
Transient Fault Tolerant QDI Interconnects Using Redundant Check Code

Guangda Zhang*, Wei Song*, Jim D. Garside*, Javier Navaridas*, Zhiying Wang†
*School of Computer Science, University of Manchester, Manchester, M13 9PL, UK

*Email: {zhangga, songw, jgarside, javier.navaridas}@cs.man.ac.uk
†School of Computer, National University of Defense Technology, Changsha, 410073, China

†Email: zywang@nudt.edu.cn

Abstract—Asynchronous logic is a promising technology for
building the chip-level interconnect of multi-core systems.
However, asynchronous circuits are vulnerable to faults. This
paper presents a novel scheme to improve the robustness of
asynchronous systems. Our first contribution is a fault tolerant
delay-insensitive redundant check coding scheme named
DIRC. Using DIRC in 4-phase 1-of-n quasi-delay-insensitive
(QDI) interconnects, all 1-bit and some multi-bit transient
faults can be tolerated. The DIRC and the basic 4-phase 1-of-n
pipeline stages are mutually exchangeable so that arbitrary
basic stages can be replaced by DIRC stages to strengthen the
fault-tolerance of long wires. Our second contribution, RPA, is
a redundant technique to protect the acknowledge wires from
transient faults – an issue that has long been disregarded by
the community. The DIRC pipelines (using DIRC plus RPA)
were simulated using the UMC 0.13�m standard cell library
and compared with the basic pipelines. Detailed experimental
results show that the 128-bit DIRC 1-of-4 pipeline is only 13%
slower than the basic one but increases fault-tolerance
hundred-folds when multi-bit transient faults are considered.

Keywords- asynchronous interconnects; transient faults;
fault tolerance; quasi-delay-insensitive circuits;

I. INTRODUCTION
The continuous shrinking of device geometry

significantly increases the number of transistors and the
density of wires integrated in a single chip which opens a
vast range of opportunities. However, together with these
opportunities several issues arise: the reduced supply
voltage, the increased clock frequency and the broadened
clock distribution network not only introduce extra difficulty
in delivering the global clock signal all over the chip with
acceptable clock skews, but also worsen the vulnerability of
the circuits to faults [1-3]. For this reason, fault-tolerance
becomes an essential design objective for critical digital
systems, especially in highly specialized fields such as
aerospace, military and medical equipment.

Asynchronous circuits provide a fundamental solution to
problems caused by clocks [4] due to their clockless nature.
They also have potential advantages in power consumption,
modularity, composability and robustness, which has
attracted many researchers in recent years.

Networks-on-chip (NoC), a kind of scalable and efficient
on-chip communication infrastructure [5], has some
attractive features which make them specially well suited for
exploiting the advantages of asynchronous circuits: simplify
timing closure, reduce power and resolve chip-level
synchronization issues. Consequently, asynchronous NoCs

are thought to be better candidates for current multi-core
systems than their synchronous counterparts [6]. As an
important issue in the design of NoCs, the large numbers of
long wires are exposed to noises and faults, which lead to the
variation of propagation delay and glitches [7].

Quasi-delay-insensitive (QDI) circuits [4] are a family of
asynchronous circuits which tolerate nearly all delay
variations as all wires and gates are assumed with positive
infinite latencies. Unlike synchronous circuits, QDI circuits
are unaffected by delay variation and skew. However, QDI
circuits are not so robust to glitches compared with their
robustness to delay variation. Without the sense of time, any
erroneous transition or glitch may be accepted as a valid
signal, making QDI circuits vulnerable to faults.

This paper proposes a novel transient fault tolerant
coding scheme for 4-phase 1-of-n QDI interconnects. Using
delay-insensitive redundant check (DIRC) code, the
proposed scheme tolerates, with reasonable overhead, all 1-
bit transient faults and some multi-bit transient faults. The
DIRC code can be easily used in existing 1-of-n QDI
pipelines to tolerate transient faults.

A novel fault-tolerant technique, RPA (redundant
protection of acknowledge wires), is also proposed to protect
the acknowledge wires from 1-bit transient faults. The QDI
pipeline using DIRC and RPA provides both timing-
robustness and fault-tolerance. A 128-bit DIRC 1-of-4
pipeline is only 13% slower than a basic QDI pipeline while
its fault-tolerant capability increases hundred-folds.

This paper is organized as follows: Section II introduces
the background of asynchronous protocols, transient faults
and their impact on QDI interconnects. Section III presents
related works. Section IV describes the proposed DIRC
coding scheme and Section V demonstrates the hardware
implementation of the DIRC pipeline. Section VI evaluates
the DIRC pipeline with detailed experimental results and
comparisons. Finally this paper is concluded in Section VII.

II. BACKGROUND

A. Asynchronous Protocols and 4-phase QDI Pipelines
Asynchronous communication protocols can be classified

into 4-phase and 2-phase protocols [4]. As shown in Fig. 1,
4-phase protocols are level-triggered protocols where a reset
or return-to-zero phase is required after transmitting a valid
data. 2-phase protocols are edge-triggered where each
transition of the acknowledge signal starts a new data
transmission. 4-phase protocols are more widely used than 2-
phase ones for the sake of implementation simplicity [8]. On

2013 16th Euromicro Conference on Digital System Design

`/13 $26.00 © 2013 IEEE

DOI 10.1109/DSD.2013.11

3

ack

Data Null

reset
phase

set�
phase

Null

reset�
phase

data

Figure 1. 4-phase protocol.

TABLE I. 1-OF-4 CODES

1-of-4
codes

Information
 (in binary)

0000 Null
0001 00
0010 01
0100 10
1000 11

most QDI interconnects, data are transmitted using delay-
insensitive (DI) codes, also named unordered codes [8][9],
where 1-of-n codes are the most utilized ones. As an
extensively utilized case of 1-of-n codes, the 1-of-4 code is
presented in Table I. This paper focuses on the fault-
tolerance of 4-phase 1-of-n QDI interconnects.

Fig. 2 shows two adjacent stages of a basic 1-of-4
asynchronous QDI pipeline. Each stage is composed of a
group of asynchronous latches and a completion detector
(CD). The asynchronous latches are constructed by C-
elements [4]. The CD is a tree of OR-gates and C-elements,
detecting the completion of the incoming data and generating
the acknowledge signal (ack) whose inverse (inv_ack) drives
the latches of the previous stage. To reduce wire delay,
buffers are inserted on long wires between stages to increase
signal driving strength.

B. Transient Faults

Faults can be permanent faults or transient faults [10].
Transient faults are the most prevalent faults and nearly 80%
of errors are caused by them [11]. A transient fault can be
provoked by internal or external sources [12]. The internal
sources include electrostatic discharge, power transients,
capacitive coupling, inductive coupling and crosstalk, while
the external sources include electromagnetic coupling and
strikes of neutron or alpha particles. Transient faults usually
last for a short period and cause errors when they are
captured by memory components. The typical phenomenon
caused by transient fault is a bit-flip, also known as a glitch.
Note that glitches can be short or long. Long glitches rarely
happen and cause complicated faulty situations which can be
reduced to those created by short ones (Section II.C).

CDCD

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

A0

A1

A2

A3

B0
B1
B2
B3

Latch1Latch0

C

ack0 ack1 ack2

Stage0 Stage1

inv_ack2inv_ack1
buffers

Long�wires

Figure 2. Two adjacent stages of a basic 1-of-4 asynchronous QDI

pipeline.

C
in

Particle�strikes

C
buffers

inv_�ack�
out

Figure 3. Particle strikes buffers of long wires.

inv_ack
in

out

inv_ack
in

out

inv_ack
in

out
(b)� (c)�(a)�

Figure 4. Negative transient faults on high-level data signals.

inv_ack
in

out

inv_ack
in

out

(d)�

inv_ack
in

out

inv_ack
in

out

(b)�

(c)�

(a)�

Figure 5. Positive transient faults on low-level data signals.

This paper focuses on the tolerance of transient faults on
long wires (Fig. 2).

C. Impact of Transient Faults on 4-phase QDI Interconnect
Transient faults may occur on any wires at any time and

cause glitches or erroneous transitions. Glitches include
positive and negative ones. When glitches are captured by
memory components, they become erroneous transitions. It
is assumed that the 1-bit transient fault is incurred by particle
strikes (Fig. 3). Multi-bit transient faults may largely
increase the failure possibility of QDI pipelines but they
rarely happen.

1) Negative transient faults on high-level data signals
Fig. 4 shows the situations when negative transient faults

happen on high-level data signals. In Fig. 4(a) and Fig. 4(b),
faults happen when the inverted acknowledge signal inv_ack
is low; in Fig. 4(c), the fault happens when inv_ack is high.
If inv_ack goes low earlier than the negative glitch (Fig.
4(a)), a premature reset operation is invoked. For the other
two situations, faults are filtered by the C-element. None of
the three situations will cause an error.

2) Positive transient faults on low-level data signals
Low-level data signals can be classified into two kinds.

One is the data signal that keeps low as shown in Fig. 5(a)
and Fig. 5(b) while the other one will go high in the next
transmission or phase as shown in Fig. 5(c) and Fig. 5(d).
For the former kind, if a positive fault happens when the
inv_ack is low (Fig. 5(a)), the fault will be filtered by the C-
element. Fig. 5(b) shows that if the fault happens when
inv_ack is high, the output of the current C-element will go
high incorrectly, which causes a positive erroneous

4

(b)�(a)�

inv_ack
in

out

inv_ack
in

out

Figure 6. Long transient faults on incoming data signals.

transition. For the later kind of data signals (Fig. 5(c) and
Fig. 5(d)), in the worst case the positive fault causes a
premature set operation (Fig. 5(d)) and no erroneous
transitions are incurred.

3) Long transient faults on data signals
In rare situations, the duration of transient faults can be

long. Long transient faults lead to complicated faulty
situations which can be eventually reduced to the situations
of short transient faults discussed above. Fig. 6 depicts two
examples of long transient faults on data signals. In Fig. 6(a),
the long negative fault breaks the high-level input into two
parts. Before the second part goes low, the inv_ack goes high
already, which leads to a positive erroneous transition. In
Fig. 6(b), the positive fault is long and remains active when
inv_ack goes high, which again leads to a positive erroneous
transition. Both situations can be reduced to the faulty
situation shown in Fig. 5(b).

Leaving aside faults on the acknowledge wires, the only
situation that leads to an error in a 4-phase 1-of-n QDI
interconnect is a positive erroneous transition (Fig. 5(b), Fig.
6(a) and Fig. 6(b)).

4) Transient faults on acknowledge wires
The fault-tolerance of acknowledge wires is a serious

issue which has been ignored by many existing fault-tolerant
designs. Acknowledge signals are critical to QDI pipelines.
Faulty acknowledge signals may lead to erroneous data or
data missing. For example, in Fig. 7 out0 and out1 are the
outputs of two continuous pipeline stages (S0 and S1)
respectively while ack0 and ack1 are the corresponding
acknowledge signals. Fig. 7(a) shows the correct situation
without faults where two 1-of-4 data words (“0001” and
“0100”) are transmitted. Fig. 7(b) shows the faulty situation
where a positive fault happens on ack1. The data word
“0001” has not been captured by S1 and the positive fault
creates a pseudo ack1 indicating that a valid data word has
been received by S1 causing S0 to reset. When the fault
disappears, S0 starts a new transmission. At this time, if S1
has output the previous “0001”, it will output the new
“0100” continuously without a Null, which is equivalent to
an invalid “0101”. If S1 has not output “0001”, the previous
“0001” may be rewritten into “0100”, which leads to data
missing.

(a)�No�fault�happens�

0001 Null

0001 Null 0100out0

out1

ack0

ack1

0100 Null

0001 Null 0100

0101�or
0100

out0

out1
ack0

ack1

(b)�Fault�happens
Figure 7. Transient faults on acknowledge wires.

III. RELATED WORK
Most fault-tolerant techniques rely on redundancy, such

as spatial redundancy, temporal redundancy or information
redundancy [13]. These techniques can be classified into two
categories: code redundant or hardware redundant
techniques. Code redundant techniques use error-detecting
codes (EDC) or error-correcting codes (ECC) to detect or
correct errors, while hardware redundant techniques use
extra hardware to provide fault-tolerance.

For code redundant techniques, a systematic error-
correction unordered (ECU) coding scheme [14] using parity
check codes can correct 1-bit error and detect completion
simultaneously on 4-phase asynchronous links. Another
ECU code named Zero-Sum [8] provides both 1-bit error
correction and 2-bit error detection for asynchronous links.
Utilizing several fault-tolerant methods, a self-timed
bundled-data link [11] is able to tolerate transient and
permanent errors but introduces large area overhead due to
the extra de-interleaving and Hamming decoding processes.
For hardware redundant technique, phase relationship has
been used to tolerate transient faults [15]. Although these
techniques seem promising, none of them can be easily
implemented in QDI interconnects.

As for QDI designs, Jang et al. [3] proposed a duplicated
double-checking technique which tolerates 1-bit faults and
some multi-bit faults. The main difference with other
communication-centric fault-tolerant techniques is that it can
be used to build computational circuits. The fault-tolerant
pre-charged buffers using this technique are only twice
slower than the normal pre-charged buffers. Bainbridge et al.
[7] proposed a series of fault-tolerant techniques for QDI
designs but none of them are robust enough to qualify fault-
immunity. In addition, Kuang et al. [16] studied the fault-
tolerance of Null convention logic QDI circuits.

Pontes et al. [17] added temporal redundancy to 1-of-n
codes to eliminate faults on 4-phase QDI pipelines, which is
the closest work to ours. The proposed method encodes 1-of-
n codes to 2-of-(n+1) codes and provides temporal
redundancy using feedback latches. Erroneous data is filtered
by double-checking. However, the acknowledge wires are
not protected.

IV. DELAY INSENSITIVE REDUNDANT CHECK CODING
SCHEME

The proposed DIRC code is based on systematic code, a
widely utilized error-correcting coding paradigm. A
systematic code [8][18] comprises of two fields: an
information field and a check field. The information field
contains the original data while the check field is generated
from the data and can be used to recover the original data
when errors occur. DIRC applies a systematic coding scheme
to 1-of-n codes: the information field contains several data
words denoted by 1-of-n codes and the check field is a single
1-of-n code generated from the 1-of-n data words. Thanks to
the unordered nature of the 1-of-n codes, the check word
generating and error correcting processes are implemented
using QDI circuits with reasonable overhead.

5

A. Arithmetic Rules of m-of-n Codes
Let i be an integer lower than n (0�i<n), its 1-of-n code

representation is an n-bit vector Dn(i) where the (i+1)th bit is
high while the other n-1 bits are low. For example, the 1-of-4
codes for 1 and 3 are D4(1) (“0010”) and D4(3) (“1000”)
respectively. We can define the basic arithmetic rules of 1-
of-n codes as (1) ~ (3). For two integers a and b,

() (mod)n nD a D a n� (1)
() () (mod) ()n n n nD a D a D a n D n a� � � � � � � (2)

() () (() mod)n n nD a D b D a b n� � � (3)

According to Section II.C, positive erroneous transitions
may happen on data signals of 4-phase QDI pipelines under
the assumption of 1-bit transient fault. As a result, 1-of-n
codes may mutate into m-of-n (m�2) codes. We use position
vector Am=(a0, a1, …, am-1) (1�m�n) to identify the positions
of the m ‘1’s in an m-of-n code (the order of ai is arbitrary).
Let Dn(Am)=Dn(a0, a1, …, am-1) be an m-of-n code. A union
operation is used in (4) to construct the m-of-n code with m
1-of-n codes, which is denoted by the symbol “� ”.

1

0 1 1
0

0 1 1

() (, , ...,) ()

 () () ... ()

m
n m n n

m i
i

n n n
m

D A D a a a D a

D a D a D a

�

�
�

�

� �

� � � �

� (4)

Take a 2-of-4 code “1100” for example. It can be
considered as a union of two 1-of-4 codes D4(3) and D4(2).
Both D4(3,2) and D4(2,3) denote “1100”. The extended m-of-
n arithmetic rules are shown in (5) and (6).

1 1 1

0 0 0

() () [()] ()
m m m

m n n n
i i i

i i i

D A D a D a D a
� � �

� � �

� � � � � � �� � � (5)

1 ' 1
'

0 0

' 1 1

0 0

() () () ()

 ()

m m
n m n m n n

i j
i j

m m
n

i j
j i

D A D B D a D b

D a b

� �

� �

� �

� �

� � �

� �

� �

��
 (6)

As described in (4) ~ (6), an m-of-n code is a union of m
1-of-n codes while the arithmetic of m-of-n codes is a union
of 1-of-n operations. Taking 1-of-4 code D4(3) and 2-of-4
code D4(3,2) for example, we have:

� � � � � �4 4 4– 3,2 3 2 "0010" "0100" "0110",D D D� � � � ���

� � � � � � � � � �4 4 4 4 4 4

4 4

(3) 3,2 [3 3

 (2) D (1) "0

3] [2

0"

]

11

D D D D D D

D

� �

� �

� ��

�
B. DIRC Coding Scheme

The proposed DIRC coding scheme is based on the
arithmetic rules of m-of-n codes. The definition of the DIRC
coding scheme is given below:

DIRC Code: Let X=(x0, x1, …, xCN-1) be a data vector
containing CN data words (CN�2). A DI redundant check
word c can be generated from X using a check word

generating process. Each xi, as well as the check word c, is a
1-of-n data word. They together comprise a DIRC code (x0,
x1, …, xCN-1, c) containing (CN+1) 1-of-n words.

Assuming that a data channel is divided into GN (GN>0)
groups or data vectors, each group contains CN 1-of-n data
words. Applying the DIRC code, the width of the new DIRC
data channel, i.e. the number of wires of the DIRC channel,
is GN·(CN+1)·n while the wire number of the former data
channel without check words is GN·CN·n. The number of
redundant wires is GN·n, which is exactly the number of
wires occupied by the GN redundant check words.

A 32-bit wide 1-of-4 (n=4) data channel, for example,
occupies 64 wires which comprise 16 1-of-4 data words. The
total 16 data words can be divided into 8 groups (GN=8).
Then each group contains 2 data words (CN=2) which
comprise a data vector. Added with redundant check words,
each DIRC code contains a data vector and a 1-of-4 check
word. The width of the new DIRC channel is
GN·(CN+1)·n=96 and the number of redundant wires is
GN·n=32.

If the data channel is divided into 4 groups (GN=4),
correspondingly each DIRC code contains 4 data words
(CN=4) and a check word. The width of the DIRC channel is
GN·(CN+1)·n=80 and the number of redundant wires is
GN·n=16. It is found that with the increasing of CN, the
required redundant wires are reduced and the code rate
increases but the complexity of the implemented circuit
becomes extremely large according to the synthesized
results. Therefore, this paper only discusses the situation of
CN=2.

Let function f(X) be the check word generating process, it
can be defined as (7) where the addition operation obeys the
m-of-n arithmetic rules.

0 1 1() ... CNc f X X x x x �� � � � � �� (7)

For arbitrary data word xj (0�j<CN) in a DIRC code (x0,
x1, …, xCN-1, c), it can be regenerated from the other data
words and the corresponding check word c using the error
correcting process g(X�j) defined in (8), where X�j =(x0, …, xj-

1, xj+1, …, xCN-1, c) (0�j<CN)) and xj' is the regenerated data
word of xj.

1 1
'

0, 0,
() ()

CN CN

j j i i
i i j i i j

x g X c x c x
� �

�
� � � �

	

� � � � � � �� �

 �
� �

(8)

In (8), subtraction has been transferred to addition. The
whole design uses the same addition units. Fig. 8 gives
examples of the DIRC coding scheme for several 1-of-n
codes. The check word generating process and the error-
correcting process follows (7) and (8) respectively, both of
which obey the m-of-n arithmetic rules. Taking the 1-of-4
code for example, a data vector contains two data words x0
(“0010”) and x1 (“1000”). Using (7) and (8), we have:

1
4 4

0
4 (3) "0(1) (0 0) 01"c x x D D D� � � � � �

' 4 4 4
0 1 (0) (3) (3) "0010"x c x D D D� � � � � � �
' 4 4 4
1 0 (0) (1) (1) "1000"x c x D D D� � � � � � �

6

x0� x1� c�

���
��� ���

��� ���

���
��� ���

��� ���

(a) 1-of-2 codes�

x0� x1� c�

�����

����� �����

����� �����

����� ����

����� ����

�����

����� �����

����� ����

����� �����

����� �����

�����

����� ����

����� �����

����� �����

����� ����

�����

����� �����

����� ����

����� ����

����� �����

(c) 1-of-4 codes

x0� x1� c�

����

���� ����

���� ����

���� ����

����

���� ����

���� ����

���� ����

����

���� ����

���� ����

���� ����

(b) 1-of-3 codes�

Figure 8. Examples of DIRC coding scheme.

For any data word xi (0�i<CN) in a DIRC code (x0, x1,
…, xCN-1, c), the regenerated data word xi' equals to xi when
no fault occurs. Under the assumption of 1-bit transient fault,
either xi or xi' may be altered by a fault but not both. To
obtain the error-free data word, a filter function h(xi, xi') is
defined in (9), where ‘&’ is used to denote the logical
operation of a C-element.

'' ' '(,) & & ()i i i i i i ix h x x x x x g X�� � � (9)

As described in Section II.C, only positive erroneous
transitions may occur on data wires under the assumption of
1-bit transient fault. Faults only add extra ‘1’s to 1-of-n
codes and convert them into m-of-n (2�m<n) codes rather
than erase any valid ‘1’s. On the other hand, the m-of-n
arithmetic operations are unions of multiple 1-of-n
operations. When faults occur, the extra ‘1’s brought by
faults would add extra ‘1’s to the results of these m-of-n
operations but never erase the ‘1’s which ought to be
produced by the error-free inputs. Since one of the two
operands of (9) (xi and xi') must be correct, the C-elements
are able to filter out the wrong one.

Taking two 1-of-4 data words x0 (“0010”) and x1
(“1000”) for example, the corresponding check word c is
“0001”. Assuming a transient fault converts x0 to the faulty
“1010”, the regenerated data x0' and x1' are “0010” and
“1010” respectively. For x1', the second ‘1’ from right
corresponds to the invalid ‘1’ in the faulty x0 which can be
filtered by C-elements. Using (9), we get x0"=x0&x0'=“0010”
and x1"=x1&x1'=“1000” which are recovered data words. If
the check word is erroneous while the two incoming data
words are error-free, both the two regenerated data words
will be erroneous but, again, will be filtered by the C-
elements.

The final error-free data vector is X"=(x0", x1",…, xCN-1").

V. HARDWARE IMPLEMENTATION
Fig. 9(a) presents a DIRC QDI pipeline stage which

includes 1-of-n adders, asynchronous latches, a CD and an
acknowledge generator (AckGen).

C'1�of�n�
adder

B'

1�of�n�
adder

1�of�n�
adder

A

B

Check

A'

A

B

inv_ack

C''

B''

A''

C C C

ack1 ack2 ack3

CD

CCCCCCCCCCCCCCCC

A3A3B0A2B1A1B2A0B3

C0C1C2C3

C
C
C
C

A0
A0'
A1
A1'
A2
A2'
A3
A3'

inv_ack

A0''

A1''

A2''

A3''

(a)�A�DIRC�QDI�pipeline�stage

(b)�1�of�4�adder�

(c)�Asynchronous�latch�for�
data�words�

Error�Filter

Latch

Latch

Latch

CD

CD
cd1

cd2

cd3

A0A1A2B0 B1 B2 B3 B0 B1 B2 B3 B0 B1 B2 B3A1 A0 A3 A2 A0 A3 A2 A1

C

AckGen

Figure 9. A DIRC QDI pipeline stage and relevant components.

A. Implementation of 1-of-n Adder and Error Filters
According to the proposed DIRC coding scheme, the key

component of the whole design is the QDI 1-of-n adder.
When faults convert a 1-of-n code to an erroneous m-of-n
code, the 1-of-n adder works under the extended m-of-n
arithmetic rules. The mathematical representation of the QDI
1-of-n adder is:

{(&) | () mod , , , [0,)}i j kC A B i j k n i j k n� � � �� (10)

where A, B and C are 1-of-n codes (would be m-of-n codes
when faults occur), and the subscript denotes the bit index.
As an example, Fig. 9(b) shows an implementation of a QDI
1-of-4 adder.

During the error correcting process, we need to
implement the negating operation of m-of-n codes as shown
in (8). According to (5), a negated m-of-n code is a union of
m negated 1-of-n codes. The negation of 1-of-n code is
merely a bit-reshuffle according to (2). Assuming the inv_A
is the negated A, we have (11).

() mod_ (0)i n i ninv A A i n�� � � (11)

Therefore, the negating operation of m-of-n codes incurs no
hardware overhead.

In our implementation, the error filters described by (9)
are combined with pipeline latches to improve area and
speed performance. The resulting 3-input C-elements latch
structure for data words is depicted in Fig. 9(c).

B. Generation of Check Words
In our implementation, the check word is generated from

the incoming data words rather than the recovered data
words. Consequently, the check word generating process and
the error-correcting process run in parallel which reduces the
forward delay. However, the newly generated check word
may be erroneous because the incoming data words may be

7

wrong. If the current stage outputs an erroneous check word
and the outputting data word in the same DIRC code
encounters faults during its transmission, the error-correcting
process of the next stage will fail because both operands of
(9) are erroneous. Under the assumption of 1-bit transient
fault, it is acceptable as the adjacent pipeline stages are
related circuits and the possibility of faults on adjacent stages
is extremely low in practice.

C. Redundant Protection of Acknowledge Wires (RPA)
A new redundant technique named RPA is proposed to

protect the acknowledge wires from transient faults. As
shown in Fig. 9(a), three C-elements are used to build the
acknowledge generator (AckGen) which outputs three
acknowledge signals (ack1, ack2 and ack3). The three inputs
of AckGen are cd1, cd2 and cd3, which are directly from three
sub-CDs (the original CD can be easily divided into three
sub-CDs). Then we have (12) where ‘&’ denotes the logical
operation of a C-element.

1 1 2

2 1 3

3 2 3

1 2 3

&
&
&

_ (& &)

ack cd cd
ack cd cd
ack cd cd
inv ack ack ack ack

��
� ��
� ��
� � ��

 (12)

Therefore, any one of the three acknowledge signals
relies on two sub-CDs and any one sub-CD decides two
acknowledge signals, which ensures that 1-bit transient fault
on acknowledge wires can at most cause a premature
operation but will not cause erroneous bit-flips. The inv_ack
flips only when cd1, cd2 and cd3 are all set high or all reset
low. Considering the width of data wires, RPA protects the
acknowledge wires from 1-bit transient faults with low
overhead. Note that its design is general enough that it can be
implemented independently of DIRC and with other QDI
fault tolerance schemes.

VI. EXPERIMENTAL RESULTS

A. Code Evaluation
Coding efficiency can be measured by code rate R [18],

as shown in (13), where n is the length of the code or the
number of occupied wires while M is the size of the code or
the number of valid code words.

2log MR
n

� (13)

The code rates of the basic 1-of-2 and 1-of-4 code are
both 50%. Applying the proposed DIRC technique, CN 1-of-
n data words correspond to one 1-of-n check word.
Averagely the number of redundant wires for each 1-of-n
data word is n/CN. When CN is 2, the rates of the DIRC 1-
of-2 and the DIRC 1-of-4 code are both 33.33%. We use Rb
and RDIRC to denote the rates of the basic 1-of-n code and the
DIRC code respectively. For the DIRC code, the decreasing
rate Rd of its code rate on the basic 1-of-n code is defined in
(14).

1 DIRC
d

b

R
R

R
� � (14)

When CN is 2, the decreasing rate Rd of the DIRC code is
33.34% which means the code rate of the DIRC code
decreases 33.34% compared with the basic 1-of-n code.
Most code redundant techniques incur high decreasing rates
when applied to 1-of-n codes. For example, the decreasing
rate of the Hamming (7, 4) code on 1-of-4 codes is 42.86%.
Pontes et al. [17] changes 1-of-n codes to 2-of-(n+1) codes to
obtain fault-tolerance. The decreasing rate Rd of the newly
built 2-of-3 code on the basic 1-of-2 code is 33.34% while
for 1-of-4 code, Rd is only 20%. This technique has relatively
high code efficiency but the overhead of the practical circuit
can be large with increasing data width.

The DIRC coding scheme provides QDI interconnects
with the ability of tolerating 1-bit transient faults, meaning
that if only a single bit encounters faults, it will be tolerated.
However, inferred from Section IV, the proposed DIRC
technique can actually tolerate single-word transient faults. If
multi-bit positive transient faults happen in a single word
while the other words of this DIRC code are fault-free, the
erroneous word can also be corrected.

B. Hardware Evaluation
The DIRC QDI pipelines (DIRC plus RPA, Fig. 9(a)) are

implemented and synthesized using the UMC 0.13�m
standard cell library. As a comparison, the basic pipelines
without fault-tolerant mechanisms (Fig. 2) are also
implemented. In the experiment, a data packet is divided into
GN groups and each group has two data words (CN=2) (for
the DIRC pipeline, each group is a DIRC code containing
two data words and a check word). Table II shows detailed
experimental results, including area, average forward delay
and average equivalent period under different configurations.

Fig. 10(a) shows that the area of pipelines increases with
their data widths. DIRC introduces some area overhead due
to the error detection and correction mechanisms. On
average this ratio is around 4.45 for the 1-of-2 pipelines
while it is 7.47 for the 1-of-4 pipelines. Note that these ratios
must be understood as worst-case ratios because the buffers
on long wires are not included (when CN=2, only 50% extra
wires are introduced by DIRC and 2 extra wires are
introduced by RPA). Therefore, in practical designs, the real
ratio should be small and approaching 1.5 as buffers
consume a significantly larger area than the stages.

The forward delay of an asynchronous pipeline stage is
the time needed by data to traverse the asynchronous latch,
excluding the latency of the CD and acknowledge circuits.
The equivalent period is the time of a complete data
transmission, including the set and the reset phases of the 4-
phase handshake protocol. The average forward delay and
the average equivalent period in Table II are obtained from
transmitting millions data through 20 stages of pipelines.

 Fig. 10(b) shows that the pipeline delay increases
slightly with data width due to the increased wire load model
used in synthesis. The fault-tolerant mechanism of the DIRC
pipelines causes an extra delay (DIRC-Basic). On average
the delay overhead is around 0.3 ns for 1-of-2 pipelines

8

TABLE II. EXPERIMENTAL RESULTS OF THE BASIC AND DIRC QDI PIPELINES

Code� Data�
width� GN�

Basic�Pipelines DIRC Pipelines DIRC/Basic� DIRC�Basic�
Area
(�m2)

Delay
(ns)

Period
(ns)

Area
(�m2)

Delay
(ns)

Period
(ns) Area Period Delay (ns)

�������

	� �� �
�� ����
� ������ �	
� ����
� ��
�
� 	���� ��	�� ���
��

�� 	� ���� ����
� ����	� �	

� ���
�� 	���
� 	�	�� ��	
� ����	�

��� � �
	� ����
� ��

� ��
� ���

 	���� 	�	� ���
� ������

��� ��� ����� ����
� ���	��
�

� ���
�� 	�
	�� 	���� ����� ������

�	� �� ����� ������
���� ��	�
 ���
� ��
	� 	��
 ��	�� ���
��

���� �	�
���� ������ ���	�� ��
��� ��	��� ������ 	��	� ����� ������

�����	�

	� � ���� ���
�� ����
 ���	 ��

�� ���� ��
�� ������ ��
���

�� �� ���� ���
�� ������ ��	
� ��

�� ������ ����� ���
� ��
���

��� 	
�	� ���
�� ���

 	��
 ����� 	���� ��	
 ��	�� ��
���

��� �� ����� ���
�� ��	�
� �	
�� ����	�
����� ���
� ��
�� ��
�	�

�	� �� ���	� ���

� 	�
�� ��
�� ����
 ���	� ���
 ��	�� ��
���

���� ��� 	���� ������ ��
��� ���
�� ������ ��		�� ���
� ����� ��
�	�

(a) Area (b) Delay (c) Period

Figure 10. Comparison of area, average forward delay and average period between the basic and DIRC QDI pipelines.

while it is 0.52 ns for the 1-of-4 cases.
The average period is an important factor in evaluating

pipeline because it affects the maximum achievable
throughput. As shown in Fig. 10(c), the average equivalent
periods increase with data width. The 1-of-4 pipelines have
relatively shorter average periods than the 1-of-2 pipelines
with the same data width, since the tree in the CD is one
level deeper in 1-of-2 than in 1-of-4 pipelines. In most cases,
the average periods of the DIRC pipelines are less than 1.5
times of the basic pipelines (as shown in Table II). Measured
periods of the 128-bit wide DIRC 1-of-2 pipeline and the
DIRC 1-of-4 pipeline are only 22% and 13% longer than
their corresponding basic pipelines. Compared with the fault-
tolerant designs proposed by Jang et al. [3] and Pontes et al.
[17] whose average periods are 100% and 26% (at least)
slower than basic ones, the overhead of DIRC pipelines is
low.

FG

FG

ack

Sender ReceiverStage

Wrapper

Write
Message�queue

Read

Figure 11. Test environment for DIRC QDI pipeline.

C. Evaluation of Fault-tolerance
In order to evaluate the fault-tolerant capability of the

whole scheme (DIRC plus RPA), a SystemC test
environment is built (as shown in Fig. 11). It includes a
sender, a receiver, a DIRC pipeline stage, fault-generators
(FGs) and a stage wrapper. The DIRC pipeline stage is a
synthesized gate-level netlist while other parts are simulated
SystemC models. The sender has a random data generator,
which produces random data to the stage. The sender also
has a module like the 1-of-n adder to generate check words.
Fault-generator generates random faults on all wires
including the protected acknowledge wires. The stage
wrapper checks the correctness of the outputting data and
produces statistics. A shared message queue is used to store
the error-free data being transmitted.

In this test environment, both positive and negative faults
happen on any wires at any time, which mimics a real
environment where not only 1-bit faults but also multi-bit
faults may happen. Assuming that the occurrence of faults on
a single wire is a Poisson process, the intervals between
adjacent faults are randomized using an exponential
distribution. Faults on different wires are produced
independently. The mean interval between faults is set to 1�s
while the duration of faults is randomized using a uniform
distribution between 10ps and 2ns. This creates a more
comprehensive and severer faulty environment than most
existing literatures [3][15][17]. Data are transmitted

9

Figure 12. The comparison of MTBF between different pipelines.

continuously using the maximum injection rate. Totally one
million data packets were transmitted during the simulation
(due to the variable data rates, simulations are finished in
1.59ms to 7.19ms).

The plot in Fig. 12 shows the mean time between failures
(MTBF) as a measure of fault-tolerance. Since the increasing
number of wires lead to higher occurrence of faults, the
MTBFs of all pipelines decrease with data width. When data
width is 4-bit, the MTBFs of the DIRC 1-of-2 and 1-of-4
pipelines are 1525 and 1825 times longer than the basic 1-of-
2 and 1-of-4 pipelines respectively. When data width rises to
128-bit, the times become 671 and 774 respectively. For the
basic 1-of-4 pipeline with a data width of 128 bits, 280057
out of 810317 transient faults result in errors during the
whole simulation, while only 331 out of 1119820 transient
faults lead to errors when the DIRC code and the RPA
technique is used. The resulting MTBF for the basic pipeline
is 22.754 ns while it is prolonged to 17621.7 ns for the DIRC
pipeline.

VII. CONCLUSIONS
This paper proposes a new efficient fault-tolerant DIRC

coding scheme. Using a 1-of-n check word generated from
multiple 1-of-n data words, 4-phase QDI interconnects can
tolerate all 1-bit transient faults and some multi-bit transient
faults. Thanks to its simple structure, this technique can be
easily used to replace all or arbitrary stages in existing 1-of-n
interconnects. A new redundant technique named RPA is
also proposed to protect acknowledge wires from transient
faults. Several DIRC and basic pipelines are implemented
using the UMC 0.13�m standard cell library. Detailed
experimental results show that the DIRC pipelines achieve
hundred-folds fault-tolerant capability improvement in
severe simulation environment with reasonable overhead.
The 128-bit wide 1-of-4 DIRC pipeline is only 13% slower
than the basic pipeline but the fault-tolerance is estimated
more than 600 times stronger. Furthermore, the DIRC coding
scheme can be extended to m-of-n QDI interconnects [19].

ACKNOWLEDGMENT
The authors gratefully acknowledge the contribution of

the National Natural Science Foundation of China grant
61272144 and the China Scholarship Council.

REFERENCES
[1] C. Constantinescu, "Trends and challenges in VLSI circuit reliability,"

IEEE Micro, vol. 23, pp. 14-19, 2003.
[2] P. Song and R. Manohar, "Efficient failure detection in pipelined

asynchronous circuits," in Proceedings of International Symposium on
Defect and Fault Tolerance in VLSI Systems (DFT), 2005, pp. 484-
493.

[3] W. Jang and A. J. Martin, "SEU-tolerant QDI circuits," in
Proceedings of International Symposium on Asynchronous Circuits
and Systems (ASYNC), 2005, pp. 156-165.

[4] J. Sparsø and S. B. Furber, Principles of Asynchronous Circuit
Design: a Systems Perspective, Kluwer Academic Publishers, 2001.

[5] N. Enright Jerger and L.-S. Peh, On-chip Networks, Morgan &
Claypool Publishers, 2009.

[6] Y. Thonnart, P. Vivet, and F. Clermidy, "A fully-asynchronous low-
power framework for GALS NoC integration," in Proceedings of
Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2010, pp. 33-38.

[7] W. J. Bainbridge and S. J. Salisbury, "Glitch sensitivity and defense
of quasi delay-insensitive network-on-chip links," in Proceedings of
International Symposium on Asynchronous Circuits and Systems
(ASYNC), 2009, pp. 35-44.

[8] M. Y. Agyekum and S. M. Nowick, "An error-correcting unordered
code and hardware support for robust asynchronous global
communication," in Proceedings of Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2010, pp. 765-770.

[9] M. Blaum and J. Bruck, "Unordered error-correcting codes and their
applications," in Proceedings of International Symposium on Fault-
Tolerant Computing (FTCS), 1992, pp. 486-493.

[10] S. Mukherjee, Architecture Design for Soft Errors, Morgan Kaufmann
Publishers, 2008.

[11] T. Lehtonen, P. Liljeberg, and J. Plosila, "Online reconfigurable self-
timed links for fault tolerant NoC," VLSI Design, vol. 2007, 2007.

[12] F. L. Yang and R. A. Saleh, "Simulation and analysis of transient
faults in digital circuits," IEEE Journal of Solid-State Circuits, vol. 27,
pp. 258-264, 1992.

[13] D. Sorin, Fault Tolerant Computer Architecture, Morgan & Claypool
Publishers, 2009.

[14] F.-C. Cheng and S.-L. Ho, "Efficient systematic error-correcting
codes for semi-delay-insensitive data transmission," in Proceedings of
International Conference on Computer Design (ICCD), 2001, pp. 24-
29.

[15] S. Ogg, B. Al-Hashimi, and A. Yakovlev, "Asynchronous transient
resilient links for NoC," in Proceedings of International Conference
on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2008.

[16] W. Kuang, E. Xiao, C. M. Ibarra, and P. Zhao, "Design asynchronous
circuits for soft error tolerance," in Proceedings of International
Conference on Integrated Circuit Design and Technology (ICICDT),
2007, pp. 1-5.

[17] J. Pontes, N. Calazans, and P. Vivet, "Adding temporal redundancy to
delay insensitive codes to mitigate single event effects," in
Proceedings of International Symposium on Asynchronous Circuits
and Systems (ASYNC), 2012, pp. 142-149.

[18] T. Verhoeff, "Delay-insensitive codes — an overview," Distributed
Computing, vol. 3, pp. 1-8, 1988.

[19] W. J. Bainbridge, W. B. Toms, D. A. Edwards, and S. B. Furber,
"Delay-insensitive, point-to-point interconnect using m-of-n codes,"
in Proceedings of International Symposium on Asynchronous Circuits
and Systems (ASYNC), 2003.

10

