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Abstract: Clos networks provide theoretically optimal solution to build high-radix switches. Dynamically reconfiguring a three-
stage Clos network is more difficult in asynchronous circuits than in synchronous circuits. This study proposes a novel
asynchronous dispatching (AD) algorithm for general three-stage Clos networks. It is compared with the classic synchronous
concurrent round-robin dispatching (CRRD) algorithm in unbuffered Clos networks. The AD algorithm avoids the contention
in central modules using a state feedback scheme and outperforms the throughput of CRRD in behavioural simulations. Two
asynchronous Clos networks using the AD algorithm are implemented and compared with a synchronous Clos network using
the CRRD algorithm. The asynchronous Clos scheduler is smaller than its synchronous counterpart. Synchronous Clos
networks achieve higher throughput than asynchronous Clos networks because asynchronous Clos networks cannot hide the
arbitration latency and their data paths are slow. The asynchronous Clos scheduler consumes significantly lower power than
the synchronous scheduler and the asynchronous Clos network using bundled-data data switches shows the best power
efficiency in all implementations.
1 Introduction

Clos networks are a class of multi-stage switching networks
first proposed over 50 years ago [1]. They provide
theoretically optimal solution to build high-radix switches
when the requirement exceeds the capacity of a feasible
crossbar. Although emerging very large-scale integration
technologies intensively reduce the area of a single cross-
point and enlarge the capacity of a crossbar, the insatiable
desire for speed and performance always pushes router
designs to the very limit. Clos networks are still used in the
state-of-the-art designs.

Early telephone networks are circuit-switched networks
where switches are statically configured. The later
asynchronous transfer mode (ATM) networks and Internet
protocol (IP) networks achieve higher throughput using
packet switching technologies [2], which require switching
networks to be dynamically reconfigured. The random
dispatching algorithm used in the ATLANTA chip [3]
demonstrates a feasible way of dynamically reconfiguring
a three-stage Clos network using heuristic algorithms.
Subsequently, numerous routing algorithms have been
proposed to improve throughput [4–9]. A Clos network
designed for current optical backbone networks has already
achieved peta-bit throughput [6].

Clos networks also find their utilisation in intra- and inter-
chip interconnection networks. Transistor scaling increases
the available bandwidth of a router chip and the wire
resources in on-chip networks. A router with many narrow
ports is more efficient than a router with a few wide ports
[10, 11]. A folded-Clos network is used in the Cray
BlackWidow multiprocessor to support high-bandwidth
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communications [12] and Beneš networks (multi-stage Clos
networks) are used in routers of an on-chip network
providing delay-guaranteed services [13].

Asynchronous circuits [14] are well known for their low-
power consumption and tolerance to process, voltage and
temperature variation [15]. Considering the high-power
consumption of current communication fabric and the
increasing process variation, it is beneficial to implement
high-radix routers asynchronously. However, dynamically
reconfiguring a three-stage Clos network is complicated and
area-consuming even for synchronous implementations. No
asynchronous implementation has yet been reported.

In this paper, a novel asynchronous dispatching (AD)
algorithm is proposed to reconfigure unbuffered
asynchronous Clos networks. It can be directly utilised to
substitute the high-radix switch in asynchronous spatial
division multiplexing routers [16] or asynchronous high-radix
routers in on-chip networks where area constraints are
important. Compared with the classic concurrent round-robin
dispatching (CRRD) algorithm in unbuffered Clos networks,
AD provides higher throughput in behavioural-level
simulations. An asynchronous Clos network using bundled-
data data switches is area and power-efficient. The remainder
of this paper is organised as follows: Section 2 explains the
background knowledge needed to understand this work.
Section 3 describes the CRRD and the AD algorithms in
detail. Section 4 then compares the performance of these
two algorithms in behavioural simulations. Section 5
demonstrates the way of implementing an asynchronous Clos
scheduler using the AD algorithm. Later in Section 6, three
different Clos networks are implemented and compared.
Finally, the paper is concluded in Section 7.
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2 Clos network

Fig. 1 shows a three-stage Clos network. The terminologies
used in this paper are as follows:

IM input module at the first stage.

CM central module at the second stage.

OM output module at the third stage.

n number of input ports (IPs)/OPs in each IM/OM.

k number of IMs/OMs.

m number of CMs.

i index of IMs (0 , i ≤ k).

j index of OMs (0 , j ≤ k).

r index of CMs (0 , r ≤ m).

h index of IPs/OPs in an IM/OM (0 , h ≤ n).

IM(i) the (i)th IM.

OM( j) the ( j)th OM.

CM(r) the (r)th CM.

IP(i, h) the (h)th IP in IM(i).

OP( j, h) the (h)th OP in OM( j).

LI(i, r) the link between IM(i) and CM(r).

LO(r, j) the link between CM(r) and OM( j).

C(n, k, m) a Clos network has m CMs and k IMs/OMs with
n IPs/OPs.

N the total number of IPs/OPs (N ¼ nk).

The first stage contains k IMs, each of which is an n × m
crossbar. In the second stage, m CMs are statically
connected with IMs and each CM is a k × k crossbar. The
third stage contains k OMs, each of which is an m × n
crossbar statically connected with CMs.

Switching networks can be classified into three categories
[2]:

(i) Blocking: the switches have possible connection states
such that an available input/output (I/O) pair cannot be
connected because of internal blocking.
(ii) Strict non-blocking (SNB): the switches ensure the
connection of any available I/O pairs without altering any
established connections.

Fig. 1 Three-stage Clos network C(n, k, m)
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(iii) Rearrangeable non-blocking (RNB): the switches ensure
the connection of any available I/O pairs with possible
modification of established connections. A three-stage Clos
network with n CMs (m ¼ n) is a RNB network, while it is
an SNB network with more than 2n 2 1 CMs [2].

The major advantage of Clos networks over crossbars is
their area efficiency. The area of a switching network is
proportional to the number of internal cross-points. For a
crossbar with N I/O ports, the area is proportional to the cost C.

CCB = N2 (1)

Both SNB and RNB Clos networks have the minimal cost
when k =

����
2N

√
.

CClos,SNB ≥ 2(2N )1.5 − 4N (2)

CClos,RNB ≥ (2N )1.5 (3)

Fig. 2 demonstrates the area of crossbars and Clos networks
with various numbers of ports. Both SNB and RNB Clos
networks reduce area overhead significantly and RNB Clos
networks have the minimal area. There are two classes of
routing algorithms for Clos networks [5]: optimal algorithms,
which provide guaranteed results for all matches but with a
high complexity in time or implementation, and heuristic
algorithms, which provide all or partial matches in low time
complexity. Although optimal algorithms guarantee the
connection of any I/O pairs, they require a global view of all
modules and consume long time to reconfigure. On the other
hand, heuristic algorithms are fast and spatially distributed.
Most of current dynamically reconfigurable Clos networks
utilise heuristic algorithms [3–9].

Buffer insertion is a usual way of improving throughput.
According to the stage where buffers are inserted, a Clos
network can be a space–space–space (S3) network without
any buffers, a memory–space–memory (MSM) network
with buffer insertion in IMs and OMs or a space–memory–
space (SMS) network with buffer insertion in CMs. S3

networks (or unbuffered networks) introduce no buffer
overhead but provide the worst throughput. SMS networks
normally show better throughput than MSM networks
because the buffers in CMs resolve the contention in CMs;
however, this scheme requires a re-sequencing function in
OMs because data issued to OMs are out-of-order. MSM is
the most utilised scheme in ATM networks. Buffers in IMs

Fig. 2 Area of crossbar and Clos network
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and OMs improve throughput without the out-of-order
problem but the OMs are required to speed up m times to
avoid throughput degradation. (A detailed comparison of
buffer insertion schemes and memory speed-up can be
found in [2, 9].)

Virtual output queuing (VOQ) [17] is an important concept
in Clos networks. It is a buffer technique that solves the head-
of-line (HOL) blocking problem. Instead of using a first-in-
first-out (FIFO) queue for each IP which limits the
throughput to 58.6% [18], breaking the queue into N logical
VOQs and storing data heading to different OPs in
individual VOQs achieve 100% throughput [17]. This
buffer technique can be used in input-buffered switches
[9, 17] or inside the IMs of MSM Clos networks [4].

In this paper, we consider only three-stage S3 Clos
networks with no VOQs in input buffers or in IMs. This
limitation is introduced for two reasons:

1. The area consumption of VOQs or buffered switches is
over-large for the routers in on-chip network, which is the
direct application of this paper. Similar with the VOQs in
input-buffered switches, routers in on-chip networks can
use virtual channels (VCs) [19] to alleviate the HOL
blocking with much less area overhead than VOQs.
However, the analyses in [16] show that the area overhead
of VCs is already significantly large in asynchronous VC
routers and the synchronisation introduced by VCs
compromises its throughput improvement.
2. The routing algorithms for S3 Clos networks can be easily
extended to support SMS or MSM Clos networks. The real
difficulties are in the asynchronous implementations, which
can schedule a Clos network complying with these
algorithms. As it will be shown in Section 5, the scheduler
for an S3 Clos network is already complicated. It is better
to keep the problem simple at this early research stage.

3 Dispatching algorithms

In a Clos network, CMs are shared by all I/O pairs as every I/O
pair has m possible path configurations and each of them
utilises a different CM. In the worst case, all the nk IPs
would try to utilise the same CM ignoring that one CM is
capable of setting up only k paths. Therefore an efficient
routing algorithm must dispatch requests from IPs to all CMs
evenly; otherwise, the throughput performance is
compromised. Heuristic algorithms process a request from
IP(i1, h1) to OP( j2, h2) in two stages [8]. First, module
matching: reserving a path from IP(i1, h1) to an LO(r, j2)
which is connected with OM( j2), and secondly port
matching: connecting LO(r, j2) and OP( j2, h2) in OM( j2).
As the module matching stage chooses the target CMs for all
IPs, it determines the request distribution which directly
affects the throughput of a routing algorithm. The sub-
algorithm used in module matching, namely the dispatching
algorithm, is the key research issue of Clos routing algorithms.

3.1 Concurrent round-robin dispatching (CRRD)

The data transmitted in synchronous Clos networks are routed
in units of a cell – a small fraction of a packet with fixed size.
Multiple cells are transmitted synchronously from IMs to
OMs in one cell time. The reconfiguration of switches
proceeds concurrently with data transmission in a pipelined
manner. The new configuration generated in the current cell
time takes effect in the next cell time. The latency of
generating a new configuration for the Clos network is
454
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therefore hidden. A cell time lasts one or multiple cycles
depending on the complexity of the routing algorithm.

The CRRD algorithm [4] is one of the classic algorithms
extensively utilised in synchronous Clos networks. It was
first proposed in MSM Clos networks where VOQs are
implemented in IMs. CRRD provides 100% throughput.
The algorithm can be modified to schedule S3 Clos
networks, which is used in this paper to represent the
classic performance of synchronous S3 Clos networks.

As indicated by its name, the original CRRD algorithm
places independent round-robin arbiters on each LI (output-
link arbiter), VOQ (VOQ arbiter) and LO. In an S3 Clos
network, the VOQ arbiters are replaced with input-port
arbiters on each IP. The modified description of CRRD is
illustrated as follows:

1. Phase 1: Matching within IMs.
The first iteration
† Step 1: Non-idle IPs send requests to all output-link
arbiters.
† Step 2: Each output-link arbiter selects an IP.
† Step 3: Each non-idle IP accepts one LI from the received
grants.
The ith iteration (i . 1)
† Step 1: Unmatched IPs send requests to all output-link
arbiters.
† Steps 2 and 3: Same as the first iteration.
2. Phase 2: Matching within CMs.
† Step 1: Matched LIs send requests to CMs. Each LO in
CMs selects one request and returns a grant.
† Step 2: In the next cell time, the granted IPs send their cells
and other IPs try again.

Fig. 3 shows an example of the iterations in CRRD. Assume
that all IPs have received new packets and all LIs are available
initially. As shown in Fig. 3a, IPs send requests to all available
LIs. Then each LI grants one IP. Fig. 3b illustrates an uneven
request distribution where multiple LI arbiters select the
same IP. The step 3 of CRRD ensures all IPs to accept only
one LI (Fig. 3c). In this way, the unmatched IPs are able to
try again in the next iteration as shown in Fig. 3d.

CRRD ensures that requests are dispatched to different
CMs evenly and one IP requests only one CM. However,
the even distribution relies on the number of iterations. In

Fig. 3 Example of iterations in CRRD

a Step 1, request
b Step 2, grant
c Step 3, accept
d Step 1, next iteration
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the worst case when only one match is made in each iteration,
an IM needs n iterations to match all the n IPs. The number of
iterations is limited by the cell time. As one iteration needs
one clock cycle to finish, the cell time must be longer than
n cycles to guarantee even request distribution.

Although requests from IPs are evenly distributed to all
CMs, two requests from different IMs asking for the same
OM can be distributed to the same CM competing for the
same LO. CRRD produces even request distribution but this
distribution is oblivious to the possible contention between
requests from different IMs.

3.2 Asynchronous dispatching (AD)

Reconfiguring an asynchronous Clos network has
fundamental differences with its synchronous counterpart:

† Incoming packets arrive asynchronously.
† An asynchronous Clos network is reconfigured for packets
instead of cells.
† Modules are event-driven. The dispatching of different
requests are not synchronised.

As a solution to these problems, a new AD algorithm is
proposed. In this algorithm, the matching within IMs and
the matching within CMs are separated in two independent
sub-algorithms running concurrently. All the configuration
modules are event-driven. Independent arbiters are placed
on each LI (output-link arbiter), IP (input-port arbiter) and
LO as the modified CRRD algorithm does, but these
arbiters are MUTEX arbiters [20] or tree-arbiters [21, 22].

In the CRRD algorithm, if a request fails to reserve a path
due to the contention in CMs, it automatically tries again in
the next cell time. However, an asynchronous request
cannot withdraw itself until an acknowledgment is received.
The path in an asynchronous Clos network is reserved for a
whole packet instead of a single cell. Directly adopting the
CRRD algorithm in asynchronous Clos networks introduces
severe arbitration latency because the contention in one CM
causes at least one request to wait a whole packet time even
when other CMs are available. To reduce such latency
overhead, the AD algorithm introduces a state feedback
scheme. Once an LO is occupied or released, the
information is broadcasted to all IMs. Since IMs are
informed of the availabilities of LOs in all CMs, they
distribute requests only to the CMs with available LOs in
the IM matching sub-algorithm. The contention in CMs is
accordingly avoided. A simplified description is as follows:

1. Sub-algorithm 1: Matching within IMs.
† Step 1: A new packet arrives at IP(i, h).
† Step 2: IP(i, h) waits until at least one target LO is available.
† Step 3: IP(i, h) sends requests to all output-link arbiters
leading to the available LOs.
† Step 4: Output-link arbiters return grants to IP(i, h).
† Step 5: IP(i, h) selects a path and withdraws requests to
other output-link arbiters.
2. Sub-algorithm 2: Matching within CMs.
† Step 1: A request is forwarded from an IM.
† Step 2: The target LO returns a grant to the IM and
reconfigures the CM once it is available.
† Step 3: The updated states are broadcasted to all IMs.

Although the algorithm description appears in a way that
only one request is served at one time, the same algorithm
runs concurrently in all IPs. Thus a maximal of N requests
IET Comput. Digit. Tech., 2011, Vol. 5, Iss. 6, pp. 452–467
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from all IPs can be served simultaneously but these requests
are unsynchronised: a request may arrive at any time when
another request is under processing.

Fig. 4 illustrates an example of the state feedback scheme in
the AD algorithm. The initial state is shown in Fig. 4a. The
C(3, 3, 3) network has some links occupied already, such as
the links on paths IP(2, 3) to LO(1, 3) and LI(3, 3) to LO(3,
1). Assume that a new packet arrives at IP(2, 1) and requests
an OP in OM(1). According to this request, the packet must
occupy a CM with an available LO to OM(1). Informed by
the state feedback from all CMs, the sub-algorithm running
in IM(2) learns that LO(3, 1) in CM(3) is already taken.
IP(2, 1) sends requests to LI(2, 1) and LI(2, 2) which lead to
the CMs with the available LOs to OM(1). Since LI(2, 1) is
already occupied by the path IP(2, 3) to LO(1, 3), as
depicted in Fig. 4b, only the output-link arbiter on LI(2, 2)
returns a grant to IP(2, 1). Later in Fig. 4c, IP(2, 1) sends a
request to LO(2, 1) through LI(2, 2). The arbiter on LO(2, 1)
accepts this request and broadcasts its new state to all IMs.
Similar to the CRRD algorithm, the sub-algorithm running in
IMs evenly distributes requests to CMs but this distribution
is no longer oblivious to the contention in CMs. IMs utilise
the state feedback from CMs to avoid contention, which also
increases throughput.

The state feedback scheme cannot resolve the contention
among the requests processed simultaneously because they
use the same state feedback. In other words, the state
feedback avoids contention between established paths and
future requests but cannot resolve the existing contention. If
contention occurs, multiple requests from different IMs are
sent to the same CM competing the same LO. In this case,
the arbiter on the LO grants only one request and forces
others to wait until the granted request is withdrawn. The
arbitration latency for the blocked requests is prolonged but
they will be served eventually.

It should be noticed that the number of simultaneous requests
in asynchronous Clos networks are significantly smaller than
synchronous Clos networks due to the asynchronous nature.
In synchronous Clos networks, all requests are synchronised;
therefore the number of simultaneous requests is the total
number of active requests. On the other hand, asynchronous
Clos networks are not synchronised. When the network load
is low, the time to establish a path is much shorter than the
time to transmit a packet. The process of establishing a path
can be recognised as an event. It is rare for two events to
occur at exactly the same time. When the network is
saturated, the number of simultaneous requests increases as
many requests are blocked. Nevertheless, the number of
simultaneous requests is still much smaller than the number in
synchronous Clos networks as nearly half IPs are busy
transmitting data (49% throughput in uniform traffic as shown
in Fig. 8). Using the placed and routed implementations of the
synchronous and asynchronous Clos schedulers in Section 6,
we have extracted the CM contention rate (the ratio of the
number of conflicted requests sent to CMs to the number of
all CM requests) of the saturated Clos networks. The rates are
56.7% and 24.9% for the synchronous and asynchronous
schedulers, respectively. It is shown that the state feedback
scheme successfully reduces the contention significantly. As
will be demonstrated in the next section, the state feedback
improves throughput in saturated networks.

4 Performance of CRRD and AD

In this section, CRRD and AD algorithms are evaluated with
behavioural level models written in SystemC. Schedulers for
455
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Fig. 4 Example of AD

a IP requests
b Grant return
c Path reconfiguration and state feedback
a C(4, 8, 4) S3 Clos network are built and injected with
various traffic patterns. Some assumptions are employed to
produce a fair comparison:

† Random arbiters are utilised in both models.
† Requests are withdrawn immediately after a path is
configured.
† Latency is normalised in units of a cell time.

Synchronous and asynchronous Clos networks have
different hardware implementations. The simulations in this
section attempt to reveal the performance differences at the
behavioural level. Many hardware details are thus
simplified. Both the round-robin arbiters in synchronous
Clos networks and the MUTEX or the tree arbiters in
asynchronous Clos networks are hardware models
approximating random arbiters. Therefore pseudo-random
arbiters are directly used in the behavioural models. In
synchronous Clos networks, the generation of a new
configuration and data transmission run in a pipelined
fashion. The arbitration latency is hidden and does not
compromise throughput. On the other hand, asynchronous
Clos networks cannot pre-calculate a path before the path is
fully available. Thus dynamic reconfiguration introduces
throughput loss, which will be analysed in Section 6. For
the performance comparison of the dispatching algorithms
in this section, the arbitration latency is normalised by
ignoring the data transmission latency and assuming that
the asynchronous arbitration latency is equal to the
synchronous arbitration latency – a cell time.
456
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4.1 Non-blocking uniform traffic

In non-blocking uniform traffic, network load spreads to all
output ports without any HOL blockage. Therefore the
inefficiency of routing algorithms is the sole source of
throughput loss. r(s, d) is the normalised load between IP(s)
and OP(d) where 1 ≤ s, d ≤ N. A packet is injected in every
cell time when r ¼ 1 and no packet is injected when r ¼ 0.
The injected packet sequence of IP(s) complies with a Poisson
process which generates a load with expectation
�r(s) =

∑N
d=1 �r(s, d). The individual load between any IP and

OP is

�r(s, d) = �r(s)

N
(4)

For each OP, a prior condition

∑N

s=1

r(s, d) ≤ 1 (5)

is guaranteed to avoid overloaded OPs.
Fig. 5 shows the packet latency and throughput

performance using different dispatching algorithms. To
achieve the top throughput, the CRRD algorithm runs with
four iterations. CRRD is reported to achieve 100%
throughput in MSM networks [4] where VOQs are
implemented. In an S3 Clos network, however, an IP is
blocked until the blocked cell is successfully forwarded.
IET Comput. Digit. Tech., 2011, Vol. 5, Iss. 6, pp. 452–467
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Although CRRD evenly dispatches requests to all CMs, the
oblivious request distribution leads to contention in CMs.
AD algorithm avoids such contention by utilising the state
feedback from CMs in the IM matching sub-algorithm. As
shown in Fig. 5b, the AD algorithm achieves 76% switch
throughput, which is 6% higher than the throughput of the
CRRD algorithm.

Heuristic algorithms cannot achieve 100% throughput in a
RNB S3 Clos network even when the traffic is non-blocking.
This sub-optimal throughput has two major causes: first, most
heuristic algorithms, such as the CRRD algorithm, are
oblivious algorithms which cannot resolve the contention in
CMs when VOQs are not implemented; secondly,
established paths are not allowed to be modified in some
Clos networks, including all asynchronous Clos networks.
One way to improve the throughput is increasing the
number of CMs because it reduces the probability that two
requests from different IMs compete for the same LO in
one CM [3]. When the number of CMs reaches 2n 2 1, the
Clos network is SNB and new paths can be connected
without modifying any established paths.

As shown in Fig. 6, both the CRRD and the AD algorithms
show better performance with more CMs. The AD algorithm
reaches 100% throughput when the Clos network is SNB
(m ≥ 7). Therefore the throughput of AD is solely
constricted by the resources occupied by established paths.
Once the Clos network has enough CMs to resolve the

Fig. 5 Switch performance in non-blocking uniform traffic

a Packet latency
b Switch throughput
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resource bottleneck, AD can deliver all packets within a
fixed amount of time. On the other hand, the CRRD
algorithm cannot provide 100% throughput even with 10
CMs. Increasing the number of CMs significantly alleviates
the contention in CMs but cannot resolve it.

The throughput of the CRRD algorithm is also constricted
by the number of iterations in its matching within IMs.
Fig. 7 shows the maximal accepted load of CRRD with
various numbers of iterations. CRRD achieves the peak
throughput with more than four iterations. Since an IM in a
C(4, 8, 4) network has four IPs, four iterations are enough to
match all possible IPs. Strictly speaking, the AD algorithm
also utilises iterations in its IM matching sub-algorithms.
However, asynchronous modules are event-driven. Compared
with the interval between two continuous requests, the
latency of an internal feedback is much shorter and can be
ignored. As a result, the AD algorithm always runs with
sufficient iterations to provide the optimal throughput.

4.2 Blocking traffic patterns

Traffic patterns in real applications are blocking. Uniform
traffic is one of the most analysed synthetic traffic patterns,
which is defined as

�r(s, d) = �r(s)

N
(6)

Fig. 7 Throughput of CRRD with various number of iterations

Fig. 6 Throughput with various number of CMs
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Uniform traffic has the same load description as the non-
blocking uniform traffic but without the prior non-blocking
condition; therefore an OP can be loaded with traffic
exceeding its actual bandwidth and some IPs are thus
blocked in some occasions.

Fig. 8 shows the accepted load under uniform traffic. S3

Clos networks are input-buffered switching networks. Every
IP is connected with an infinite FIFO in simulation. This is
different from the buffered IM scheme where an IP is
connected to VOQs inside the IM [4]. It is known that the
maximal accepted load for an input-buffered switching
network is 58.6% [18]. When the number of CMs is 4
(m ¼ 4), the Clos network is a RNB network where
connection capability is restricted. As a result, the maximal
accepted load of all routing algorithms is much lower than
58.6%. As shown in Fig. 8, neither CRRD nor AD can
provide throughput greater than 50% in RNB Clos
networks. The AD algorithm achieves 49.7% throughput,
which is 0.8% higher than that of the CRRD algorithm. We
have also simulated both algorithms in SNB Clos networks.
The maximal accepted load of the AD algorithm increases
to 55.4%, which is only 3.2% lower than the optimal
accepted load and 1.6% higher than that of the CRRD

Fig. 8 Accepted load in uniform traffic
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algorithm. If VOQs are implemented in IMs, CRRD
provides 100% throughput in RNB networks because the
HOL problem is solved by VOQs [4].

5 Implementation

This section reveals the hardware details of an asynchronous
scheduler controlling a 32-port C(4, 8, 4) S3 Clos network
using the AD algorithm. Fig. 9 depicts the overall
architecture of the scheduler. Each switching module in the
Clos network is reconfigured by a separate scheduler
(IMSCH, CMSCH or OMSCH). For each request from an
IP, a path is reserved from IM to OM in a forward direction
and released from OM to IM in a backward direction. The
detailed sequence control will be introduced in Section 5.1.

An IM scheduler (IMSCH) comprises n input request
generators (IRGs), one IM dispatcher (IMD) and two dual-
directional crossbars. Each IRG receives the request from
an IP and translates the request into three different one-hot
request signals: IM request (imr), CM request (cmr) and
OM request (omr). As indicated by their names, these
request signals are used in the schedulers of different
switching modules. The IM crossbar is reconfigured by the
IMD running the AD algorithm. The IMD receives the imr
signals from all IRGs in the IM and the state feedback cms
from all CMs. It selects an available CM and reserves a
path in the IM crossbar through the IM configuration bus
imcfg. This configuration is also sent to CMRICB (cmr
forwarding crossbar in IM) and OMRICB (omr forwarding
crossbar in IM). These two crossbars then forward cmr and
omr to the CM selected by the IMD. Note that these two
crossbars are dual-directional. Therefore ACK signals (cmra
or omra) are sent back through the same path as configured
in these crossbars when a path is reserved in CMs or OMs.

A CM scheduler (CMSCH) contains one CM dispatcher
(CMD) and one dual-directional crossbar. CMD receives
cmr from all IM schedulers. According to the target LO in
each request, CMD reserves a path to the LO or block the
request until the LO is available. Once a new configuration
is made, the internal state of the CMD module is
broadcasted to all IMs through the cms signals. Similar to
IMSCH, the configuration bus cmcfg also controls the
Fig. 9 Architecture of the Clos scheduler
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internal omr forwarding crossbar (OMRCCB). Thus,
corresponding omr signals are forwarded to OMSCHs using
the same configuration. OMRCCB is also dual-directional;
therefore the ACK signal omra is sent back through the
same path.

An OM scheduler (OMSCH) is simpler than IMSCH or
CMSCH. It receives all omr signals forwarded from CMs
and tries to reserve a path to the target OP for each request.

5.1 Input request generator

An IP can request one of the nk OPs scattered in k OMs. In the
module matching stage, a path leading to the target OM is
reserved using the dispatching algorithm. Then in the port
matching stage, a path to the target OP will be reconfigured
in the target OM. Therefore the request from an IP needs to
be translated into two sub-requests: one for the module
matching stage and the other one for the port matching
stage. As IMs and CMs have separate dispatcher modules,
the sub-request for module matching is further divided into
two independent requests.

In our Clos scheduler, every IP is connected with an input
request generator as shown in Fig. 10. The incoming request
(req) is translated into two requests: one used in the
dispatching algorithm, identifying an LO to the target OM
(lo_req), and the other one used in the port matching stage,
actually the request used in the target OM (omr). As
required by normal asynchronous circuits, both lo_req and
omr are one-hot coded. The format translator in IRG
converts the coding format of req into one-hot. In our
implementation, the req signals are pre-coded in one-hot
and no translation is needed. Although both IMD and CMD
use the same request information from lo_req, they have
different timing requirements. lo_req is divided into two
independent requests: imr and cmr. The ACK signals for
imr, cmr and omr are imra, cmra and omra, respectively.

The signal transition graph (STG) of the input request
generator is shown in Fig. 10b. All of imr, cmr and omr are
fired immediately after a request is received. Although IM
should be the first stage to be reconfigured, cmr and omr
are automatically blocked in the two crossbars (CMRICB

Fig. 10 Input request generator

a Schematic
b STG
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and OMRICB) inside IM scheduler. Simultaneously firing
them with imr introduces no side-effect and simplifies the
control logic. When imra is driven to high by a new
configuration in imcfg, the IMD successfully reserves a path
inside IM. At the same time, cmr and omr are forwarded to
the central stage through CMRICB and OMRICB,
respectively. Similar to an IMD, a CMD reconfigures the
CM crossbar and omr is forwarded to the OM scheduler
through OMRCCB inside the CM scheduler. Finally when
a positive edge on omra is detected in IRG, an
acknowledgement is sent back to IP through the ack signal
and a path is successfully reserved in the Clos network.

The release of a path is more complicated than its
reservation. The release sequence must start from OMs and
end in IMs. If the path in IMs or CMs is withdrawn before
that the path in OMs is safely withdrawn, the release of the
path in OMs would not be guarded and the next request
would be misrouted. As a result, two asymmetric C-
elements are added on imr and cmr to guarantee that the
strict withdrawal sequence is satisfied. When a negative
edge on imra is detected in IRG, the path is safely
withdrawn and IP is acknowledged.

5.2 IM dispatcher

IMDs are the most important and complicated modules in
the asynchronous Clos scheduler. An IMD receives requests
(imr) from all IRGs in the same IM, searches an available
CM for each request according to the state feedback from
CMs (cms) and configures the IM crossbar. The structure
of an IMD is shown in Fig. 11. It comprises three
components: a request generate matrix, an M–N match
allocator and an ACK tree.

As described in Section 3.2, an IP requests only those LIs
leading to available LOs. To achieve this selective request
scheme, the request-generate matrix acts as a filter where
only requests with available LOs are let through. A part of
its internal circuit is depicted in Fig. 12a. imri,h,j is one bit
of the k-bit request signal imri,h from the IRG connected
with IP(i, h). It is high when imri,h is fired and the target
output module is OM( j). There are m LOs leading to
OM( j) and their availabilities are identified in the state
feedback signals from cms1,j to cmsm,j, which come from
the m CMs. Every pair of imr1,h,j and cmsr,j are verified by
the asymmetric C-element in Fig. 12a. As every bit of the
total of n × k imr request bits is paired with m cms state
bits, there are n × k × m C-elements inside one request-
generate matrix and the output signals of these C-elements
form a three-dimensional matrix, namely iprm (the index i
in Fig. 12a is constant in an IMD). Since each k-bit imri,h is
one-hot coded, the signal vector {iprmi,h,r,1 2 iprmi,h,r,k} is
also one-hot coded and is or-reduced into a request bit,
namely ipri,h,r, indicating that IP(i, h) attempts to occupy
LI(i, r). These ipr signals are grouped into n signal vectors
(ipri,1– ipri,n), each of which is m bits.

Fig. 11 IM dispatcher
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The request-generate matrix does not ensure that the
verified request reserves an LO without contention. A
positive cms bit indicates that one LO is currently available
but it may trigger multiple requests in different IMs. If
these requests are sent to the same CM, contention occurs
in the same way as using CRRD. The requests, which fail
to reserve the LO, are blocked in the CMD and wait for the
LO to be released. In this situation, a pulse is produced on
the cms bit, but it must not withdraw the requests triggered
by itself; otherwise, a false acknowledgment can be
produced. The asymmetric C-elements in the request-
generate matrix ensure that cms signals block incoming
requests but the established requests are withdrawn only
by themselves rather than cms. Avoiding false
acknowledgment is the underlying reason that the state
feedback cannot solve the existing contention as described
previously in Section 3.2.

Fig. 12b demonstrates a novel M–N match allocator that
matches multiple input ports to multiple output ports
concurrently. It utilises the classic parallel iterative
matching (PIM) algorithm [23], which is also used in the
phase 1 of the CRRD algorithm. In the classic PIM
algorithm, requests from input ports are synchronised. PIM
uses multiple iterations to reach an even match. The key
prerequisite of this algorithm is that once an output port is
reserved, the matched input port must withdraw its extra
requests to other output ports. In an M–N match allocator,
a total number of n IPs compete for m LIs. The requests of
IPs come from ipri,1 to ipri,n and the m LIs are configured
by imcfgi,1 2 imcfgi,m. Note that every ipri,h has m bits
requesting all the m LIs. The bit leading to busy LOs are
filtered out by the request-generate matrix. When an IP(i, h)
fires a request, ipri,h requests all available LIs concurrently.
If an LI is idle, the output-link arbiter on this LI grants the

Fig. 12 Components of IMD

a Request generate matrix
b M–N match allocator
c Ack tree
460

& The Institution of Engineering and Technology 2011
request using the olg signal. As multiple output-link arbiters
may grant the same IP, the input-port arbiter selects one
granted LI and drives the corresponding imcfg bit to high.
As the same as the PIM algorithm, after an LI is reserved,
the extra requests to other LIs are withdrawn immediately
through the request enable signals (ipreni,1 2 ipreni,n). The
generation equation for every ipreni,h,r bit is expressed in (7).

ipreni,h,r = ¬
⋃m

l=1,l=r

imcfgi,l,h

( )
(7)

In the literature, there are other allocators that can allocate
multiple resources (output ports) to multiple clients (input
ports): the forward acting n × m arbiter [24], the VC
admission control presented in QNoC [20] and the multi-
resource arbiter [25–27]. The VC admission control treats
all clients fairly but resources are selected by an unbalanced
static priority arbiter [28]. The multi-resource arbiter is a
quasi-delay-insensitive (QDI) allocator that allocates
resources fairly. We have utilised the multi-resource arbiter
in our original scheduler design [29] but it introduces large
area overhead. Both VC admission control and the multi-
resource arbiter allocate resources in a serialised way that
causes extra arbitration latency. The forward acting n × m
arbiter is a speed independent allocator that can allocate
multiple requests in parallel.

The M–N match allocator is much smaller than the multi-
resource arbiter. It uses a similar structure as the forward
acting n × m arbiter and it allocates requests in parallel.
However, it is not speed independent or QDI because the
withdrawn of requests and olg is unguarded for less area
overhead. Fig. 13 illustrates the STG of an M–N match
allocator with two requests (ipr1 and ipr2) and two resources.
To simplify the problem, we assume the request-generate
matrix blocks no requests. Thus the input request ipr is
always duplicated to all output-link arbiters. The forward
arbitration transitions are depicted in bold lines and the
backward request withdrawn transitions are drawn in slim
lines. The unguarded completion check is highlighted in
dash lines. As an example, supposing the second resource is
allocated to the first request, imcfg2,1 is driven to high and
the duplicated request sent to output-link arbiter (1) should
be withdrawn. As the second request can arrive at any time,
the output-link arbiter (1) may select ipr1 (olg1,1+) or block
ipr1 as ipr2 arrives already. In either case, the AND gate on
the duplicated request ipr1,1 in Fig. 12b releases ipr1,1 and
olg1,1. For correct operation, this withdrawn process must
finish before ipr12 otherwise olg1,1 can produce a fake
acknowledgment. Instead of using complicated completion
detection circuits to enforce the speed independent
requirement as shown by the dash line, we found that
practical hardware implementations ensure correct operation.
The timing requirement is expressed in (8).

timcfg+�olg− , timcfg+�ipr− (8)

In the overall transition graph in Fig. 10b, imra+ is triggered
by imcfg+ and ipr2 is triggered by imr2. The right side of (8)
is the accumulative latency of reserving and releasing a path in
CMs and OMs, together with the whole data transmission
delay. The left side of (8), on the other hand, is merely the
accumulative latency of an OR gate tree expressed by (7), a
two-input AND gate and an output-link arbiter. It will be
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shown in Section 6.1 that the right side is far longer than the
left side even without data transmission.

As shown in Fig. 12c, the ACK signals imra are generated
from the configuration bus imcfg using the OR gate trees
inside the ACK tree. These ACK signals are then sent to IRGs.

5.3 CM dispatcher

CMDs reconfigure the central stage of a Clos network using
the AD algorithm. They are similar to the arbiters of

crossbars where each output port has an independent arbiter
granting requests from all input ports.

Fig. 14 shows the internal structure of a CMD. As every
CM has k output ports, there are k arbiters in each CMD.
Each arbiter receives requests from all the k input ports and
generates the configuration signal for its output port. cmrr,i,j

is a 1-bit request forwarded from IMs indicating that an IP
in IM(i) is competing for the LO(r, j) in CM(r). cmcfgr,j,i is
set to high when the arbiter on LO(r, j) grants the request
cmrr,i,j. When a new configuration is made, an

Fig. 13 STG of a 2 × 2 M–N match allocator
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acknowledgment is sent back to the IRG using the reserved
path and the state is broadcasted to all IMs using the state
feedback signal cms. The ACK signals cmra and the state
feedback cms are generated using OR gate trees similar to
the tree shown in Fig. 12c. Their generation equations are
expressed as follows

cmrar,i =
⋃k

l=1

cmcfgr,l,i (9)

cmsr,j =
⋃k

l=1

cmcfgr,j,l (10)

5.4 OM scheduler

An OM scheduler reconfigures an OM using the same
arbitration structure as a CMD. Each OP has an arbiter that
receives requests from all input LOs in the same OM and
makes a grant when the OP is available. The requests are
forwarded from the input request generators in IM
schedulers through the path reserved in OMRICBs and
OMRCCBs. The ACK signals are also generated using the
same logic as in CMD. The generation equation is
expressed below

omraj,r =
⋃n

l=1

omcfgj,l,r (11)

where omraj,r is the ACK signal from OM( j) to CM(r) and
omcfgj,h,r is the configuration bit controlling the connection
between LO( j, r) and OP( j, h).

6 Hardware performance

Three different 32-port C(4, 8, 4) S3 Clos networks have been
implemented in this paper: an asynchronous Clos network with
data switches using the channel-sliced pipelines [30] (A-SC),
another asynchronous Clos network with data switches using
bundled-data pipelines (A-BD) and a synchronous Clos
network (Syn). Both asynchronous Clos networks are
reconfigured by the same scheduler using the AD algorithm
and the synchronous Clos network is reconfigured by a
classic scheduler using the CRRD algorithm [4].

All designs are synthesised, placed and routed with
commercial tools using the Faraday 0.13 mm standard cell
library based on the UMC 0.13 mm technology. All basic
asynchronous cell elements, such as the C-element and the

Fig. 14 CM dispatcher
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2-input MUTEX cell, are manually written in gate-level
Verilog HDL using only standard cells. Accurate latency
and throughput is obtained from the post-layout netlists co-
simulated with test benches written in SystemC. Gate and
wire latencies are extracted and back-annotated in all
simulations. The power consumption of different Clos
networks is obtained from the Synopsys PrimeTimeTM PX
tool suite using the toggle rates from simulations and the
accurate RC information extracted from the routed layout.

The asynchronous Clos scheduler is self-timed with a
timing requirement described in (8). The channel-sliced
pipeline [30] is a fast QDI pipeline style which transmits
data packets through a number of unsynchronised 1-of-4
sub-channels [31]. Although the QDI data switches are
tolerant to temperature, power and process variation, and
dissipates extremely low power during idle states, it
introduces extra power and area overhead. As an alternative,
an asynchronous Clos network using bundled-data pipelines
in its data switches is also implemented. The bundled-data
pipeline is self-timed. Although it consumes extremely low
power during idle states, it may suffer from variation and
timing closure is problematic. Compared with the QDI data
switches, the bundled-data data switches introduce much
lower power and area overhead.

The scheduler in the synchronous Clos network is a
reproduction of the CRRD algorithm described in [4]. Its
structure is similar to that of the asynchronous scheduler
shown in Fig. 9, but all components are synchronised with
the global clock. A global state machine is added in the
scheduler to control iterations. Since synchronous circuits
handle binary codes easily and the sequence control
problem is now resolved by the global state machine, no
IRG module is needed. After detailed optimisation, the
synchronous Clos network can run at as high as 300 MHz
after layout. The final clock period is set to 3.5 ns
(285 MHz) because running at 300 MHz introduces
significant area overhead on buffers. The number of
iterations is dynamically reconfigurable and the length of a
cell time is

tcell = tclock(Niteration + 1) (12)

where Niteration is the number of iterations.

6.1 Basic implementation results

The area consumption of all Clos implementations, including
the original asynchronous Clos scheduler in [29] (A-Orig)
and an asynchronous crossbar using bundled-data pipelines
(Crossbar-BD), are demonstrated in Table 1. The data width
of each I/O port is 32 bits.

The synchronous Clos network has the smallest total area
due to its smallest data switches. Asynchronous circuits
introduce extra area overhead on data paths. For bundled-
data pipelines, although data are transmitted in binary as the
synchronous data path, extra single-rail latch control circuits
are inserted as required by the self-timed handshake protocol.
In the channel-sliced pipelines, every two data digits are
translated into a 4-bit one-hot code word and every sub-
channel delivering this 4-bit code word needs an extra ACK
wire as sub-channels are not synchronised. In summary,
utilising asynchronous circuits introduces area overhead in
data paths due to handshake protocols and code styles.

On the other hand, the proposed asynchronous scheduler is
smaller than its synchronous counterpart. Three reasons lead
to this outcome: (i) the storage elements used in asynchronous
IET Comput. Digit. Tech., 2011, Vol. 5, Iss. 6, pp. 452–467
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Table 1 Area consumption, mm2

A-CS A-BD A-Orig [29] Crossbar-BD Syn [4]

scheduler 88 057 88 191 260 740 82 344 115 262

one IMD 3862 3870 21 882 – 3186

one CMD 4879 4803 8437 – 6498

one OMSCH 985 992 1258 – 1375

one IRG 160 163 196 – –

switch 347 276 146 804 – 251 089 97 454

total 435 333 234 995 – 333 433 212 716
circuits are C-elements which are smaller than flip-flops. (ii)
As synchronous circuits are synchronised and clocked, extra
storage elements are inserted where the latency of one
operation, such as the iterations, is longer than one clock
period. (iii) Since synchronous scheduler pre-calculates the
configuration for the next cell time, the generated
configuration is stored in flip-flops as an extra pipeline
stage. Owing to these reasons, all asynchronous scheduler
components are smaller than their synchronous counterparts
except the IMD. The request-generate matrix in every IMD
uses the state feedback from CMs to avoid the contention in
CMs. As depicted in Fig. 11, every request-generate matrix
contains an n × k × m matrix of C-elements, which causes
the large area consumption of IMDs.

It is also shown in Table 1 that the asynchronous scheduler
implemented in this paper achieves a significant area
reduction of 66% from its original design. The original
design utilises the multi-resource arbiter which sequentially
allocates multiple input ports to multiple output ports. As
every I/O pair has m different paths through the m CMs,
each IMD has m multi-resource arbiters running in parallel.
These parallel arbiters lead to the major area overhead. We
have also optimised the state feedback logic and timing
constraints for the new implementation.

The asynchronous crossbar using bundled-data pipelines is
scheduled by 32 tree arbiters, one per individual output port.
The bundled-data Clos switch demonstrates 41% area
reduction but the Clos scheduler is 7% larger than tree
arbiters. It is normal to produce large Clos schedulers as the
scheduling problem of Clos networks is more complicated
than that of crossbars. The area reduction in data switches
compensates the area overhead of schedulers and the overall
area is reduced.

The detailed latency is labelled in the simplified STG
shown in Fig. 15. The transitions from req+ to ack+
denote the path reservation procedure and the transitions
from req2 to ack2 denote the path release procedure.
During the interval between ack+ and req2, data are being

Fig. 15 Speed performance, ns
IET Comput. Digit. Tech., 2011, Vol. 5, Iss. 6, pp. 452–467
doi: 10.1049/iet-cdt.2010.0150
transmitted through the path reserved in the Clos network.
The latencies labelled are averaged from different IPs
requiring various OPs in an idle Clos network. When the
Clos network is busy, these latencies are related to the load
as some requests are blocked. The asynchronous Clos
network can reserve a path in 4.44 ns and release it in
5.16 ns. The minimal allocation period is 9.6 ns, which is
4.9% shorter than the 10.1 ns period of the original design
[29]. Apropos of the timing assumption (8) of the M–N
match allocator, the left side timcfg+�olg− is around 0.69 ns,
which is far shorter than the 6.73 ns latency of the right
side without data transmission.

For the data switches, the channel-sliced Clos network is
slightly slower than the bundled-data one. In the channel-
sliced Clos network, the average period for one data
transmission is 4.9 ns whereas it is 4.6 ns in the bundled-
data Clos network. However, both asynchronous switch
implementations are much slower than the synchronous
Clos network which can easily run at more than 400 MHz
(less than 2.5 ns). The reason for this low speed is
straightforward. Both asynchronous Clos networks use four-
phase handshake protocols [14] that require four transitions
in one cycle whereas the synchronous pipeline requires only
one. Some techniques can be used to reduce the period,
such as the two-phase handshake protocols [14, 32], the
lookahead pipeline [33], the GasP pipeline [34] or inserting
pipeline stages inside the Clos network. As the key research
issue in this paper is the routing algorithm, we will not
exploit these techniques.

It is possible to evaluate the consistency between the
hardware implementation and the behaviour models used in
Section 4. The SystemC model in Section 4 is now back-
annotated with the latencies shown in Fig. 15. The same
SystemC test bench loads both the SystemC model and the
post-layout netlist with the uniform traffic model described
in Section 4.2. As shown in Fig. 16, the SystemC model
accurately matches the post-layout netlist.

6.2 Comparison among implementations

Fig. 17 reveals the packet latency in uniform traffic.
According to (12), the cell time for the synchronous Clos
network is set to five clock cycles to guarantee an even
request distribution. Using the same assumption in Section
4, we assume a packet contains only one cell and every cell
comprises 20 bytes of data (32 bits/cycle for five cycles).
The packets delivered in asynchronous Clos networks have
the same length as in synchronous Clos networks.

When network load is low, asynchronous Clos networks
show shorter packet latency thanks to their faster scheduler.
As described in Section 6.1, the asynchronous scheduler
can reserve a path in 4.44 ns. The synchronous Clos
scheduler needs a cell time to calculate a new configuration.
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In this test case, a cell time is 17.5 ns (12), which is 2.9 times
longer than the 4.44 ns in asynchronous Clos networks.
However, when networks are heavily loaded, the
throughput performance is affected by data transmission
latency rather than the arbitration latency. As the periods for
data in asynchronous Clos networks are much longer than
the clock period in synchronous Clos networks and the
arbitration latency is not hidden, the maximal accepted load
of asynchronous Clos networks is significantly smaller than
synchronous Clos networks.

Fig. 18 shows the power consumption of all Clos networks.
The power of all Clos networks increases with the injected
load. When networks are idle, both asynchronous Clos
networks demonstrate nearly zero power dissipation but the
synchronous Clos network consumes 9.8 mW of which
85% is dissipated on the clock tree. When networks are
heavily loaded, the bundled-data Clos network shows the
best power efficiency whereas the channel-sliced Clos
network consumes the most power. Specifically, when the
network load is 2.4 Gbit/port/second, the channel-sliced, the
bundled-data and the synchronous Clos networks consume
35.6, 12.8 and 23.8 mW, respectively.

The significant power consumption of the channel-sliced
Clos network is related to the QDI handshake protocol and
the 1-of-4 code style. In synchronous data paths, an average
of 50% of the 32 data wires turn over every cycle, which is
16 toggles per cycle. In the bundled-data pipelines, data

Fig. 16 Consistency between hardware and behaviour simulation

Fig. 17 Packet latency with four iterations
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wires have the same toggle rate but the single-rail latch
control logic transit four times every cycle period. When
the data width is large, the extra toggle rate on latch control
logic can be ignored; therefore the bundled-data and the
synchronous Clos networks have similar power
consumption on data switches. When the QDI 1-of-4
pipelines are utilised, every two data bits are translated into
a 4-bit code word. In each cycle, one wire in this 4-bit code
word transits twice, which causes 32 toggles per cycle

Fig. 18 Power consumption with four iterations

a A-CS
b A-BD
c Syn
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period. Every ACK wire also transits twice every cycle. As
the channel-sliced pipelines utilise unsynchronised sub-
channels, the overall toggle rate is around 64 toggles per
cycle. The high toggle rate of the channel-sliced Clos
network leads to its high power consumption. Using
traditional 1-of-4 pipelines with a common ACK wire can
reduce the toggle rate to 34 toggles per cycle. However, the
completion detection tree on every pipeline stage consumes
extra power and compromises the speed performance
significantly. The area and speed of traditional and channel-
sliced pipelines has been compared in [30].

The asynchronous Clos scheduler consumes low power. As
shown in Fig. 18, when the network load is 2.4 Gbit/port/
second, the asynchronous scheduler consumes 1.7 mW,
whereas the synchronous scheduler consumes 12.3 mW
(including the power of the clock tree as data switches
contain no flip-flops). Thanks to this small power
consumption, the bundled-data Clos network shows the best
power efficiency.

The length of a cell time is an important design parameter.
In synchronous Clos networks, it determines the maximal
number of iterations in the CRRD algorithm (12). If the
number of iterations is less than n, the CDDR algorithm
cannot guarantee an even request distribution. In
asynchronous Clos networks, a cell is equivalent to a
packet; therefore the length of a cell controls the amount of
data being transmitted in one packet and the highest
frequency that a path is reconfigured.

Fig. 19 shows the throughput of all Clos networks with
various packet lengths (cell time). The throughput of
synchronous Clos networks is stable when the cell time is
more than four clock cycles. As described in the original
paper of the PIM algorithm [23], the average number of
iterations C required to match an N × N crossbar is

E[C] ≤ log2 N + 4

3
(13)

As the PIM algorithm is used in the CRRD algorithm and in
(13), N ¼ n (the number of IPs in one IM), E[C ] ¼ 3.33. On
average, a cell time larger than 4.3 is enough to reach an even
request distribution, which is demonstrated in Fig. 19.

For asynchronous Clos networks, throughput increases
monotonically with packet length. Unlike the synchronous
Clos network where new configuration is pre-calculated, a
path must be strictly idle before it can be re-allocated. As a

Fig. 19 Throughput with various packet lengths
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result, the bandwidth of certain data paths is wasted during
the arbitration process. When the length of packets
increases, the frequency of reconfiguration decreases and
throughput increases.

The power consumption of Clos networks with various
packet lengths (cell time) is revealed in Fig. 20. The power
of both the bundled-data and the synchronous Clos
networks decreases along with the packet length because of
the low reconfiguration frequency with long packets. On the

Fig. 20 Power consumption with various packet lengths

a A-CS
b A-BD
c Syn
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contrary, the power of the channel-sliced Clos network
slightly increases. Although the power of the asynchronous
scheduler decreases as expected, the power of data switches
increases as the maximal accepted load increases in the
meanwhile. As described in the previous simulation
(Fig. 18), QDI data switches consume a significant amount
of power. Since the power saved from the scheduler cannot
compensate the extra power consumed by the increased
throughput, the total power consumption rises.

7 Conclusions

In this paper, the first asynchronous dispatching (AD)
algorithm for general unbuffered three-stage Clos networks
is proposed and implemented. Behavioural-level simulations
have been made to compare the performance of the AD
algorithm against the classic CRRD algorithm in S3 Clos
networks. The CRRD algorithm dispatches requests evenly
to all CMs but this distribution is oblivious and leads to the
contention in CMs. The AD algorithm introduces a state
feedback scheme. By utilising the state information from
CMs, AD avoids the contention in CMs. Behavioural
simulation results show that the AD algorithm outperforms
the CRRD algorithm in all traffic patterns. When the traffic
is non-blocking, the AD algorithm achieves 100%
throughput in SNB Clos networks. When the traffic is
blocking, the AD algorithm shows only 3.2% throughput
loss compared with the theoretically optimal throughput.

Three 32-port C(4, 8, 4) S3 Clos networks have been
implemented using the Faraday 0.13 mm cell library: two
asynchronous Clos networks using channel-sliced and
bundled-data data switches and a synchronous Clos
network. The AD and CRRD algorithms are utilised in
asynchronous and synchronous Clos networks, respectively.
Post-layout simulations show that the asynchronous Clos
scheduler can reserve a path in 4.44 ns and release it in
5.16 ns.

Different Clos implementations demonstrate their own
advantages. The synchronous Clos network supports the
highest throughput but it is power consuming and not
tolerant to variation. Both asynchronous Clos networks
consume little power and show shorter packet latency than
synchronous Clos networks when the network is not
heavily loaded. The bundled-data Clos network shows the
best power efficiency in all Clos implementations and
outperforms the channel-sliced Clos network in throughput.
If we consider schedulers only, the asynchronous scheduler
is more power and area-efficient than the synchronous
scheduler and is tolerant to variation.

The authors are currently integrating the asynchronous
Clos network into the asynchronous on-chip networks.
Compared with traditional five ports routers in mesh
networks, using high-radix routers reduces communication
latency and improves throughput. However, the size of the
internal crossbar increases quadratically with the port
number. Clos networks can be used to replace these
crossbars and reduce the area overhead.

8 Acknowledgments

Part of this paper has been published in the 10th International
Conference on Application of Concurrency to System Design
(ACSD 2010) [29]. The authors appreciate the helpful review
comments from all the anonymous reviewers. This work is
supported by EPSRC EP/E06065X/1.
466

& The Institution of Engineering and Technology 2011
9 References

1 Clos, C.: ‘A study of nonblocking switching networks’, Bell Syst. Tech.
J., 1953, 32, (5), pp. 406–424

2 Chao, H.J., Lam, C.H., Oki, E.: ‘Broadband packet switching
technologies: a practical guide to ATM switches and IP routers’
(Wiley, 2001)

3 Chiussi, F.M., Kneuer, J.G., Kumar, V.P.: ‘Low-cost scalable switching
solutions for broadband networking: the ATLANTA architecture and
chipset’, IEEE Commun. Mag., 1997, 35, (12), pp. 44–53

4 Oki, E., Jing, Z., Rojas-Cessa, R., Chao, H.J.: ‘Concurrent round-robin-
based dispatching schemes for Clos-network switches’, IEEE/ACM
Trans. Netw., 2002, 10, (6), pp. 830–844

5 Chao, H.J., Jing, Z., Liew, S.Y.: ‘Matching algorithms for three-stage
bufferless Clos network switches’, IEEE Commun. Mag., 2003, 41,
(10), pp. 46–54

6 Chao, H.J., Deng, K.L., Jing, Z.: ‘PetaStar: a petabit photonic packet
switch’, IEEE J. Sel. Areas Commun., 2003, 21, (7), pp. 1096–1112

7 Cheyns, J., Develder, C., Breusegem, E.V., et al.: ‘Clos lives on in
optical packet switching’, IEEE Commun. Mag., 2004, 42, (2),
pp. 114–121

8 Rojas-Cessa, R., Lin, C.B.: ‘Scalable two-stage Clos-network switch
and module-first matching’. Proc. Workshop on High Performance
Switching and Routing, 2006, pp. 303–308

9 Oki, E., Kitsuwan, N., Rojas-Cessa, R.: ‘Analysis of space–space–
space Clos-network packet switch’. Proc. Int. Conf. Computer
Communications and Networks, 2009, pp. 1–6

10 Kim, J., Dally, W.J., Towles, B., Gupta, A.K.: ‘Microarchitecture of
a high radix router’. Proc. Int. Symp. on Computer Architecture,
2005, pp. 420–431
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