
The 4th lowRISC Release:
Tagged Memory and Minion Cores

Wei Song, Jonathan Kimmitt, Alex Bradbury, and Robert Mullins

University of Cambridge / lowRISC

10 May 2017

lowRISC

• lowRISC: A not-for-profit organisation based in Cambridge, UK.

• We produce open-source and free Linux capable SoC platforms
– Open source from the core to the on-chip interconnects (and any IPs if available)
– Free for both academic and commercial uses
– 64-bit multicore (Rocket + PULP)
– SystemVerilog top level
– tagged memory and minion cores

• Open development
– Share as much as possible
– encouraging community effort
– Regular tape-out with community contribution

• Aim to be the “Linux of the hardware world”

10-May-2017 University of Cambridge / lowRISC 2

Our Releases

• lowRISC with tagged memory, April 2015
– Initial support for read/write tags.

• Untethered lowRISC, December 2015
– A standalone SoC without the companion ARM core.

• lowRISC with a trace debugger, July 2016
– First implementation of a debug infrastructure.
– A trace debugger to collect instruction and software defined traces.

• lowRISC with tagged memory and minion core, May 2017
– Bring back tagged memory with built-in tag manipulation and check in the core pipeline with an

optimised tag cache.
– A full SD interface using a reduce PULPino as a minion core.

• Improved tagged memory and minion cores
– Improve the support for both tagged memory and minion cores.
– Merge update from upstream (interrupt controller, run-control debugger and TileLink2).
– Adopt a regular release cycle.

10-May-2017 University of Cambridge / lowRISC 3

Overall Structure

10-May-2017 University of Cambridge / lowRISC 4

General-Purpose Tagged Memory

• Implementation
– Associate tags (metadata) with each physical memory location.
– Tags are stored in on-chip caches and a tag cache is inserted

between the LLC and main memory.
– Built-in support of tag manipulation and check in the core

pipeline.

• Potential use cases
– Protection of code pointers
– Hardware-assisted control-flow integrity
– Infinite hardware memory watch-points

• E.g. canaries on stack

– Poisoning (simple IFT)
• Ensure sensitive data does not leak

10-May-2017 University of Cambridge / lowRISC 5

Problems of the Previous Tag Cache

• Motivation
– A simple set-associative cache is inefficient as most cached tags are unset.
– Most data are usually untagged (with unset tag).
– Applications which do not use tags should not suffer.

10-May-2017 University of Cambridge / lowRISC 6

Optimised Tag Cache

• Solution

– Compress the cached tags using multiple levels of bit
maps
• A cache line size of unset tag is stored as a 1-bit flag.

• Avoid cache lines of unset tags in the tag cache.

– Avoid fetching or writing back empty tag cache lines.

– zero overhead for applications that do not use tags.

– Improve cache efficiency.
• A small tag cache is enable to cover a large memory space.

10-May-2017 University of Cambridge / lowRISC 7

Logical View of the Tag Partition

10-May-2017 University of Cambridge / lowRISC 8

Node A cache line size of data in the tag partition.
Tag table Nodes of actual tags.
Tag map 0 Nodes of bit maps that map a tag table node into a 1-bit flag.
Tag map 1 Nodes of bit maps that map a tag map 0 node into a 1-bit flag.

Physical View of the Tag Partition

10-May-2017 University of Cambridge / lowRISC 9

No extra space is needed for tag maps.

Structure of the Tag Cache

10-May-2017 University of Cambridge / lowRISC 10

Metadata and Data array
Unified tag cache for all levels of
tag cache lines (map and table).

MemXact Tracker
Parallel tracker to handle multiple
simultaneous memory accesses
from the last-level cache.

TagXact Trackers
Parallel trackers to handle an
access to the unified cache array.

Writeback Unit
A shared writeback unit for evicting
dirty and nonempty tag cache lines.

Concurrent Transaction Control

• Maintain consistency between map and table nodes
– A memory transaction may temporarily break the

consistency (non-atomic updating of map bit).
– An access to the unified tag cache array must be atomic.
– Block a memory transaction until related map bits return a

consistent state.

• Other optimisation
– Bottom-up search order: always search table nodes first.
– Create instead of fetch for empty lines.
– Avoid writing back empty lines unless it is top map node.

10-May-2017 University of Cambridge / lowRISC 11

Tag Support in Core Pipeline

10-May-2017 University of Cambridge / lowRISC 12

ID Check for instruction tags.
EX Tag manipulation along with ALU operations.
 Check the tags of source registers for ALU and jump instructions.
MEM Propagate tags to link registers.
 Check the instruction tags of jump targets.

Tag Support in Core Pipeline (cont.)

10-May-2017 University of Cambridge / lowRISC 13

D$ Store tags along side with data
 Propagate tags from memory to register file and vice versa.
 Check the memory tags for load or store operations.

Special Instructions and CSRs

• Tag read and write
– TAGR rd, rs1

(rd_t, rd) <= (0, rs1_t)

– TAGW rd, rs1, imm
(rd_t, rd) <= (rs1+imm, rd)

• Tag control CSR
– mtagctrl (tagctrl)

A set of masks for each tag function
– stagctrl, mstagctrlen

tagctrl <= (stagctrl & mstagctrl) | (tagctrl & ~mstagctrl)

– utagctrl, mutagctrlen
tagctrl <= (utagctrl & mutagctrl) | (tagctrl & ~mutagctrl)

• Tag extension in CSRs
– mepc, sepc, mscratch, sscratch, mtvec, stvec

10-May-2017 University of Cambridge / lowRISC 14

An Example Use-Case

• Code pointer protection

– Mark valid code pointers .

– Prevent them being overwritten with arbitrary data.
• 1-bit CPTR tag

• Allow load CPTR

• Disallow store CPTR (prohibit overwrite code pointer)

• Check jump target with CPTR (only jump to valid code
pointer)

• Check indirect jump’s rs1 with CPTR (only allow valid
indirectional jump)

10-May-2017 University of Cambridge / lowRISC 15

Minion System

10-May-2017 University of Cambridge / lowRISC 16

Minion Driven Full SDHC

• Communication between minion and Rocket
– A shared 64KB dual port memory
– No coherence control yet.

• SDHC interface
– Support automatic speed detection (5MHz by

default).
– Support mounting SD inside Linux
– Support read and write operations.
– Run the SD driver on Rocket (will move it to minion)

10-May-2017 University of Cambridge / lowRISC 17

Flexible Boot Procedure

• Standard-alone
– FPGA starts from Flash
– Initial bootloader reads BBL+Linux from SD through the minion core.

• Program through Vivado
– Vivado configs FPGA
– Initial bootloader reads BBL+Linux from SD throgh the minion core.

• Boot from trace debugger
– FPGA is configured by Flash or Vivado
– Load BBL+Linux to DDR using trace debugger (bypass the minion core)
– Jump to DDR memory

10-May-2017 University of Cambridge / lowRISC 18

Other Development in lowRISC

• QEMU minion emulation
– Emulate a Rocket core using QEMU while connecting to a real

minion core on FPGA.
– Jonathan Kimmitt is leading this effort.

• RISC-V LLVM Compiler
– We plan to use it for a number of tagged memory use-cases.
– We are producing a well documented “reference” backend for

RISC-V
– Alex Bradbury is leading this effort

• >90% of GCC torture test suite is passing (RV32I). Basic support by end Q2
• Full support, incl. ISA variants, est. Q4’17.

• Google Summer of Code 2017

10-May-2017 University of Cambridge / lowRISC 19

Access to the New Release

• Source code
https://github.com/lowrisc/lowrisc-chip/tree/minion-v0.4

• Tutorial (come out soon)
http://www.lowrisc.org/docs/minion-v0.4/

• lowRISC
http://www.lowrisc.org

• Mail list
lowrisc-dev@lists.lowrisc.org

10-May-2017 University of Cambridge / lowRISC 20

Thank You!

