase the latency to pass a router

Thank You!

Questions?

Advanced Processor Group The School of Computer Science