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lowRISC 

lowRISC (http://lowrisc.org) is a not-for-profit community 

project providing complete open source SoC designs. 
 

 

– Open source hardware: ‘Linux of the hardware world’ 

– Aim to offer complete SoCs that run Linux well 

– Extensible platforms: Base design for derivative designs 

– RISC-V ISA: Rocket, BOOM, and PULPino 

– Produce volume silicon, low-cost development boards and reference 

designs: ‘Raspberry Pi for grownups’ 

– Research focuses: security and flexibility 

– Core team based in Computer Laboratory, University of Cambridge 
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lowRISC cont. 

• Approaches 
– Simple and permissive licenses 

– Active community collaboration 

– Regular tape-outs with community contribution 

– Minion cores and shims: 

• Flexible/programmable IO, performance counters, accelerators, 
security co-processor, etc. 

– Tagged memory: 

• Security, performance monitoring, synchronization, etc. 
 

• Progress 
– Initial funding from private donor, recently from Google, eventually 

self-sustaining 

– Two major code releases: tagged memory and untethered SoC 
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Open SoC Debug 

This is a combined release with lowRISC and Open SoC Debug. 

 

• Open SoC Debug (http://opensocdebug.org) 
– An umbrella project for unified debug infrastructure 

– Provide shared building blocks, interfaces and tools among different 
platforms 

 

• Design principles 
– Abstraction from host interface connection:  

16-bit parallel connection provided by Glip (http://www.glip.io) over 
UART/USB/JTAG/Ethernet 

– Easy adoption: Modular design of debug modules 

– Unified on-chip communication: Packet-switched on-chip network 
connecting all debug components 

– Functionality: On-chip trace processing and off-chip trace analyses 
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Trace Debugging 

• What is trace debugging 
– Collect instruction and user-defined traces for on/off chip 

analysis 

– Unlike run-control debugging 

– Non-intrusive, no interruption, minimal performance overhead 

 

• Why use trace debugging 
– Multicore: timing, synchronization, race condition, etc. 

– Detect performance inefficiency 

– Complementary to run-control debugging 

– Light-weight instrumentation 
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Overall Structure 

6 



Trace Debugger Internals 
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Host Interface 

 Bridge between Glip and debug ring 

System Control  Reset and pause control 

Serial Comm.  UART emulator 

Memory Access  Read/write L2 

Core Trace  Extract instruction trace 

Software Trace  User defined trace 



Enumeration & System Control 

• System Enumeration 
– Each debug module has a unique ID used as destination for 

debug packets 

– Fixed ID for Host Interface (0) and System Control (1) 

– System Control has the total number of modules and 
communication parameters of the on-chip debug network 

– Each debug module has a set of compulsory registers: type, 
vendor, version 

– Host side debug software is then able to discover all modules by 
enumeration 

 

• System Control 
– Total number of modules and parameters for debug network 

– Set/Reset system and processor cores 
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Memory Access & Serial Comm. 

• Memory Access 
– Provide a coherent access to L2 

– Allow debugger to read/write memory/cache 

– Allow load elf (program) or binary data 

 

• Serial Comm. 
– Emulate a UART16550 IP. 

– Allow UART communication through debugger (share debugger 
& UART cable) 

– Can be instantiated multiple times if needed 
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Core Trace 

• Function: collect information from the core execution 
– Reconstruct program flow 

– Verify register values 

– Performance analysis 

 

• Trace collection 
– JAL (function call), jump and branch, change of privilege modes 

– ToDo: more traces and run-time configurable filters 

 

• Trace event generation 
– Packetized with timestamp, send to host over debug network 

– Current: Simple overflow handling (drop but record #drops) 

– Future:  

• Better network flow control / QoS 

• Circular buffering and trace recording to DRAM 
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Example Core Trace 
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# time   event 

06570d02 enter init_tls 

06570d22 enter memcpy 

06570d67 leave memcpy 

06570d76 enter memset 

06570dae leave memset 

06570dcd leave memset 

06570dd5 leave init_tls 

06570ddb enter thread_entry 

06570e22 leave thread_entry 

06570e28 enter main 

06570e60 enter trace_event0 

06570e91 leave trace_event0 

06570e96 enter trace_event1 

06570ea9 leave trace_event1 

06570eb3 enter trace_event2 

06570eca leave trace_event2 

06570ee3 leave main 

06571085 enter exit 

065710b3 enter syscall 

06571131 change mode to 3 

065711ba enter handle_trap 

0657127e enter tohost_exit 

Overflow, missed 12 events 

Overflow, missed 25 events 

Overflow, missed 28 events 

Overflow, missed 28 events 

Overflow, missed 28 events 



Software Trace 

• Function: minimally-invasive code instrumentation 
– Light-weighted alternative to printf() 

– Performance measurement between code points, etc. 

– Can be release unchanged (safety) with minimal performance impact 

 

• Thread-safe trace procedure 
– A trace event: (id, value) 

– Write to $a0 (value), tracked by Software Trace 

– Write to a dedicated CSR with (id), which triggers an event 

 

• Trace event generation (same with Core Trace) 
– Trace event generation 

– Packetized with timestamp, send to host over debug network 

– Future: Better network flow control / QoS 
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Example Software Trace 

• Trace DMA durations 
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# time   id     value 

00002590 0x1001 0xe20c000ac20fc588 

00002593 0x1002 0x0000000000000001 

00002595 0x1002 0xffff0800000c0000 

00002597 0x1002 0xe20c000ac20fc588 

00002985 0x1003 0x0000000000000001 

#define TRACE(id,v) \ 

  asm volatile ("mv   a0,%0": :"r" ((uint64_t)v) : "a0"); \ 

  asm volatile ("csrw 0x8f0, %0" :: "r"(id)); 

 

#define TRACE_DMA_BUFFER(b) TRACE(0x1001,b) 

#define TRACE_DMA_START(i,s,b) TRACE(0x1002,i) \ 

                               TRACE(0x1002,s) \ 

                               TRACE(0x1002,b) 

#define TRACE_DMA_FINISH(i) TRACE(0x1003,i) 

uint8_t *buffer = malloc(42); 

TRACE_DMA_BUFFER(buffer); 

 

TRACE_DMA_START(slotid,src,buffer); 

dma_transfer(slotid,incoming,buffer); 

TRACE_DMA_FINISH(slotid); 

T0 

Header 
Source 

Visualization 

Trace Log 



Debug Procedure 

# reset and pause cores 

reset -halt 

# load a test program 

mem loadelf test.elf 3 

# enable core trace 

ctm log ctm.log 4 

# enable software trace 

stm log stm.log 5 

# open a terminal (xterm) 

terminal 2 

# run the test 

start 
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ID  Module 

0  Host interface 

1  System Control 

2  Ser. Comm. 

3  Mem. Access 

4  Core Trace 

5  Software Trace 

Command Line Interface 
import opensocdebug  

import sys 

 

if len(sys.argv) < 2: 

    print "Usage: runelf.py <filename>" 

    exit(1) 

 

elffile = sys.argv[1] 

     

osd = opensocdebug.Session() 

 

osd.reset(halt=True) 

 

for m in osd.get_modules("STM"): 

    m.log("stm{:03x}.log".format(m.get_id())) 

 

for m in osd.get_modules("CTM"): 

    m.log("ctm{:03x}.log".format(m.get_id()), 
elffile) 

 

for m in osd.get_modules("MAM"): 

    m.loadelf(elffile) 

 

osd.start() 

Python Script 



Extra Features of the Debugger 

• Uniform debug environment for both Sim/FPGA 
– DPI based Glip interface for simulation. 

– Support UART and trace debugging in both RTL and FPGA 
simulation. 

 

 

• Python frontend 
– Allow further tool integration (deliver as a python library). 

– Off-line trace analysis. 

– Easy command extension. 
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Future Work for Debugger 

• Improve trace collection: 
– Trace compression: Reduce event number and size 

– Trace filtering: Run-time filter configuration 

– Trace triggering: (Cross-) trigger events 

– GUI tools for better trace analysis 

 

• Integrate run-control solution(s): 
– Traditional GDB-like debugger 

– SiFive, Roa Logic & PULP 

– Hopefully support both through a common interface 

 

• On-chip trace processing (research): 
– Analyse/process traces on-chip possibly on minion cores 

– Get from basic information to knowledge! 
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Available Boot Procedure 

• Load from debugger (tethered) 
– Start FPGA and connect it with debugger 

– Load program (Linux) by debugger 

– Start the SoC from debugger 

 

 

• Load from SD (untethered) 
– FPGA starts from an on-chip boot RAM 

– Boot program load program (Linux) from SD 

– Jump to the program loaded 
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Release v0.3 

• Release available in July 
– A tutorial 

http://www.lowrisc.org/docs/debug-v0.3/ 

– GitHub repository 
http://github.com/lowrisc/lowrisc-chip 

 

• Key features 
– Trace debugging 

– Low-cost FPGA board: Digilent NEXYS4-DDR 

– Latest updates from Rocket-chip (up to 06/2016) 

– Free development environment (Verilator + WebPACK) 

– Full set of scripts/Makefiles 

18 

http://www.lowrisc.org/docs/debug-v0.3/
http://www.lowrisc.org/docs/debug-v0.3/
http://www.lowrisc.org/docs/debug-v0.3/
http://github.com/lowrisc/lowrisc-chip
http://github.com/lowrisc/lowrisc-chip
http://github.com/lowrisc/lowrisc-chip


Schedule for Future Releases 

• April 2015: v0.1 basic tagged memory 

• December 2015: v0.2 untethered SoC 

 

• July 2016: v0.3 trace debugger 

 

• Optimizing tag cache 

• Run-time tag checking 

• Integrating minion cores (PULP) 
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General Updates from lowRISC 

• Summer 2016 
– 4 IMC interns: video / 2-D acceleration / performance counter 

(tutorial/documentation) 

– 5 GSoC projects: xv6 port, DDRx controller, Arduino library port 
to PULPino, Musl libc, OP-TEE trusted execution environment 

 

 

• lowRISC development 
– New hire to look at minion core concepts 

– Add tagged memory back to untethered SoC, thanks to Philipp 
Jantscher, Graz University of Technology 

– Shim implementation currently under-way (Clifford Wolf) 
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Test Chip 
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Plan to finish the test chip RTL early 2017 and tape out afterwards. 



Get Involved 
• All on GitHub, no hidden code. 

• Submit pull request for bug fixes. 

• Contact us for ideas, improvement, extensions. 
 

Contribution is needed … 

lowRISC: Peripherals, testing, compiler, Linux kernel, benchmarking, etc. 

Open SoC Debug: GUI, trace analysis, support for more SoC platforms. 
 

lowRISC 

 Website:  http://www.lowrisc.org/ 

 Mail list:   lowrisc-dev@lists.lowrisc.org 

 GitHub:   https://github.com/lowrisc/ 

 E-mail:  info@lowrisc.org 

 

Open SoC Debug 

 Website:  http://opensocdebug.org/ 

 Mail List:  opensocdebug@lists.librecores.org 

 GitHub:  https://github.com/opensocdebug/ 
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