
On-Line Detection of the Deadlocks Caused by
Permanently Faulty Links in Quasi-Delay Insensitive

Networks on Chip

Wei Song, Guangda Zhang and Jim Garside
School of Computer Science at the University of Manchester

Manchester M13 9PL United Kingdom

{songw, zhangga, jdg}@cs.man.ac.uk

ABSTRACT

Asynchronous networks on chip (NoCs) are promising can-
didates for supporting the enormous communication needed
by future many-core systems due to their low-energy and
high-speed. Similar to synchronous NoCs, asynchronous
NoCs are vulnerable to faults but their fault-tolerance is
not studied adequately, especially the quasi-delay insensitive
(QDI) NoCs. One of the key issues neglected by most design-
ers is that permanent faults in QDI NoCs cause deadlocks,
which cripples the traditional fault-tolerant techniques using
redundant codes. A novel detection method has been pro-
posed to locate the faulty link in a QDI NoC according to a
common pattern shared by all fault-related deadlocks. It is
shown that this method introduces low hardware overhead
and reports permanently faulty links with a short delay and
guaranteed accuracy.

Categories and Subject Descriptors

B.8.1 [Performance and Reliability]: Reliability, Test-
ing, and Fault-Tolerance

General Terms

Design, Reliability

Keywords

Deadlock, permanent faults, detection, asynchronous, quasi-
delay-insensitive, network on chip

1. INTRODUCTION
Current semiconductor technology has enabled tens even

hundreds of cores to be integrated on a single chip. The
enormous amount of information exchanged on-chip culti-
vates the demand for energy-efficient, scalable and reliable
networks on chip (NoCs). Most existing NoCs are syn-
chronously built. Custom calibration of the global clock
tree is usually required in high performance designs [18]. As
an alternative, asynchronous NoCs divide a chip into syn-
chronous islands, which enables individual frequency/voltage
control and simplifies chip-level timing closure [3]. They also
convey data in a speedy and energy-efficient fashion [5].
The increasing size of NoCs brings reliability issues. Com-

pared with designs using earlier technologies, current sub-
micron designs demonstrate reduced yield, worsened process
variation, increased rate of faults and shortened device life-

time [4]. Future NoCs are expected to operate reliably in
the presence of faults.

Fault-tolerance issues have been extensively studied in
synchronous NoCs but rarely in asynchronous NoCs, espe-
cially in quasi-delay insensitive (QDI) NoCs [16, 6, 5, 15].
The natural tolerance to delay variations of QDI circuits
provides the innate protection from delay-related faults [10].
However, they are extremely vulnerable to permanent faults
because these faults break the handshake protocol and cause
deadlocks. Unlike synchronous circuits, where redundant
coding schemes can be employed to detect permanently faulty
links or switches [12, 9, 7], the deadlock in QDI NoCs pro-
hibits the propagation of data and therefore disables any
data checks. Although off-line scan techniques can locate
permanent faults [17], detecting them on-line remains diffi-
cult. Timeout is a common way to detect the existence of
deadlocks [8]. However, it is difficult to locate the source of
a deadlock because the congestion caused by the deadlock
will spread over the whole network, leading to timeout in
multiple locations.

This paper tries to resolve this problem by on-line detect-
ing the deadlocks caused by permanently faulty links in QDI
NoCs. A common pattern has been found in all deadlocks
caused by a single permanent fault. Using this pattern, a
simple detection circuit is able to report the exact location
of a faulty link in the presence of a deadlock. Utilizing the
location, further research can be done to retain the network
functionality by isolating the faulty links [21, 7, 8].

2. RELATED WORK
Fault-tolerance is a well-studied topic in synchronous NoCs.

Transient faults can be dynamically detected using redun-
dant coding schemes. If a data packet is found corrupted,
it can either be corrected using the redundant code or re-
transmitted [19]. On the other hand, permanent faults can
be checked off-line using self-test mechanisms, such as scan
chains [21], or detected on-line by searching persistent er-
rors using certain coding schemes [12, 7]. Although per-
manent faults cannot be recovered, a network may survive
with reduced resources. The faulty components can be re-
placed with spares [12] or isolated using adaptive routing
algorithms [21, 7].

Providing fault-tolerance for self-timed NoCs is considered
easier compared with QDI NoCs. Since self-timed pipelines
have clock-like latch triggers and directly use binary-encoded
data, most synchronous techniques can be directly adopted
to cope with transient and permanent faults [11, 8].



slice1

sliceS-1

stage

di0,0

di0,N-1

di1

diS-1

CD

slice0

sliceS-1

stage

slice0

sliceS-1

stage

slicei slicei

doi

doS-1

do0

di_ack doa_ackack

Figure 1: A 4-phase 1-of-N pipeline

In QDI NoCs, several unordered redundant coding schemes
have proposed to detect and correct transient faults [13, 1,
20]. However, all of them cease to work when the network is
deadlocked due to permanent faults. To our best knowledge,
there is no code scheme able to detect permanent faults in
QDI NoCs. The most effective method existed so far is to
detect permanent faults off-line using scan chains [17] while
no method has been proposed for on-line detection.
The most related work is the timeout mechanism proposed

by Imai and Yoneda [8] in a self-timed NoC using QDI inter-
router links. A delay line is used to detect the abnormal
data skew among the data wires of the same pipeline stage.
However, this method does not work in a pure QDI NoC.
Since self-timed pipelines are used inside the router of Imai’s
NoC and they do not latch incomplete data, the fault-caused
partial data (which leads to the large skew) is isolated in the
QDI inter-router link. In a pure QDI NoC, this partial data
will propagate to all downstream stages as long as they are
ready (see Section 3.2). As a result, all the downstream
stages are timeout and multiple faults are reported.

3. DEADLOCKS CAUSED BY PERMANENT

FAULTS

3.1 Pipeline model
Since most QDI NoCs use 4-phase pipelines [6, 5, 15], this

paper is focused on detecting faulty 4-phase pipelines. A 4-
phase 1-of-N pipeline is shown in Figure 1. A wide pipeline is
usually built from multiple 1-of-N pipelines, shown as slices
in Figure 1. Each slice contains several C-elements acting
as data latches. A wide OR gate is used to detect the data-
completion in each slice. A common ack signal is then gener-
ated using a multi-input C-element to synchronize the data
transmission of all slices. Although this paper uses 4-phase
1-of-N pipelines, the proposed method is applicable to all
M-of-N pipelines.
To provide an easy way for analysing the deadlocks caused

by faulty links, Figure 2 simplifies a general 4-phase pipeline
into a sequence of places where each place stores a data to-
ken or a space (token). In an empty pipeline (Figure 2a), all
stages store space tokens, also denoted by the low ack sig-
nals. When a pipeline is full of data (Figure 2b), data tokens
are stored alternatively because data must be separated by
space in 4-phase pipelines. The pipeline stages with data
tokens return positive ack to their predecessors.

3.2 Fault analyses
Most permanent faults on wires can be transformed into

stuck-at faults [2]. A stuck-at-0 fault denotes a faulty wire

0 0 0 0 00

data

ack

di

dia

do

doa

(a)

0 1 0 1 01

data

ack

di

dia

do

doa

(b)

Figure 2: Simplification of an empty (a) / full (b)
pipeline

0 1 0 0 01

ack

di

dia

do

doa

stuck 

at 0

(a) Data stuck-at-0

1 0 1 1 10

ack

di

dia

do

doa

stuck 

at 1

(b) Data stuck-at-1

0 1 0 1 11

di

dia

do

doa

stuck 

at 0

data

1

(c) ACK stuck-at-0

1 0 1 0 00

di

dia

do

doa

stuck 

at 1

data

0

(d) ACK stuck-at-1

Figure 3: Patterns of deadlocks caused by perma-
nently faulty links

that outputs 0 regardless of its input while a stuck-at-1 fault
denotes a faulty wire that always drives its output high.
According to the types and the locations of stuck-at faults,
Figure 3 depicts all the four possible patterns of deadlocks
caused by a single permanent fault:

Data stuck-at-0 (Figure 3a) With a data wire is stuck at
0, the pipeline is blocked when a 1 occurs on that bit. As a
result, all downstream stages eventually go into a temporary
state storing a partial data and waiting for the missing 1.

Data stuck-at-1 (Figure 3b) If a data wire is stuck at 1,
the pipeline is blocked when it should reset to a space. Con-
sequently, downstream stages will gradually enter another
temporary state waiting for the withdrawal of the faulty 1.

ACK stuck-at-0 (Figure 3c) Assuming the ack is stuck
at 0, its receiving stage will not withdraw its data. As a
result, soon all downstream stages will return positive ack

and wait for space tokens.
ACK stuck-at-1 (Figure 3d) Assuming the ack is stuck

at 1, the receiving stage of the faulty ack would fail to store
any incoming data. Consequently all downstream stages will
be empty and wait for new data.

It can be observed from the four cases of deadlocks that



Input Buf.

Input Buf.

Input Buf.

Output Buf.

Output Buf.

Output Buf.

Switch 

Allocator

(a) Router structure

XY 

Router
Contr.

stg L stg 2 stg 1stg M stg 1

Switch 

Alloc.

Output Buffer Input Buffer

Switch 

Alloc.

Link cia

rt_r rt_ack

opa oa ipa1

ipeof

ipa0

(b) Connection between two adjacent routers

Figure 4: Wormhole router

they share a common pattern: the ack of all downstream
stages have the same value while they are alternatively val-
ued in upstream stages. Detecting such pattern, a 4-phase
pipeline can tell when and where there is a deadlock.

4. DEADLOCK DETECTION IN ROUTERS
A QDI NoC can locate a faulty link by searching the com-

mon pattern. In this paper, the detection technique is ap-
plied to a 5-port router [15] but it can be used in any routers
using 4-phase asynchronous pipelines.

4.1 Router structure
As presented in Figure 4a, the router has five bidirec-

tional ports. Every port is 32 bits wide using 4-phase 1-of-4
pipelines. Each buffer contains one to several pipeline stages
depending on its configuration. A switch allocator controls
the connection between input and output ports through the
central crossbar. Packets in this network are divided into
flits. Address information is stored in the head flit, which
is followed by a sequence of data flits. The packet is termi-
nated by a tail flit which contains a single positive bit on
the end-of-frame (EOF) wire.
The structure of, and the connections between, the input

and output buffers of adjacent routers is illustrated in Fig-
ure 4b. Other relevant information about this router can be
found in Song and Edwards [15].
An output buffer contains only a few pipeline stages di-

rectly connected to the crossbar. An input buffer comprises
several pipeline stages, an XY router and a controller. When
a new packet arrives, its head flit is blocked in the second
stage (stg 2) awaiting the XY router to produce a request
(rt r) to the switch allocator. After an output buffer is al-
located, denoted by a positive rt ack, the controller enables
the pipeline until a tail flit is noticed through the EOF wire.
Working in a QDI fashion, the controller ensures that no
data is sent to the crossbar before a path is allocated and the
path is not deallocated until the tail flit is safely delivered.
For this purpose, the controller controls the enable/reset of
the XY router and the ACK ipa0 to the first stage (stg 1).

4.2 Deadlock detection
To detect deadlocked faulty links, extra circuits are added

to the wormhole router as shown in Figure 5a and 5b. An

Input Buf.

Input Buf.

Input Buf.

Output Buf.

Output Buf.

Output Buf.

Switch 

Allocator

Counterclk timeout

erpt

erpt

erpt

rstn

(a) Router structure

stg L stg 1stg 1

Link

ipa1ipeof

rt_ack

opa oa

Error Detector

err_r

err_ack

0 1 1 1

ack

stuck 
at 1

1 1

ipa0

(b) Connection between two adjacent routers

err_r

erpt

en

en

en

MD

MD

MD

ipeof

rt_ack

ipa1

ipa0

err_ack
rstn

start

clk
timeout

r

r

r

2

3

1

4

6

(c) Error detector

start

sig

act

(d) Motion detector
(MD)

Idle

Start

Test

Confirm

Timeout

[000]
State: 

[erpt, err_r,  start]

[001]

[001]

[011]

[111]

timeout

err_ack

timeout

timeout

2

3

1

4

5

6

6

(e) State machine

Figure 5: Deadlock detection

error detector (Figure 5b) is added in each input buffer to
detect deadlocks in the connected link. Since the common
pattern deduced in Section 3.2 is valid only when the status
of the pipeline is stable (deadlocked), a timeout mechanism
is utilized to monitor the activities in the input buffer. If
the buffer is inactive/paused for a certain timeout period,
the detector is assumed safe to sample the ACK values. To
achieve this timeout, an external clock (clk) is introduced.
The timeout period is controlled by the counter as shown in
Figure 5a.

The connection and the internal structure of the error de-
tector are shown in Figure 5b and 5c. It is a sync/async hy-
brid module where the asynchronous-related signals and cir-
cuits are coloured in grey. The three flip-flops (start, err r,



and erpt) forms a state machine which controls the timeout
process. Its state transition graph is revealed in Figure 5e
with cross-references in Figure 5c. Several motion detectors
(MDs) are used to monitor the activities on certain asyn-
chronous signals. As shown in Figure 5d, if there is any
transition on sig when start is high, act is set positive.
Bearing in mind that the input buffer is downstream to

the possibly faulty link (Figure 5b), the timeout process can
be described as follows:
Idle: After reset, the error detector enters the Idle state

and all registers are low.
Start: After a timout period (necessary for the reset of

MDs), register start is set high (state transits to Timeout)
to enable all MDs to monitor the activities of ipa0 (new
data transmission), ipa1 (new incoming data) and rt ack

(new path allocation).
Timeout: Monitoring for a whole timeout period, if any

MD outputs high (case 1⃝), the input buffer is not dead-
locked and the state returns to Idle. Otherwise, the buffer
may be deadlocked due to a fault if one of the following
three cases is true: 2⃝ the buffer is transmitting a packet
(denoted by the path allocation rt ack+) and the pipeline
stage 1 (downstream to the fault) has equal input/output
ACKs (ipa0 = ipa1 ), matching the downstream part of the
shared pattern of deadlocks; 3⃝ an ACK stuck-at-1 or a data
stuck-at-0 fault may cripple a head flit causing an empty in-
put buffer (unallocated rt ack– and negative ACKs ipa1–,
ipa0–); 4⃝ an unallocated input buffer (rt ack– and ipa0–)
with an arriving tail flit (ipeof+) can be caused by a fake
tail flit produced by a data stuck-at-1 fault on the EOF wire.
In the presence of any of the three cases ( 2⃝, 3⃝ or 4⃝), err r

is set high (state transits to Test) to check the upstream
pattern in the adjacent output buffer (Figure 5b). If none of
the three cases appears (case 5⃝), the input buffer is paused
due to congestion and the state returns to Idle.
Test: In this state, the error detector waits for the adja-

cent output buffer (upstream pipeline stages) to verify the
upstream part of the deadlock pattern. The C-element in
the output buffer (Figure 5b) is enabled (err r+). It returns
a positive err ack if stg 1 has equal ACKs (opa = oa vio-
lates the deadlock pattern). Consequently the state machine
is reset through the asynchronous reset shown in the bottom
of Figure 5c (case 6⃝). If err ack remains low for a whole
timeout period, denoting the deadlock pattern has been sta-
ble for a long time, the link is confirmed deadlocked due to
a permanent fault. In this case, the error detector reports
the deadlock through erpt+ (state transits to Confirm).
Confirm: The link is confirmed deadlocked. If the fault

is intermittent and recovered, err ack would be positive af-
terwards, which then resets the state to Idle (case 6⃝).

4.3 Other technical issues
The mixture of sync/async circuit is one of the difficulties

of this design. The sync/async interface in the error de-
tector requires no synchronizer and metastability does not
affect the detection accuracy. The asynchronous MDs and
the central AND gate (highlighted with slash lines) in Fig-
ure 5c act as a shield to ensure that the values of the three
cases ( 2⃝, 3⃝ and 4⃝) are read only when they are assumed
stable as they have been inactive for a whole timeout pe-
riod. Even under extreme conditions when the input buffer
suddenly resumes after congestion and the state mistakenly
enters Test, the C-element in the upstream output buffer

(Figure 5b) will correct the mistake by setting err ack to
high, which then asynchronously resets state machine (the
bottom of Figure 5c, case 6⃝). Moreover, the error detector
ensures its accuracy by reporting a deadlock only when the
deadlock pattern has been found and remained stable for a
whole timeout period (in state Test).

The total latency Tf of reporting a fault from its appear-
ance has two parts:

Tf = Td + Tr (1)

where Td is the time used to form a deadlock and Tr is delay
of reporting this deadlock. Td is out of the control of the
deadlock detection. It is short on a busy link but infinite on
an idle wire. Nevertheless, no damage is made if no deadlock
is formed. The report latency Tr is a more important factor
in evaluating the detection speed. The upper and lower
bounds of Tr can be described as:

2Tt ≤ Tr ≤ 4Tt (2)

where Tt is the timeout period. The lower bound is achieved
when the deadlock is formed just before state transits to
Start and the upper bound is reached when the deadlock
occurs at the beginning of Start.
There is no strong constraint on the period of clk (Tc) and

timeout (Tt) but several issues should be considered. Obvi-
ously reducing Tt decreases the report latency Tr. However,
Tt should be larger than Tc and the latency of transmitting
one flit through one pipeline stage (usually several nanosec-
onds, to allow a stable sample from motion detectors). Since
clock is used only to drive the state machine, there is no re-
quirement on its frequency, skew or jitter. In fact, users can
use any clock sources in the NoC, such as the local clock
from the processing element or a slow global clock. Also
since every error detector works independently, it can has
its own counter to generate a timeout at arbitrary frequen-
cies or share the counter (timeout as well) among arbitrary
number of neighbours for area efficiency. For example, Fig-
ure 5a shows a way of sharing one counter in one router.

The extra wires added by the deadlock detection (err r

and err ack) are not protected due to their low activities.
Assuming a large Tt, the two wires are triggered every 2Tt in
the worst case, which is hundreds to thousands times smaller
than the toggle rate of data wires. However, a large Tt leads
to long Tr. A way to keep a small Tr while reducing the
wire activities is to gate the clock and detecting deadlocks
only when a permanent fault is indicated by upper layers
(receiving an error packet or losing a packet).

Since the deadlock detection does not rely on any coding
scheme, it can work together with all unordered redundant
codes [13, 1, 20] to provide tolerance to both permanent
and transient faults in QDI NoCs. Although the common
pattern is deduced from the deadlocked links caused by a
single permanent fault, the deadlock detection also detects
multiple faults occurring in the same link as this does not
alter the ACK pattern. If multiple faults occur on adja-
cent pipeline stages, it is possible that only one faulty link
is reported as the other one is considered paused by the re-
ported one. In a NoC, this indicates that a permanent fault
inside the router (which is adjacent to the inter-router links)
may cause a missing fault report. Extending this method to
detect faults inside routers is one of the future works.

As mentioned in state Confirm, the error detector can
also be used to detect the withdrawal of long lasting inter-



Table 1: Overhead of deadlock detection

Original Detection %

Area (µm2) 33,881 34,629 2.2
Throughput (MByte/s/node) 503.2 483.9 -3.8
Latency (ns) 61.5 64.1 4.2

0 100 200 300

0

20

40

60

80

100

Injected Traffic (MByte/s/node)

 Error

 Data

(a) Linear

0 100 200 300

0.01

0.1

1

10

100

Injected Traffic (MByte/s/node)

 Error

 Data

(b) Log10

Figure 6: Toggle rates with various traffic loads

mittent faults. When a fault disappears, the resumed link
will trigger err ack and reset the state machine, which then
withdraws the fault report (erpt–).

5. PERFORMANCE ANALYSES
The asynchronous routers with and without deadlock de-

tection have been implemented using a 130 nm standard
cell library and synthesized by the Synopsys Design Com-
piler. Both routers share the same configuration of five in-
put/output ports, one pipeline stage in output buffers and
two in input buffers. The post-synthesis netlist, annotated
with gate latency, is simulated in a SystemC/Verilog mixed
environment where network interfaces and processor ele-
ments are implemented in SystemC.
Table 1 reveals the performance overhead of adding dead-

lock detection. The extra logic leads to a marginal area
increase of 2.2%. Its speed overhead is also negligible. Col-
lected from 4x4 networks injected with uniform random traf-
fic (using 128-byte fixed-length packets), the saturation through-
put per node drops by 3.8% while the average minimum
packet transmission latency is prolonged by 4.2%.
The extra wires added by the error detector are unpro-

tected as they are assumed significantly less active than data
wires. Using two y-scales (linear and Log10), Figure 6 re-
veals the average toggle rates of the extra wires (Error) and
the data wires (Data) in a NoC injected with various loads.
The timeout and clock frequencies are set to 2 MHz and
100 MHz respectively. It is shown that the extra wires have
the highest toggle rate of 1 MHz in an idle network and the
activity decreases with the increased traffic. The highest
rate is exactly half of the timeout frequency because the de-
tector is constantly checking ACK stuck-at-1 deadlocks (case
3⃝ in Section 4.2), which may cause empty input buffers, and
this check always turns out negative in 2Tt. With increased
traffic, the state machine in the error detector rarely enters
the Test state and the toggle rate of the extra wires thus
drops significantly until it is nearly zero in a saturated net-
work. In a network with 26% load (128 MByte/s/node), the
toggle rate of the extra wires is only 1.2% of that of data
wires. If this rate is still considered high or the rate in idle
networks is unacceptable, they can be further reduced by
increasing the timeout period Tt.
The power overhead of the deadlock detection is also ex-

0 100 200 300 400

0

1000

2000

3000

4000

5000

6000

Injected Traffic (MByte/s/node)

 Router

 Detector

(a) Linear

0 100 200 300 400

10

100

1000

10000

Injected Traffic (MByte/s/node)

 Detector

 Router

(b) Log10

Figure 7: Power with various traffic loads

0 5 10 15 20

45

50

55

60

65

Timeout Frequency (MHz)

(a)

0 20 40 60 80 100 120 140

30

35

40

45

50

Clock Frequency (MHz)

(b)

Figure 8: Detection power with various timeout fre-
quencies (a) and clock frequencies (b)

amined and revealed in Figure 7 using the same configura-
tion of Figure 6. It is shown both the router and deadlock
detection circuit consume more energy with increased traf-
fic. The power of the detection logic is 18.6 µW (29.7%) in
an idle network while it increases to 43.4 µW (0.7%) in a
saturated network, however the rate compared to the total
router power deceases from 29.7% to only 0.7%.

It is found that the power overhead of the deadlock de-
tection is linear with the timeout and the clock frequencies.
Figure 8a shows the detection power with various timeout
frequencies in a saturated network (clock frequency set to
100 MHz) and Figure 8b reveals the increased power with
increased clock frequency also in a saturated network (time-
out frequency set to 2 MHz). According to the results, as
long as the clock has a higher frequency than timeout, a slow
clock should be used for low power consumption.

To test permanent faults, a fault injector is attached to
each link wire in the NoC. It randomly generates a per-
manent fault (stuck-at-1 or stuck-at-0) according to a pre-
configured mean time between failures (MTBF). Note that
the error detector is able to detect a fault only when a dead-
lock is caused, the faults on unused wires are not detectable
and the faults on infrequently used wires are slow to detect.
However, as long as a fault causes a deadlock, it is found
and accurately reported soon after. In the simulation, the
location accuracy is 100% and no flawless links have been
reported faulty. Setting the MTBF to 5 ms in a saturated
network, Figure 9 shows the average report latency, which
is the delay between the occurrence of a deadlock and the
corresponding report. The average report latency approxi-
mately increases proportional to 3Tt. The latency variation
also matches the estimation in Equation 2.

As mentioned in Section 4.2, the error detector is able
to withdraw its report when an intermittent fault dissolves.
The disappearance of an intermittent fault always triggers
the C-element in the output buffer (Figure 5b) when a fault
is reported. This consequently activates err ack which then
asynchronously resets the state machine and withdraws the
report. In one simulation, the faults are set to fade away in



0 400 800

0

1000

2000

3000

4T
t

Timeout Period (ns)

2T
t

Figure 9: Report latency

0 200 400 600

0.0

0.5

1.0

Simulation Time (us)

Figure 10: A permanent fault-tolerant SDM NoC

0.5 ms. The latency of withdrawing the fault report is found
around 2.2 ns in our implementation.
To demonstrate the potential uses of the deadlock detec-

tion technique, the SystemC model of the spatial division
multiplexing (SDM) router of Song and Edwards [15, 14]
has been modified to utilize the fault report for isolating
permanent faulty links. Since each link between two routers
in an SDM NoC is divided into several independent virtual
circuits, a link can survive from a permanent fault using
remaining virtual circuits. By isolating the faulty virtual
circuit and releasing the healthy links blocked by the dead-
lock, a NoC can retain its function with reduced resources.
In the SystemC model, an individual error detector is

added in the input buffer of each virtual circuit. When a
deadlock is detected, the deadlocked packet transmitting
through the virtual circuit is dropped and the virtual cir-
cuit is prohibited from being allocated to other packets. A
4x4 SDM NoC is built with 2 virtual circuits in each link.
Setting the MTBF to 2 ms, the runtime throughput is de-
picted in Figure 10 with the sequence of faults illustrated by
crosses in the line above. It is shown that the network has re-
mained functional until 13 faulty virtual circuits. At around
250 µs when both virtual circuits of a link are faulty, the link
is broken and around half of the network using this link is
paralysed (XY routing is used). As a result, the through-
put drops significantly. Adaptive routing can be adopted for
further fault-tolerance [21, 7].

6. CONCLUSION
Permanent faults are a significant threat to QDI NoCs as

they cause deadlocks. This paper proposed a novel dead-
lock detection method which reports the accurate location
of the permanent faults occurring on inter-router links of
a QDI NoC. The detection circuit is light-weighted which
introduces low area, speed and energy overhead. As long
as a deadlock is caused by a faulty link, the location of the
faulty link is reported in a maximum of four timeout pe-
riods. Thanks to deduced common deadlock pattern, the
faulty location is accurately identified and no flawless link

is mistakenly reported. It is shown that an SDM NoC can
use this method to survive from multiple permanent faulty
virtual circuits.

Acknowledgement

The authors would like to thank the various grants from the
National Natural Science Foundation of China (61272144),
the China Scholarship Council, and the Engineering and
Physical Sciences Research Council (EP/I038306/1).

7. REFERENCES
[1] M. Agyekum and S. Nowick. Error-correcting unordered codes

and hardware support for robust asynchronous global
communication. IEEE Trans. CAD, 31(1):75–88, 2012.

[2] S. A. Al-Arian and D. P. Agrawal. Physical failures and fault
models of CMOS circuits. IEEE Trans. Circuits and Systems,
34(3):269–279, March 1987.

[3] E. Beigné, F. Clermidy, and et al. Dynamic voltage and
frequency scaling architecture for units integration within a
GALS NoC. In Proc. of NoCS, pages 129–138, April 2008.

[4] S. Borkar. Designing reliable systems from unreliable
components: the challenges of transistor variability and
degradation. IEEE Micro, 25(6):10–16, 2005.

[5] F. Clermidy, C. Bernard, and et al. A 477mW NoC-based
digital baseband for MIMO 4G SDR. In Proc. of ISSCC, pages
278–279, 2010.

[6] T. Felicijan and S. B. Furber. An asynchronous on-chip
network router with quality-of-service (QoS) support. In Proc.
of SoCC, pages 274–277, September 2004.

[7] C. Feng, Z. Lu, and et al. Addressing transient and permanent
faults in NoC with efficient fault-tolerant deflection router.
IEEE Trans. VLSI, 21(6):1053–1066, 2013.

[8] M. Imai and T. Yoneda. Improving dependability and
performance of fully asynchronous on-chip networks. In Proc.
of ASYNC, pages 65–76, 2011.

[9] A. Kohler, G. Schley, and M. Radetzki. Fault tolerant network
on chip switching with graceful performance degradation. IEEE
Trans. CAD, 29(6):883–896, 2010.

[10] C. LaFrieda and R. Manohar. Fault detection and isolation
techniques for quasi delay-insensitive circuits. In Proc. of
International Conference on Dependable Systems and
Networks, pages 41–50, 2004.

[11] T. Lehtonen, P. Liljeberg, and J. Plosila. Online reconfigurable
self-timed links for fault tolerant NoC. VLSI Design, page 13,
2007.

[12] T. Lehtonen, D. Wolpert, and et al. Self-adaptive system for
addressing permanent errors in on-chip interconnects. IEEE
Trans. VLSI, 18(4):527–540, 2010.

[13] J. Pontes, N. Calazans, and P. Vivet. Adding temporal
redundancy to delay insensitive codes to mitigate single event
effects. In Proc. of ASYNC, pages 142–149, 2012.

[14] W. Song and D. Edwards. Asynchronous SDM NoC.
http://opencores.org/project,async_sdm_noc,Overview, 2011.

[15] W. Song and D. Edwards. Asynchronous spatial division
multiplexing router. Microprocessors and Microsystems,
35(2):85–97, 2011.

[16] J. Sparsø and S. B. Furber. Principles of Asynchronous
Circuit Design: a Systems Perspective. Kluwer Academic
Publishers, 2001.

[17] X. T. Tran, Y. Thonnart, and et al. Design-for-test approach of
an asynchronous network-on-chip architecture and its
associated test pattern generation and application. IET
Computers & Digital Techniques, 3(5):487–500, 2009.

[18] S. R. Vangal, J. Howard, and et al. An 80-tile sub-100-W
TeraFLOPS processor in 65-nm CMOS. IEEE Journal of
Solid-State Circuits, 43(1):29–41, January 2008.

[19] Q. Yu and P. Ampadu. Dual-layer adaptive error control for
network-on-chip links. IEEE Trans. VLSI, 20(7):1304–1317,
2012.

[20] G. Zhang, W. Song, and et al. Transient fault tolerant QDI
interconnects using redundant check code. In Proc. of DSD,
pages 3–10, September 2013.

[21] Z. Zhang, A. Greiner, and S. Taktak. A reconfigurable routing
algorithm for a fault-tolerant 2D-mesh network-on-chip. In
Proc. of DAC, pages 441–446, June 2008.


