2019-2020学年秋季学期

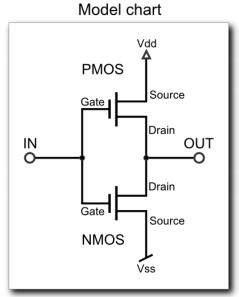
第一部分 数制和码制

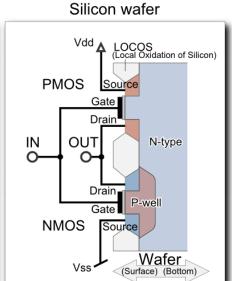
为何引入数制和码制

- ○数字电路建立于二进制之上
 - ○晶体管只能有效模仿开关电路,0/1状态
 - ○晶体管特性的非线性
 - ○只有0/1状态能被有效并低噪地表示
 - ○开关电路, 0/1状态的数学表现为二进制
- ○人们的日常生活、基础数学建立在十进制之上
 - ○人有10个手指,这其实是习惯
 - ○习惯使用十、百、干、万等大数描述
- ○数字电路的实际使用必须转换数制
 - ○复杂数字电路完成二进制运算
 - ○输入数据需要将十进制转换为二进制
 - ○输出数据需要将二进制转换为十进制

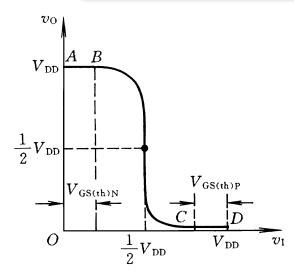
为什么数字电路建立于二进制之上

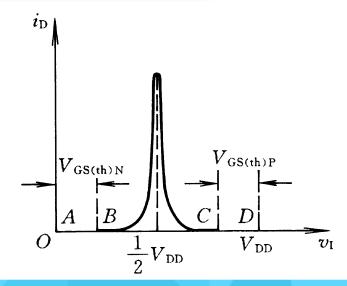
CMOS inverter





饱和区 低电流





表示数时,仅用一位数码往往不够用,必须用进位计数的方法 组成多位数码。多位数码每一位的构成以及从低位到高位的进 位规则称为进位计数制,简称数制。

○基数

○进位制的基数,就是在该进位制中可能用到的数码个数。

○权数

○在某一进位制的数中,每一位的大小都对应着该位上的数码乘上一个 固定的数,这个固定的数就是这一位的权数。权数是一个幂。

○系数

○每一位上的数, 也是相应权数的系数

什么是数制: 十进制自然数到N进制自然数

$$1997 = 1 \times 10^3 + 9 \times 10^2 + 9 \times 10^1 + 7 \times 10^0$$

$$1997 = \begin{bmatrix} 1 & 9 & 9 & 7 \end{bmatrix} \cdot \begin{bmatrix} 10^3 \\ 10^2 \\ 10^1 \\ 10^0 \end{bmatrix}$$

$$D = \sum_{i=0}^{+\infty} k_i \times 10^i \qquad 1997 = (1997)_{10}$$

十进制数是以10为基数k为系数的数字表述。

N进制数是以N为基数k为系数的数字表述。

$$D = \sum_{i=0}^{+\infty} k_i \times N^i = (k_{+\infty}, \cdots, k_i, \cdots k_0)_N$$

十进制正实数到N进制正实数

$$1997.75 = \begin{bmatrix} 1 & 9 & 9 & 7 & 7 & 5 \end{bmatrix} \cdot \begin{bmatrix} 10^{3} \\ 10^{2} \\ 10^{1} \\ 10^{0} \\ 10^{-1} \\ 10^{-2} \end{bmatrix}$$

$$D = \sum_{i=-\infty}^{+\infty} k_i \times 10^i \qquad 1997.75 = (1997.75)_{10}$$

$$D = \sum_{i=-\infty}^{+\infty} k_i \times N^i = (k_{+\infty}, \cdots, k_i, \cdots k_{-\infty})_N$$

十进制正实数的定点表示(附加)

$$1997.53 = \begin{bmatrix} 1 & 9 & 9 & 7 & 7 & 5 \end{bmatrix} \cdot \begin{bmatrix} 10^{3} \\ 10^{2} \\ 10^{1} \\ 10^{0} \\ 10^{-1} \\ 10^{-2} \end{bmatrix}$$
$$\begin{bmatrix} 10^{2} \\ 10^{2} \\ 10^{-2} \end{bmatrix}$$

$$199.753 = \begin{bmatrix} 1 & 9 & 9 & 7 & 7 & 5 \end{bmatrix} \cdot \begin{bmatrix} 10^2 \\ 10^3 \\ 10^0 \\ 10^{-1} \\ 10^{-2} \\ 10^{-3} \end{bmatrix}$$

8位定点数(5,3):

 $19977.5 = \{19977500\}$

 $1997.75 = \{01997750\}$

 $199.775 = \{00199775\}$

19.9775 = {00019977} 精度丢失! 需要浮点表示

十进制正实数的浮点表示(附加)

```
8位定点数(5,3): 5位整数位, 3位小数位
19977.5 = {19977500}
1997.75 = {01997750}
199.775 = {00199775}
19.9775 = {00019977} 精度丢失! 需要浮点表示
```

8位浮点数(1,7): 1位指数位,7位小数位

```
19977.5 = \{60199775\} = 0.0199775 * 10^{6}

1997.75 = \{50199775\} = 0.0199775 * 10^{5}

199.775 = \{40199775\} = 0.0199775 * 10^{4}

19.9775 = \{30199775\} = 0.0199775 * 10^{3}
```

浮点表示并不唯一

 $19977.5 = \{51997750\} = 0.1997750 * 10^5$

N进制正实数到二进制正实数

○N进制

$$D = \sum_{i=-\infty}^{+\infty} k_i \times N^i = (k_{+\infty}, \cdots, k_i, \cdots k_{-\infty})_N$$

○二进制

D相同时, 系数向量{k}并不相等。

$$D = \sum_{i=-\infty}^{+\infty} k_i \times 2^i = (k_{+\infty}, \cdots, k_i, \cdots k_{-\infty})_2$$

$$D = \sum_{i=-\infty}^{+\infty} k_i \times 2^i = (k_{+\infty}, \cdots, k_i, \cdots k_{-\infty})_2$$

 $(101110.11)_2$ = $1 \times 2^5 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^{-1} + 1 \times 2^{-2}$ = 32 + 8 + 4 + 2 + 0.5 + 0.25= 46.75

 $(111111001101.11)_2 = (1997.75)_{10}$

十进制数转二进制数-公式展开

$$D = \sum_{i=-\infty}^{+\infty} k_i \times 10^i = (k_{+\infty}, \dots, k_i, \dots k_{-\infty})_{10}$$

$$(46)_{10}$$

= $4 \times 10^{1} + 6 \times 10^{0}$
= $100 \times 1010^{1} + 110 \times 1010^{0}$
= ???

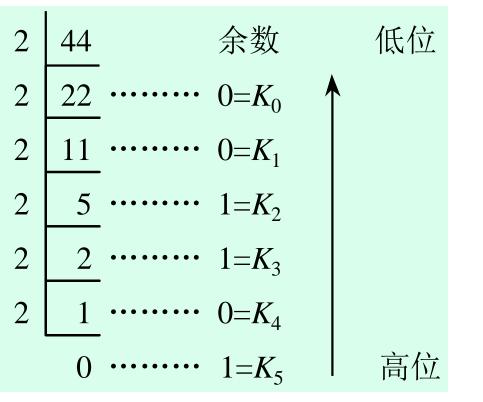
用公式直接分解然后代入二级制运算并不方便!

十进制数转二进制数-基数连除、连乘法

整数部分:

基数连除,

取余数自下而上.



小数部分:

基数连乘,

取整数自上而下.

所以: $(44.375)_D$ = $(101100.011)_B$

十进制数转二进制数-其他方法

○快速手算

2 ⁰	2 ¹	2 ²	2 ³	2 ⁴	2 ⁵	2 ⁶	2 ⁷	2 ⁸	2 ⁹	2 ¹⁰	2 ¹¹
1	2	4	8	16	32	64	128	256	512	1024	2048

0	1	2	3	4	5	6	7	8	9
0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

$$31 = 32 - 1$$
 $100000 - 1 = 11111$

○计算器 (程序员模式)

演示

○数制转换可能造成数据精度的损失,特别是对于小数部 分

$$(1.3)_{10} = (1.01001100110011....)_2$$

○原因

$$10 \neq 2^{i}$$

十进制和二进制的权数之间不能互相整除

十进制和二进制总结

- ○为什么讨论二进制
 - ○数字电路建立在开关电路之上
- ○什么是数制
 - ○基数、权数、系数
- ○二进制到十进制的转换
 - ○直接利用数制公式
- ○十进制到二进制转换
 - ○基数连除、连乘法
 - ○手算、计算器
- ○定点小数和浮点数 (附加)
- ○精度丢失问题 (附加)

○二进制 (bin)

$$B = \sum_{i=-\infty}^{+\infty} k_i \times 2^i = (k_{+\infty}, \dots, k_i, \dots k_{-\infty})_2$$

○八进制 (oct)

$$0 = \sum_{i=-\infty}^{+\infty} k_i \times 8^i = (k_{+\infty}, \cdots, k_i, \cdots k_{-\infty})_8$$

○十六进制 (hex)

$$H = \sum_{i=-\infty}^{+\infty} k_i \times 16^i = (k_{+\infty}, \dots, k_i, \dots k_{-\infty})_{16}$$

+	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
十六	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F

○八进制 (oct)

$$(56)_8 = 5 \times 8^1 + 6 \times 8^0 = (46)_{10}$$

○十六进制 (hex)

$$(56)_{16} = 5 \times 16^1 + 6 \times 16^0 = (86)_{10}$$

$$(CF)_{16} = 12 \times 16^1 + 15 \times 16^0 = (207)_{10}$$

○ 先转成二进制,再由二进制转八/十六进制

○八进制 (oct): 3位二进制对1位八进制

```
二进制 010 111 011 001
八进制 4 7 3 1
```

 $(010_111_011_001)_2 = (4731)_8$

〇十六进制 (hex): 4位二进制对1位十六进制

```
二进制 0101 1101 1001
八进制 5 D 9
```

 $(0101_1101_1001)_2 = (5D9)_{16}$

- ○为什么讨论八进制和十六进制
 - ○二进制表述系数向量太长,八进制和十六进制有效的缩短了表 达长度
 - ○十六进制是现在计算机内存地址的标准表达方式
 - \bigcirc 1KB = 1024 Byte = 2¹⁰ Byte
 - \bigcirc 1MB = 1024 KB = 2^{20} Byte
 - \bigcirc 1GB = 1024 MB = 2^{30} Byte
 - ○内存地址 0xFFF0_0844
- ○八/十六进制到十进制的转换
 - ○直接利用数制公式
- ○十进制到八/十六进制转换
 - ○先转换为二进制,然后按位转换

二进制的算术运算

○和十进制算数运算没有本质区别: 逢二进一

加法运算

1001

+ 0 1 0 1

1 1 1 0

减法运算

1001

<u>- 0 1 0 1</u>

0 1 0 0

○和十进制算数运算没有本质区别: 逢二进一

乘法运算

1001

1001

0000

1001

0000

0101101

除法运算

1.1 1... 0101)1001

0101

1000

0101

0110

0101

0010

原码、补码和反码

- ○为什么引入原码、补码与反码
 - ○表达负数并简化(统一)加减法运算

$$D = \sum_{i=0}^{n} k_i \times 2^i = (k_n, \dots, k_1, k_0)_2$$

- ○原码 (orig): s为符号位 $D_{orig} = (s, k_n, ..., k_1, k_0)$
- ○反码 (inv): 正数时等于原码, 负数时

$$D_{inv} = \left(1, \overline{k}_n, \dots, \overline{k}_1, \overline{k}_0\right)$$

○补码 (comp) 2's complement code: 正数时等于原码, 负数时

$$D_{comp} = D_{inv} + 1$$

○引入补码后:

$$(A - B)_{comp} = A_{comp} + (-B)_{comp}$$

宋威

原码并不能正确处理负数加减法

○对于正数,添加符号位不影响结果

$$\bigcirc 2 + 3 = 5 \tag{}$$

$$\bigcirc 2 + 3 = 5$$
 $(0010)_2 + (0011)_2 = (0101)_2$

$$\bigcirc$$
7 - 4 = 3

$$(0111)_2 - (0100)_2 = (0011)_2$$

○当减法结果为负数时,结果并不正确

$$\bigcirc 4 - 7 = -3$$

$$\bigcirc 4 - 7 = -3$$
 $(0100)_2 - (0111)_2 = (1101)_2 = (-5)_{10}$

○当负数加正数时,结果也不正确

$$\bigcirc -2 + 3 = 1$$

$$\bigcirc -2 + 3 = 1$$
 $(1010)_2 + (0011)_2 = (1101)_2 = (-5)_{10}$

○对于正数,原码和补码相等,结果仍然正确

$$\bigcirc 2 + 3 = 5$$
 $(0010)_2 + (0011)_2 = (0101)_2$
 $\bigcirc 7 - 4 = 3$ $(0111)_2 - (0100)_2 = (0011)_2$

○当减法结果为负数时,减数当作补码,变成加法,结果 为正确的补码

○当负数加正数时,结果也正确

$$\bigcirc -2 + 3 = 1$$
 $\bigcirc (-2)_{comp} = (-2)_{inv} + 1 = (1101)_2 + (0001)_2 = (1110)_2$
 $\bigcirc (1110)_2 + (0011)_2 = (0001)_2 = (1)_{comp}$

补码计算的数学解释 (附加)

○对于负数来说

- $\bigcirc d_{orig} + d_{inv} = M 1$, 其中 $M = 2^n$, 也可以理解成符号位。 $(-3)_{orig} + (-3)_{inv} = (1011)_2 + (1100)_2 = (0111)_2 = 7$
- $\bigcirc d_{comp} = d_{inv} + 1 = M d_{orig}$ (不过我们这里暂时不考虑符号位)
- $O(-d)_{comp} = (1, M d)_2$
- 〇所以,对于减法A B(假设A, B都是正数)

$$(0,A)_2 + (1,M-B)_2 = (1,M+A-B)_2$$

〇同理,负数的加法 -A + B

$$(1, M-A)_2 + (0, B)_2 = (1, M+B-A)_2$$

补码到原码的转换 (附加)

因为:

$$d_{comp} = d_{inv} + 1 = M - d_{orig}$$

所以:

$$egin{aligned} d_{comp} + d_{orig} &= M \ d_{orig} &= M - d_{comp} \ d_{orig} &= ig(d_{comp}ig)_{inv} + 1 \end{aligned}$$

二进制数学计算总结

- ○利用原码直接计算
 - ○逢二进一
- ○原码、反码和补码
 - ○引入符号位
 - ○带符号位的原码计算不能处理负数
 - ○利用补码处理负数,统一加法和减法

- ○我们只讲BCD码、格雷码和ASCII码
 - ○BCD码: Binary Coded Decimal
 - ○用二进制编码来表示十进制数,电路系统中输出可读数据的主要方式。
 - ○格雷码: Gray code
 - ○相邻码字之间的二进制码差为1
 - ○通讯:减小噪声、码间距(汉明距离)稳定
 - ○ASCII码: American Standard Code for Information Interchange
 - ○将常见的英文/数字/符号用7(8)位二进制数表示的国际标准。
 - ○现在的操作系统中使用unicode (16位)表示多语言,是 ASCII的超集
- ○其他的常见编码见教材
 - ○余3码、2421码、5211码

BCD编码

码字	编码
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

由0~9的二进制编码直接表示十进制,每4位二进制数代表一位十进制数:



Gray编码

编码
0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000

相邻码字之间的码差只有一个比特。

如果用Gray码做计数器,可以避免漏码和插码。

从7到8, Gray码:

$$(0100)_{Gray} \rightarrow (1100)_{Gray}$$

二进制:

$$(0111)_2 \rightarrow (1011)_2 \rightarrow (1000)_2$$

 $(0111)_2 \rightarrow (0010)_2 \rightarrow (1000)_2$
 $(0111)_2 \rightarrow (0000)_2 \rightarrow (1000)_2$

但是,4位的Gray码当进位的时候不保持单一比特变化的特性!

$$(0000_1000)_{Gray} \rightarrow (0001_0000)_{Gray}$$

Gray码的特性只在一个码字内有效,多个码字同步仍然需要其他的办法。

ASCII码

Dec Hex	Oct	Chr	Dec	Hex	Oct	HTML	Chr	Dec	Hex	Oct	HTML	Chr	Dec	Hex	Oct	HTML	Chr
0 0	000	NULL	32	20	040	& #032;	Space	64	40	100	& #064;	@	96	60	140	& #096;	•
1 1	001	SoH	33	21	041	& #033;	!	65	41	101	A ;	Α	97	61	141	a	a
2 2	002	SoTxt	34	22	042	& #034;	п	66	42	102	& #066;	В	98	62	142	b	b
3 3	003	EoTxt	35	23	043	& #035;	#	67	43	103	C	C	99	63	143	c	C
4 4	004	EoT	36	24	044	& #036;	\$	68	44	104	D ;	D	100	64	144	d	d
5 5	005	Enq	37	25	045	& #037;	%	69	45	105	& #069;	E	101	65	145	e	е
6 6	006	Ack	38	26	046	& #038;	&	70	46	106	& #070;	F	102	66	146	f	f
77	007	Bell	39	27	047	& #039;	1	71	47	107	G	G	103	67	147	g	g
8 8	010	Bsp	40	28	050	& #040;	(72	48	110	& #072;	Н	104	68	150	h	h
99	011	HTab	41	29	051))	73	49	111	& #073;	1	105	69	151	& #105;	i
10 A	012	LFeed	42	2A	052	& #042;	*	74	4A	112	& #074;	J	106	6A	152	& #106;	j
11 B	013	VTab	43	2B	053	& #043;	+	75	4B	113	& #075;	K	107	6B	153	& #107;	k
12 C	014	FFeed	44	2C	054	,	,	76	4C	114	& #076;	L	108	6C	154	& #108;	1
13 D	015	CR	45	2D	055	-	-	77	4D	115	& #077;	M	109	6D	155	m	m
14 E	016	SOut	46	2E	056	& #046;		78	4E	116	& #078;	N	110	6E	156	n	n
15 F	017	SIn	47	2F	057	& #047;	/	79	4F	117	& #079;	0	111	6F	157	o	0
16 10	020	DLE	48	30	060	0	0	80	50	120	& #080;	P	112	70	160	p	p
17 11	021	DC1	49	31	061	1	1	81	51	121	Q	Q	113	71	161	q	q
18 12	022	DC2	50	32	062	& #050;	2	82	52	122	& #082;	R	114	72	162	r	r
19 13	023	DC3	51	33	063	3	3	83	53	123	& #083;	S	115	73	163	s	S
20 14	024	DC4	52	34	064	& #052;	4	84	54	124	& #084;	T	116	74	164	t	t
21 15	025	NAck	53	35	065	5	5	85	55	125	& #085;	U	117	75	165	u	u
22 16	026	Syn	54	36	066	6	6	86	56	126	& #086;	V	118	76	166	v	V
23 17	027	ЕоТВ	55	37	067	& #055;	7	87	57	127	W	W	119	77	167	w	W
24 18	030	Can	56	38	070	& #056;	8	88	58	130	X	X	120	78	170	x	X
25 19	031	EoM	57	39	071	& #057;	9	89	59	131	Y	Υ	121	79	171	y	у
26 1A	032	Sub	58	3A	072	& #058;	:	90	5A	132	Z	Z	122	7A	172	z	z
27 1B	033	Esc	59	3B	073	& #059;	;	91	5B	133	[[123	7B	173	{	{
28 1C	034	FSep	60	3C	074	& #060;	<	92	5C	134	& #092;	\	124	7C	174	& #124;	1
29 1D	035	GSep	61	3D	075	=	=	93	5D	135	& #093;]	125	7D	175	& #125;	}
30 1E	036	RSep	62	3E	076	& #062;	>	94	5E	136	& #094;	٨	126	7E	176	& #126;	~
31 1F	037	USep	63	3F	077	& #063;	?	95	5F	137	& #095;	_	127	7F	177	& #127;	Del

字符串 "Hello world!"

0x006C6C6548 Hell 0x046F77206F O WO 0x08 21646C72 rld! 0x0C 00000000

charstable.com

常见的编码形式总结

- ○BCD码
 - ○十进制的二进制表现形式
- ○格雷码
 - ○编码距离的概念和用途
- ○ASCII码
 - ○计算机系统中可见字符的编码

总结: 考试范围

- ○数制
 - ○数制的定义
- ○二进制
 - ○二进制和十进制之间的互相转换
- ○八进制和十六进制
 - ○二进制、八进制和十六进制之间的互相转换
- ○二进制计算
 - ○二进制原码的加减乘除手算
 - ○基于补码的二进制加减法
- ○编码
 - ○十进制与BCD编码之间的转换

任何问题?

第一章习题:

4, 5, 6, 7, 12, 15.

课堂习题

- ○列出下列数字的8位二进制原码 31,66,125,93
- ○列出下列数字的8位二进制补码 -66, -93
- ○使用8位二进制补码计算 31+125 66-93