
Dynamically Finding Minimal Eviction Sets Can Be Quicker 

Than You Think for

Side-Channel Attacks against the LLC

Wei Song
State Key Laboratory of Information Security

Institute of Information Engineering, CAS, Beijing, China

Peng Liu
The Pennsylvania State University, University Park, USA

2019-09-25



Overview

• The development of cache-side channel attacks and defenses.

22019-09-25 RAID-2019



Our Motivations

• Dynamically randomized LLC
– [Qureshi2018] CEASER: Mitigating conflict based cache attacks via encrypted-address and 

remapping. (Micro’18)

– Randomized LLC → Dynamically finding eviction sets

→ Uncontrollable set conflicts

– Dynamic remapping → Limit attacks in short period

• Optimized eviction set search algorithm
– [Vila2019] Theory and practice of finding eviction sets. (S&P’19)

– Prune eviction sets in groups → Reduce time from 𝑶(𝒏𝟐) to 𝑶(𝒘𝟐𝒏)

• Our questions:

– In theory, how fast can an adversary find a minimal eviction set?

– In practice, how fast can a minimal eviction set be found on modern 

processors?

32019-09-25 RAID-2019

Fast enough?



Preliminary: Caches and Virtual Memory

• set associative cache

• MMU, TLB

• VIPT, PIPT

42019-09-25 RAID-2019



Prime+Probe

• Victim accesses 𝑣.

• Attacker primes the set with an eviction set {𝑎0, 𝑎1, 𝑎2, 𝑎3}, force the eviction of 𝑣.

• Victim re-accesses 𝑣 incurs a long delay.

{𝒂𝟎, 𝒂𝟏, 𝒂𝟐, 𝒂𝟑} and 𝒗 are mapped to the same set (congruent)

Usually eviction sets are computed rather than found.

52019-09-25 RAID-2019



Randomized LLC (CEASER)

• Use a block chipper to pick a random set

• Break the mapping from address to cache set 

62019-09-25 RAID-2019



Finding an Minimal Eviction Set

• A minimal eviction set
– An eviction set with the smallest number (𝒘) of congruent cache blocks.

– Congruent cache blocks: cache blocks mapped to the same cache set.

• Assumption
– Current Intel processors: VPN to PPN mapping is unknown, PPN considered random.

– CEASER: cache set is considered random.

• Solution
– Find a big eviction set (candidate set) with a large number (𝑛) of random cache 

blocks.

• When 𝑛 is large enough, we can evict any cache block in the shared LLC 
[Hund2013].

– Prune the large set into a minimal one.

72019-09-25 RAID-2019



Prune an Eviction Set (the optimized way)

• Original method [Liu2015 at S&P, Oren2015 at CCS]
– Remove one cache block per iteration 𝑂(𝑛2)

• Optimized method (group pruning) [Vila 2019 at S&P]
– Assume we have an initial eviction set with 𝑛 blocks for a 4-way cache.

– By dividing them into 𝑤 + 1 groups, time complexity is reduced to 𝑶 𝒘𝟐𝒏 .

82019-09-25 RAID-2019

Is this a good 

estimation?



The actual latency is much smaller!

• The actual latency is much smaller
– Early termination effect: terminate the 

iteration whenever the first removable 
group is found.

• Divide by 2𝑤
– Use 2𝑤 rather than 𝑤 + 1 reduce the 

theoretical bound to
𝟒𝐰 − 𝟐 𝒏 → 𝑶(𝒘𝒏)

– Much closer to the actual latency

– Actual test using 2𝑤 is slightly worse 
than 𝑤 + 1 due to the reduced early 
termination effect.

• Even 4𝑤 − 2 𝑛 is not good 
enough!

92019-09-25 RAID-2019



The long tail distribution of latency

• The actual latency distribution is a long tail.
– For a defense, what actually matter is the location of the left boundary (1st percentile, 1% of attacks).

– For a 1024-set 16-way randomized cache, 1st percentile ≈ 25𝑛, 𝑛 = 11500
0.2% of 𝑛2, around 18 ⋅ 𝑠 ⋅ 𝑤 !

102019-09-25 RAID-2019

This is much faster than we ever thought!



What about Actual Processors?

• Applying the dynamic search on three Intel processors.

112019-09-25 RAID-2019

i7-3770 Xeon-4110 i7-8700

Architecture IvyBridge Sky Lake Coffee Lake

Cores 4 8 6

Threads 8 16 12

LLC Size 8 MB 11 MB 12 MB

Cache Way 16 11 16

Memory 4 GB 32 GB 32 GB

OS Ubuntu 16.04 Ubuntu 16.04 Ubuntu 18.04



Improve the Pruning Algorithm

122019-09-25 RAID-2019

• Random split 1/(w+1)

• Simpler loop control

• Better tolerance to noise

Test 𝐶 with repeat 

parameter (𝑏, 𝑑)

𝐶



The Optimal Candidate Set Size?

132019-09-25 RAID-2019

• How many random cache blocks are enough to get a large eviction set?

1024-set 16-way cache

~16K → 50% probability of eviction

512-set 32-way

1024-set 16-way

2048-set 8-way

4096-set 4-way

Magic 60% 



The Optimal Candidate Set Size?

142019-09-25 RAID-2019

• How many random cache blocks are enough? Slightly less than s*w.

Alg 2: Group prune [Vila2019]

Alg 3: Random split [this paper]

Split ratio: w+1 is better than 2w

What is the best split ratio?

Less than 50% chance in finding a 

candidate set but much shorter time 

in pruning.



What is the Best Split Rate?

152019-09-25 RAID-2019

• Is w+1 the best split rate? No.

1024-set 16-way

The best split rate ~14

Slightly less than w+1.



What is the Best Traverse Function?

162019-09-25 RAID-2019

• Start from Ivy bridge (2012), anti-threshing replacement is utilized. 

• Traverse strategy [Gruss2016]

𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑚 = 3, 𝑛 = 2, 𝛿 = 1
𝑙𝑖𝑠𝑡 𝑚, 𝑛 = 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦(𝑚, 𝑛, 1)

• Round traverse [Liu2015]

𝑟𝑜𝑢𝑛𝑑(𝑛 = 2)

• Random traverse [this paper]

𝑟𝑎𝑛𝑑𝑜𝑚(4)

They key: disguise its scan-like pattern.



What is the Best Traverse Function?

172019-09-25 RAID-2019

i7-3770: round(4) and random(16) i7-8700: round(4) Xeon-4110: failed!

Time to success = 

time of one trial

success rate



Improve the Success Rate: Multithread Traverse

182019-09-25 RAID-2019

Single thread multithread

L1/L2 works like a filter

Enforce multi-access 

by multicore



Now We Succeed on Xeon-4110

192019-09-25 RAID-2019

i7-3770: round(4) Xeon-4110: round(1) i7-8700: round(1)



Summary of Techniques

202019-09-25 RAID-2019



Results: When VA to PA mapping is unknown

• Finding eviction sets at the page granularity

• Compare with optimized [Vila2019]

212019-09-25 RAID-2019

Single Thread

Normal Page

Single Thread

Huge Page

Multithread

Normal Page

Multithread

Huge Page

i7-3770 0.150 s 0.091 s 0.085 s 0.060 s

Xeon-4110 Failed Failed 0.170 s 0.134 s

I7-8700 0.202 s 0.123 s 0.095 s 0.061 s

Normal Page Huge Page

Latency Reduction Latency Reduction

i7-3770 0.477 s -82.1% 0.219 s -72.6%

i7-8700 0.244 s -61.1% 0.186 s -67.2%

Improve success rate from ~60% to ~90%.



Results: Contribution of Individual Techniques

222019-09-25 RAID-2019



Results: When LLC is Randomized

• Finding eviction sets at the cache block granularity.

– We Succeed both on i7-3770 and Xeon-4110 but failed on i7-8700.

– Although it is slow, it is a demonstration that we can find eviction sets on a (statically) 

randomized LLC.

232019-09-25 RAID-2019



Conclusion and Future Works

• Contributions:

– Reduce the bound from 𝑂(𝑤2𝑛) to 𝑂(𝑤𝑛).

– CEASER has overestimated the latency (confirmed by [Qureshi2019 at ISCA]).

– New techniques to reduce the latency to ~0.1 second.

– Multithread traversing (Xeon-4110, non-inclusive LLC [Yan2019 at SP]).

– First time to find eviction set without fixing page offset.

• Future works:

– Non-inclusive LLC (AMD snooping protocol) [Yan2019 at S&P]

– Skewed random LLC [Werner2019 at Security, Qureshi2019 at ISCA]

• Opensource

– The ideal cache model: https://github.com/comparch-security/cache-model

– Tests on Intel processors: https://github.com/comparch-security/smart-cache-evict

242019-09-25 RAID-2019

https://github.com/comparch-security/cache-model
https://github.com/comparch-security/smart-cache-evict


2019-09-25 RAID-2019 25

Thank you!

Any Questions?


