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Abstract—Asynchronous logic is a promising technology for 
building the chip-level interconnect of multi-core systems. 
However, asynchronous circuits are vulnerable to faults. This 
paper presents a novel scheme to improve the robustness of 
asynchronous systems. Our first contribution is a fault tolerant 
delay-insensitive redundant check coding scheme named 
DIRC. Using DIRC in 4-phase 1-of-n quasi-delay-insensitive 
(QDI) interconnects, all 1-bit and some multi-bit transient 
faults can be tolerated. The DIRC and the basic 4-phase 1-of-n 
pipeline stages are mutually exchangeable so that arbitrary 
basic stages can be replaced by DIRC stages to strengthen the 
fault-tolerance of long wires. Our second contribution, RPA, is 
a redundant technique to protect the acknowledge wires from 
transient faults – an issue that has long been disregarded by 
the community. The DIRC pipelines (using DIRC plus RPA) 
were simulated using the UMC 0.13�m standard cell library 
and compared with the basic pipelines. Detailed experimental 
results show that the 128-bit DIRC 1-of-4 pipeline is only 13% 
slower than the basic one but increases fault-tolerance 
hundred-folds when multi-bit transient faults are considered. 

Keywords- asynchronous interconnects; transient faults; 
fault tolerance; quasi-delay-insensitive circuits; 

I.  INTRODUCTION 
The continuous shrinking of device geometry 

significantly increases the number of transistors and the 
density of wires integrated in a single chip which opens a 
vast range of opportunities. However, together with these 
opportunities several issues arise: the reduced supply 
voltage, the increased clock frequency and the broadened 
clock distribution network not only introduce extra difficulty 
in delivering the global clock signal all over the chip with 
acceptable clock skews, but also worsen the vulnerability of 
the circuits to faults [1-3]. For this reason, fault-tolerance 
becomes an essential design objective for critical digital 
systems, especially in highly specialized fields such as 
aerospace, military and medical equipment. 

Asynchronous circuits provide a fundamental solution to 
problems caused by clocks [4] due to their clockless nature. 
They also have potential advantages in power consumption, 
modularity, composability and robustness, which has 
attracted many researchers in recent years. 

Networks-on-chip (NoC), a kind of scalable and efficient 
on-chip communication infrastructure [5], has some 
attractive features which make them specially well suited for 
exploiting the advantages of asynchronous circuits: simplify 
timing closure, reduce power and resolve chip-level 
synchronization issues. Consequently, asynchronous NoCs 

are thought to be better candidates for current multi-core 
systems than their synchronous counterparts [6]. As an 
important issue in the design of NoCs, the large numbers of 
long wires are exposed to noises and faults, which lead to the 
variation of propagation delay and glitches [7].  

Quasi-delay-insensitive (QDI) circuits [4] are a family of 
asynchronous circuits which tolerate nearly all delay 
variations as all wires and gates are assumed with positive 
infinite latencies. Unlike synchronous circuits, QDI circuits 
are unaffected by delay variation and skew. However, QDI 
circuits are not so robust to glitches compared with their 
robustness to delay variation. Without the sense of time, any 
erroneous transition or glitch may be accepted as a valid 
signal, making QDI circuits vulnerable to faults.  

This paper proposes a novel transient fault tolerant 
coding scheme for 4-phase 1-of-n QDI interconnects. Using 
delay-insensitive redundant check (DIRC) code, the 
proposed scheme tolerates, with reasonable overhead, all 1-
bit transient faults and some multi-bit transient faults. The 
DIRC code can be easily used in existing 1-of-n QDI 
pipelines to tolerate transient faults.  

A novel fault-tolerant technique, RPA (redundant 
protection of acknowledge wires), is also proposed to protect 
the acknowledge wires from 1-bit transient faults. The QDI 
pipeline using DIRC and RPA provides both timing-
robustness and fault-tolerance. A 128-bit DIRC 1-of-4 
pipeline is only 13% slower than a basic QDI pipeline while 
its fault-tolerant capability increases hundred-folds. 

This paper is organized as follows: Section II introduces 
the background of asynchronous protocols, transient faults 
and their impact on QDI interconnects. Section III presents 
related works. Section IV describes the proposed DIRC 
coding scheme and Section V demonstrates the hardware 
implementation of the DIRC pipeline. Section VI evaluates 
the DIRC pipeline with detailed experimental results and 
comparisons. Finally this paper is concluded in Section VII. 

II. BACKGROUND 

A. Asynchronous Protocols and 4-phase QDI Pipelines 
Asynchronous communication protocols can be classified 

into 4-phase and 2-phase protocols [4]. As shown in Fig. 1, 
4-phase protocols are level-triggered protocols where a reset 
or return-to-zero phase is required after transmitting a valid 
data. 2-phase protocols are edge-triggered where each 
transition of the acknowledge signal starts a new data 
transmission. 4-phase protocols are more widely used than 2- 
phase ones for the sake of implementation simplicity [8]. On 
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Figure 1.  4-phase protocol. 

TABLE I.  1-OF-4 CODES 

1-of-4 
codes 

Information 
 (in binary) 

0000 Null 
0001 00 
0010 01 
0100 10 
1000 11 

 

most QDI interconnects, data are transmitted using delay-
insensitive (DI) codes, also named unordered codes [8][9], 
where 1-of-n codes are the most utilized ones. As an 
extensively utilized case of 1-of-n codes, the 1-of-4 code is 
presented in Table I. This paper focuses on the fault-
tolerance of 4-phase 1-of-n QDI interconnects. 

Fig. 2 shows two adjacent stages of a basic 1-of-4 
asynchronous QDI pipeline. Each stage is composed of a 
group of asynchronous latches and a completion detector 
(CD). The asynchronous latches are constructed by C-
elements [4]. The CD is a tree of OR-gates and C-elements, 
detecting the completion of the incoming data and generating 
the acknowledge signal (ack) whose inverse (inv_ack) drives 
the latches of the previous stage. To reduce wire delay, 
buffers are inserted on long wires between stages to increase 
signal driving strength. 

B. Transient Faults 

Faults can be permanent faults or transient faults [10]. 
Transient faults are the most prevalent faults and nearly 80% 
of errors are caused by them [11]. A transient fault can be 
provoked by internal or external sources [12]. The internal 
sources include electrostatic discharge, power transients, 
capacitive coupling, inductive coupling and crosstalk, while 
the external sources include electromagnetic coupling and 
strikes of neutron or alpha particles. Transient faults usually 
last for a short period and cause errors when they are 
captured by memory components. The typical phenomenon 
caused by transient fault is a bit-flip, also known as a glitch. 
Note that glitches can be short or long. Long glitches rarely 
happen and cause complicated faulty situations which can be 
reduced to those created by short ones (Section II.C). 
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Figure 2.  Two adjacent stages of a basic 1-of-4 asynchronous QDI 

pipeline. 
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Figure 3.  Particle strikes buffers of long wires. 
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Figure 4.  Negative transient faults on high-level data signals. 
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Figure 5.  Positive transient faults on low-level data signals. 

This paper focuses on the tolerance of transient faults on 
long wires (Fig. 2). 

C. Impact of Transient Faults on 4-phase QDI Interconnect 
Transient faults may occur on any wires at any time and 

cause glitches or erroneous transitions. Glitches include 
positive and negative ones. When glitches are captured by 
memory components, they become erroneous transitions. It 
is assumed that the 1-bit transient fault is incurred by particle 
strikes (Fig. 3). Multi-bit transient faults may largely 
increase the failure possibility of QDI pipelines but they 
rarely happen.  

1) Negative transient faults on high-level data signals 
Fig. 4 shows the situations when negative transient faults 

happen on high-level data signals. In Fig. 4(a) and Fig. 4(b), 
faults happen when the inverted acknowledge signal inv_ack 
is low; in Fig. 4(c), the fault happens when inv_ack is high. 
If inv_ack goes low earlier than the negative glitch (Fig. 
4(a)), a premature reset operation is invoked. For the other 
two situations, faults are filtered by the C-element. None of 
the three situations will cause an error.  

2) Positive transient faults on low-level data signals 
Low-level data signals can be classified into two kinds. 

One is the data signal that keeps low as shown in Fig. 5(a) 
and Fig. 5(b) while the other one will go high in the next 
transmission or phase as shown in Fig. 5(c) and Fig. 5(d). 
For the former kind, if a positive fault happens when the 
inv_ack is low (Fig. 5(a)), the fault will be filtered by the C-
element. Fig. 5(b) shows that if the fault happens when 
inv_ack is high, the output of the current C-element will go 
high incorrectly, which causes a positive erroneous 
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Figure 6.  Long transient faults on incoming data signals. 

transition. For the later kind of data signals (Fig. 5(c) and 
Fig. 5(d)), in the worst case the positive fault causes a 
premature set operation (Fig. 5(d)) and no erroneous 
transitions are incurred. 

3) Long transient faults on data signals 
In rare situations, the duration of transient faults can be 

long. Long transient faults lead to complicated faulty 
situations which can be eventually reduced to the situations 
of short transient faults discussed above. Fig. 6 depicts two 
examples of long transient faults on data signals. In Fig. 6(a), 
the long negative fault breaks the high-level input into two 
parts. Before the second part goes low, the inv_ack goes high 
already, which leads to a positive erroneous transition. In 
Fig. 6(b), the positive fault is long and remains active when 
inv_ack goes high, which again leads to a positive erroneous 
transition. Both situations can be reduced to the faulty 
situation shown in Fig. 5(b). 

Leaving aside faults on the acknowledge wires, the only 
situation that leads to an error in a 4-phase 1-of-n QDI 
interconnect is a positive erroneous transition (Fig. 5(b), Fig. 
6(a) and Fig. 6(b)). 

4) Transient faults on acknowledge wires 
The fault-tolerance of acknowledge wires is a serious 

issue which has been ignored by many existing fault-tolerant 
designs. Acknowledge signals are critical to QDI pipelines. 
Faulty acknowledge signals may lead to erroneous data or 
data missing. For example, in Fig. 7 out0 and out1 are the 
outputs of two continuous pipeline stages (S0 and S1) 
respectively while ack0 and ack1 are the corresponding 
acknowledge signals. Fig. 7(a) shows the correct situation 
without faults where two 1-of-4 data words (“0001” and 
“0100”) are transmitted. Fig. 7(b) shows the faulty situation 
where a positive fault happens on ack1. The data word 
“0001” has not been captured by S1 and the positive fault 
creates a pseudo ack1 indicating that a valid data word has 
been received by S1 causing S0 to reset. When the fault 
disappears, S0 starts a new transmission. At this time, if S1 
has output the previous “0001”, it will output the new 
“0100” continuously without a Null, which is equivalent to 
an invalid “0101”. If S1 has not output “0001”, the previous 
“0001” may be rewritten into “0100”, which leads to data 
missing.  

(a)�No�fault�happens�
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ack0

ack1

0100 Null
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0101�or
0100
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ack0
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Figure 7.  Transient faults on acknowledge wires. 

III. RELATED WORK 
Most fault-tolerant techniques rely on redundancy, such 

as spatial redundancy, temporal redundancy or information 
redundancy [13]. These techniques can be classified into two 
categories: code redundant or hardware redundant 
techniques. Code redundant techniques use error-detecting 
codes (EDC) or error-correcting codes (ECC) to detect or 
correct errors, while hardware redundant techniques use 
extra hardware to provide fault-tolerance. 

For code redundant techniques, a systematic error-
correction unordered (ECU) coding scheme [14] using parity 
check codes can correct 1-bit error and detect completion 
simultaneously on 4-phase asynchronous links. Another 
ECU code named Zero-Sum [8] provides both 1-bit error 
correction and 2-bit error detection for asynchronous links. 
Utilizing several fault-tolerant methods, a self-timed 
bundled-data link [11] is able to tolerate transient and 
permanent errors but introduces large area overhead due to 
the extra de-interleaving and Hamming decoding processes. 
For hardware redundant technique, phase relationship has 
been used to tolerate transient faults [15]. Although these 
techniques seem promising, none of them can be easily 
implemented in QDI interconnects.  

As for QDI designs, Jang et al. [3] proposed a duplicated 
double-checking technique which tolerates 1-bit faults and 
some multi-bit faults. The main difference with other 
communication-centric fault-tolerant techniques is that it can 
be used to build computational circuits. The fault-tolerant 
pre-charged buffers using this technique are only twice 
slower than the normal pre-charged buffers. Bainbridge et al. 
[7] proposed a series of fault-tolerant techniques for QDI 
designs but none of them are robust enough to qualify fault-
immunity. In addition, Kuang et al. [16] studied the fault-
tolerance of Null convention logic QDI circuits.  

Pontes et al. [17] added temporal redundancy to 1-of-n 
codes to eliminate faults on 4-phase QDI pipelines, which is 
the closest work to ours. The proposed method encodes 1-of-
n codes to 2-of-(n+1) codes and provides temporal 
redundancy using feedback latches. Erroneous data is filtered 
by double-checking. However, the acknowledge wires are 
not protected. 

IV. DELAY INSENSITIVE REDUNDANT CHECK CODING 
SCHEME 

The proposed DIRC code is based on systematic code, a 
widely utilized error-correcting coding paradigm. A 
systematic code [8][18] comprises of two fields: an 
information field and a check field. The information field 
contains the original data while the check field is generated 
from the data and can be used to recover the original data 
when errors occur. DIRC applies a systematic coding scheme 
to 1-of-n codes: the information field contains several data 
words denoted by 1-of-n codes and the check field is a single 
1-of-n code generated from the 1-of-n data words. Thanks to 
the unordered nature of the 1-of-n codes, the check word 
generating and error correcting processes are implemented 
using QDI circuits with reasonable overhead. 
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A. Arithmetic Rules of m-of-n Codes 
Let i be an integer lower than n (0�i<n), its 1-of-n code 

representation is an n-bit vector Dn(i) where the (i+1)th bit is 
high while the other n-1 bits are low. For example, the 1-of-4 
codes for 1 and 3 are D4(1) (“0010”) and D4(3) (“1000”) 
respectively. We can define the basic arithmetic rules of 1-
of-n codes as (1) ~ (3). For two integers a and b, 

( ) ( mod )n nD a D a n�  (1) 
( ) ( ) ( mod ) ( )n n n nD a D a D a n D n a� � � � � � � (2) 

( ) ( ) (( ) mod )n n nD a D b D a b n� � � (3) 

According to Section II.C, positive erroneous transitions 
may happen on data signals of 4-phase QDI pipelines under 
the assumption of 1-bit transient fault. As a result, 1-of-n 
codes may mutate into m-of-n (m�2) codes. We use position 
vector Am=(a0, a1, …, am-1) (1�m�n) to identify the positions 
of the m ‘1’s in an m-of-n code (the order of ai is arbitrary). 
Let Dn(Am)=Dn(a0, a1, …, am-1) be an m-of-n code. A union 
operation is used in (4) to construct the m-of-n code with m 
1-of-n codes, which is denoted by the symbol “� ”. 

1

0 1 1
0

0 1 1

( ) ( , , ..., ) ( )

              ( ) ( ) ... ( )

m
n m n n

m i
i

n n n
m

D A D a a a D a

D a D a D a

�

�
�

�

� �

� � � �

�  (4) 

Take a 2-of-4 code “1100” for example. It can be 
considered as a union of two 1-of-4 codes D4(3) and D4(2). 
Both D4(3,2) and D4(2,3) denote “1100”. The extended m-of-
n arithmetic rules are shown in (5) and (6). 

1 1 1

0 0 0

( ) ( ) [ ( )] ( )
m m m

m n n n
i i i

i i i

D A D a D a D a
� � �

� � �
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1 ' 1
'
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' 1 1

0 0
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                               ( )
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i j
i j
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j i
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� �

� �
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� �

� �

��
 (6) 

As described in (4) ~ (6), an m-of-n code is a union of m 
1-of-n codes while the arithmetic of m-of-n codes is a union 
of 1-of-n operations. Taking 1-of-4 code D4(3) and 2-of-4 
code D4(3,2) for example, we have: 
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B. DIRC Coding Scheme 

The proposed DIRC coding scheme is based on the 
arithmetic rules of m-of-n codes. The definition of the DIRC 
coding scheme is given below: 

DIRC Code: Let X=(x0, x1, …, xCN-1) be a data vector 
containing CN data words (CN�2). A DI redundant check 
word c can be generated from X using a check word 

generating process. Each xi, as well as the check word c, is a 
1-of-n data word. They together comprise a DIRC code (x0, 
x1, …, xCN-1, c) containing (CN+1) 1-of-n words.  

Assuming that a data channel is divided into GN (GN>0) 
groups or data vectors, each group contains CN 1-of-n data 
words. Applying the DIRC code, the width of the new DIRC 
data channel, i.e. the number of wires of the DIRC channel, 
is GN·(CN+1)·n while the wire number of the former data 
channel without check words is GN·CN·n. The number of 
redundant wires is GN·n, which is exactly the number of 
wires occupied by the GN redundant check words.  

A 32-bit wide 1-of-4 (n=4) data channel, for example, 
occupies 64 wires which comprise 16 1-of-4 data words. The 
total 16 data words can be divided into 8 groups (GN=8). 
Then each group contains 2 data words (CN=2) which 
comprise a data vector. Added with redundant check words, 
each DIRC code contains a data vector and a 1-of-4 check 
word. The width of the new DIRC channel is 
GN·(CN+1)·n=96 and the number of redundant wires is 
GN·n=32.  

If the data channel is divided into 4 groups (GN=4), 
correspondingly each DIRC code contains 4 data words 
(CN=4) and a check word. The width of the DIRC channel is 
GN·(CN+1)·n=80 and the number of redundant wires is 
GN·n=16. It is found that with the increasing of CN, the 
required redundant wires are reduced and the code rate 
increases but the complexity of the implemented circuit 
becomes extremely large according to the synthesized 
results. Therefore, this paper only discusses the situation of 
CN=2. 

Let function f(X) be the check word generating process, it 
can be defined as (7) where the addition operation obeys the 
m-of-n arithmetic rules. 

0 1 1( ) ... CNc f X X x x x �� � � � � ��  (7) 

For arbitrary data word xj (0�j<CN) in a DIRC code (x0, 
x1, …, xCN-1, c), it can be regenerated from the other data 
words and the corresponding check word c using the error 
correcting process g(X�j) defined in (8), where X�j =(x0, …, xj-

1, xj+1, …, xCN-1, c) (0�j<CN)) and xj' is the regenerated data 
word of xj. 

1 1
'

0, 0,
( ) ( )

CN CN

j j i i
i i j i i j

x g X c x c x
� �

�
� � � �

	 

� � � � � � �� �


 �
� �

 
(8) 

 

In (8), subtraction has been transferred to addition. The 
whole design uses the same addition units. Fig. 8 gives 
examples of the DIRC coding scheme for several 1-of-n 
codes. The check word generating process and the error-
correcting process follows (7) and (8) respectively, both of 
which obey the m-of-n arithmetic rules. Taking the 1-of-4 
code for example, a data vector contains two data words x0 
(“0010”) and x1 (“1000”). Using (7) and (8), we have: 

1
4 4

0
4 (3) "0(1) (0 0) 01"c x x D D D� � � � � �  

' 4 4 4
0 1 (0) (3) ( 3) "0010"x c x D D D� � � � � � �  
' 4 4 4
1 0 (0) (1) ( 1) "1000"x c x D D D� � � � � � �  
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Figure 8.  Examples of DIRC coding scheme. 

For any data word xi (0�i<CN) in a DIRC code (x0, x1, 
…, xCN-1, c), the regenerated data word xi' equals to xi when 
no fault occurs. Under the assumption of 1-bit transient fault, 
either xi or xi' may be altered by a fault but not both. To 
obtain the error-free data word, a filter function h(xi, xi') is 
defined in (9), where ‘&’ is used to denote the logical 
operation of a C-element. 

'' ' '( , ) & & ( )i i i i i i ix h x x x x x g X�� � �  (9) 

As described in Section II.C, only positive erroneous 
transitions may occur on data wires under the assumption of 
1-bit transient fault. Faults only add extra ‘1’s to 1-of-n 
codes and convert them into m-of-n (2�m<n) codes rather 
than erase any valid ‘1’s. On the other hand, the m-of-n 
arithmetic operations are unions of multiple 1-of-n 
operations. When faults occur, the extra ‘1’s brought by 
faults would add extra ‘1’s to the results of these m-of-n 
operations but never erase the ‘1’s which ought to be 
produced by the error-free inputs. Since one of the two 
operands of (9) (xi and xi') must be correct, the C-elements 
are able to filter out the wrong one. 

Taking two 1-of-4 data words x0 (“0010”) and x1 
(“1000”) for example, the corresponding check word c is 
“0001”. Assuming a transient fault converts x0 to the faulty 
“1010”, the regenerated data x0' and x1' are “0010” and 
“1010” respectively. For x1', the second ‘1’ from right 
corresponds to the invalid ‘1’ in the faulty x0 which can be 
filtered by C-elements. Using (9), we get x0"=x0&x0'=“0010” 
and x1"=x1&x1'=“1000” which are recovered data words. If 
the check word is erroneous while the two incoming data 
words are error-free, both the two regenerated data words 
will be erroneous but, again, will be filtered by the C-
elements. 

The final error-free data vector is X"=(x0", x1",…, xCN-1"). 

V. HARDWARE IMPLEMENTATION 
Fig. 9(a) presents a DIRC QDI pipeline stage which 

includes 1-of-n adders, asynchronous latches, a CD and an 
acknowledge generator (AckGen). 

C'1�of�n�
adder

B'

1�of�n�
adder

1�of�n�
adder

A

B

Check

A'

A

B

inv_ack

C''

B''

A''

C C C

ack1 ack2 ack3

CD

CCCCCCCCCCCCCCCC

A3A3B0A2B1A1B2A0B3

C0C1C2C3

C
C
C
C

A0
A0'
A1
A1'
A2
A2'
A3
A3'

inv_ack

A0''

A1''

A2''

A3''

(a)�A�DIRC�QDI�pipeline�stage

(b)�1�of�4�adder�

(c)�Asynchronous�latch�for�
data�words�

Error�Filter

Latch

Latch

Latch

CD

CD
cd1

cd2

cd3

A0A1A2B0 B1 B2 B3 B0 B1 B2 B3 B0 B1 B2 B3A1 A0 A3 A2 A0 A3 A2 A1

C

AckGen

 
Figure 9.  A DIRC QDI pipeline stage and relevant components. 

A. Implementation of 1-of-n Adder and Error Filters  
According to the proposed DIRC coding scheme, the key 

component of the whole design is the QDI 1-of-n adder. 
When faults convert a 1-of-n code to an erroneous m-of-n 
code, the 1-of-n adder works under the extended m-of-n 
arithmetic rules. The mathematical representation of the QDI 
1-of-n adder is: 

{( & ) | ( ) mod ,  , , [0, )}i j kC A B i j k n i j k n� � � ��  (10) 

where A, B and C are 1-of-n codes (would be m-of-n codes 
when faults occur), and the subscript denotes the bit index. 
As an example, Fig. 9(b) shows an implementation of a QDI 
1-of-4 adder. 

During the error correcting process, we need to 
implement the negating operation of m-of-n codes as shown 
in (8). According to (5), a negated m-of-n code is a union of 
m negated 1-of-n codes. The negation of 1-of-n code is 
merely a bit-reshuffle according to (2). Assuming the inv_A 
is the negated A, we have (11). 

( ) mod_ (0 )i n i ninv A A i n�� � �  (11) 

Therefore, the negating operation of m-of-n codes incurs no 
hardware overhead. 

In our implementation, the error filters described by (9) 
are combined with pipeline latches to improve area and 
speed performance. The resulting 3-input C-elements latch 
structure for data words is depicted in Fig. 9(c).  

B. Generation of Check Words 
In our implementation, the check word is generated from 

the incoming data words rather than the recovered data 
words. Consequently, the check word generating process and 
the error-correcting process run in parallel which reduces the 
forward delay. However, the newly generated check word 
may be erroneous because the incoming data words may be 
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wrong. If the current stage outputs an erroneous check word 
and the outputting data word in the same DIRC code 
encounters faults during its transmission, the error-correcting 
process of the next stage will fail because both operands of 
(9) are erroneous. Under the assumption of 1-bit transient 
fault, it is acceptable as the adjacent pipeline stages are 
related circuits and the possibility of faults on adjacent stages 
is extremely low in practice. 

C. Redundant Protection of Acknowledge Wires (RPA) 
A new redundant technique named RPA is proposed to 

protect the acknowledge wires from transient faults. As 
shown in Fig. 9(a), three C-elements are used to build the 
acknowledge generator (AckGen) which outputs three 
acknowledge signals (ack1, ack2 and ack3). The three inputs 
of AckGen are cd1, cd2 and cd3, which are directly from three 
sub-CDs (the original CD can be easily divided into three 
sub-CDs). Then we have (12) where ‘&’ denotes the logical 
operation of a C-element. 

1 1 2

2 1 3

3 2 3

1 2 3

&
&
&

_ ( & & )

ack cd cd
ack cd cd
ack cd cd
inv ack ack ack ack

��
� ��
� ��
� � ��

 (12) 

Therefore, any one of the three acknowledge signals 
relies on two sub-CDs and any one sub-CD decides two 
acknowledge signals, which ensures that 1-bit transient fault 
on acknowledge wires can at most cause a premature 
operation but will not cause erroneous bit-flips. The inv_ack 
flips only when cd1, cd2 and cd3 are all set high or all reset 
low. Considering the width of data wires, RPA protects the 
acknowledge wires from 1-bit transient faults with low 
overhead. Note that its design is general enough that it can be 
implemented independently of DIRC and with other QDI 
fault tolerance schemes. 

VI. EXPERIMENTAL RESULTS 

A. Code Evaluation 
Coding efficiency can be measured by code rate R [18], 

as shown in (13), where n is the length of the code or the 
number of occupied wires while M is the size of the code or 
the number of valid code words. 

2log MR
n

�  (13) 

The code rates of the basic 1-of-2 and 1-of-4 code are 
both 50%. Applying the proposed DIRC technique, CN 1-of-
n data words correspond to one 1-of-n check word. 
Averagely the number of redundant wires for each 1-of-n 
data word is n/CN. When CN is 2, the rates of the DIRC 1-
of-2 and the DIRC 1-of-4 code are both 33.33%. We use Rb 
and RDIRC to denote the rates of the basic 1-of-n code and the 
DIRC code respectively. For the DIRC code, the decreasing 
rate Rd of its code rate on the basic 1-of-n code is defined in 
(14). 

1 DIRC
d

b

R
R

R
� �  (14) 

When CN is 2, the decreasing rate Rd of the DIRC code is 
33.34% which means the code rate of the DIRC code 
decreases 33.34% compared with the basic 1-of-n code. 
Most code redundant techniques incur high decreasing rates 
when applied to 1-of-n codes. For example, the decreasing 
rate of the Hamming (7, 4) code on 1-of-4 codes is 42.86%. 
Pontes et al. [17] changes 1-of-n codes to 2-of-(n+1) codes to 
obtain fault-tolerance. The decreasing rate Rd of the newly 
built 2-of-3 code on the basic 1-of-2 code is 33.34% while 
for 1-of-4 code, Rd is only 20%. This technique has relatively 
high code efficiency but the overhead of the practical circuit 
can be large with increasing data width. 

The DIRC coding scheme provides QDI interconnects 
with the ability of tolerating 1-bit transient faults, meaning 
that if only a single bit encounters faults, it will be tolerated. 
However, inferred from Section IV, the proposed DIRC 
technique can actually tolerate single-word transient faults. If 
multi-bit positive transient faults happen in a single word 
while the other words of this DIRC code are fault-free, the 
erroneous word can also be corrected. 

B. Hardware Evaluation 
The DIRC QDI pipelines (DIRC plus RPA, Fig. 9(a)) are 

implemented and synthesized using the UMC 0.13�m 
standard cell library. As a comparison, the basic pipelines 
without fault-tolerant mechanisms (Fig. 2) are also 
implemented. In the experiment, a data packet is divided into 
GN groups and each group has two data words (CN=2) (for 
the DIRC pipeline, each group is a DIRC code containing 
two data words and a check word). Table II shows detailed 
experimental results, including area, average forward delay 
and average equivalent period under different configurations.  

Fig. 10(a) shows that the area of pipelines increases with 
their data widths. DIRC introduces some area overhead due 
to the error detection and correction mechanisms. On 
average this ratio is around 4.45 for the 1-of-2 pipelines 
while it is 7.47 for the 1-of-4 pipelines. Note that these ratios 
must be understood as worst-case ratios because the buffers 
on long wires are not included (when CN=2, only 50% extra 
wires are introduced by DIRC and 2 extra wires are 
introduced by RPA). Therefore, in practical designs, the real 
ratio should be small and approaching 1.5 as buffers 
consume a significantly larger area than the stages.  

The forward delay of an asynchronous pipeline stage is 
the time needed by data to traverse the asynchronous latch, 
excluding the latency of the CD and acknowledge circuits. 
The equivalent period is the time of a complete data 
transmission, including the set and the reset phases of the 4-
phase handshake protocol. The average forward delay and 
the average equivalent period in Table II are obtained from 
transmitting millions data through 20 stages of pipelines. 

 Fig. 10(b) shows that the pipeline delay increases 
slightly with data width due to the increased wire load model 
used in synthesis. The fault-tolerant mechanism of the DIRC 
pipelines causes an extra delay (DIRC-Basic). On average 
the delay overhead is around 0.3 ns for 1-of-2 pipelines 
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TABLE II.  EXPERIMENTAL RESULTS OF THE BASIC AND DIRC QDI PIPELINES 

Code� Data�
width� GN�

Basic�Pipelines DIRC Pipelines DIRC/Basic� DIRC�Basic�
Area 
(�m2) 

Delay 
(ns) 

Period 
(ns) 

Area 
(�m2) 

Delay 
(ns) 

Period 
(ns) Area Period Delay (ns) 
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Figure 10.  Comparison of area, average forward delay and average period between the basic and DIRC QDI pipelines. 

while it is 0.52 ns for the 1-of-4 cases. 
The average period is an important factor in evaluating 

pipeline because it affects the maximum achievable 
throughput. As shown in Fig. 10(c), the average equivalent 
periods increase with data width. The 1-of-4 pipelines have 
relatively shorter average periods than the 1-of-2 pipelines 
with the same data width, since the tree in the CD is one 
level deeper in 1-of-2 than in 1-of-4 pipelines. In most cases, 
the average periods of the DIRC pipelines are less than 1.5 
times of the basic pipelines (as shown in Table II). Measured 
periods of the 128-bit wide DIRC 1-of-2 pipeline and the 
DIRC 1-of-4 pipeline are only 22% and 13% longer than 
their corresponding basic pipelines. Compared with the fault-
tolerant designs proposed by Jang et al. [3] and Pontes et al. 
[17] whose average periods are 100% and 26% (at least) 
slower than basic ones, the overhead of DIRC pipelines is 
low. 

FG

FG

ack

Sender ReceiverStage

Wrapper

Write
Message�queue

Read

 
Figure 11.  Test environment for DIRC QDI pipeline. 

C. Evaluation of Fault-tolerance 
In order to evaluate the fault-tolerant capability of the 

whole scheme (DIRC plus RPA), a SystemC test 
environment is built (as shown in Fig. 11). It includes a 
sender, a receiver, a DIRC pipeline stage, fault-generators 
(FGs) and a stage wrapper. The DIRC pipeline stage is a 
synthesized gate-level netlist while other parts are simulated 
SystemC models. The sender has a random data generator, 
which produces random data to the stage. The sender also 
has a module like the 1-of-n adder to generate check words. 
Fault-generator generates random faults on all wires 
including the protected acknowledge wires. The stage 
wrapper checks the correctness of the outputting data and 
produces statistics. A shared message queue is used to store 
the error-free data being transmitted. 

In this test environment, both positive and negative faults 
happen on any wires at any time, which mimics a real 
environment where not only 1-bit faults but also multi-bit 
faults may happen. Assuming that the occurrence of faults on 
a single wire is a Poisson process, the intervals between 
adjacent faults are randomized using an exponential 
distribution. Faults on different wires are produced 
independently. The mean interval between faults is set to 1�s 
while the duration of faults is randomized using a uniform 
distribution between 10ps and 2ns. This creates a more 
comprehensive and severer faulty environment than most 
existing literatures [3][15][17]. Data are transmitted  
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Figure 12.   The comparison of MTBF between different pipelines. 

continuously using the maximum injection rate. Totally one 
million data packets were transmitted during the simulation 
(due to the variable data rates, simulations are finished in 
1.59ms to 7.19ms). 

The plot in Fig. 12 shows the mean time between failures 
(MTBF) as a measure of fault-tolerance. Since the increasing 
number of wires lead to higher occurrence of faults, the 
MTBFs of all pipelines decrease with data width. When data 
width is 4-bit, the MTBFs of the DIRC 1-of-2 and 1-of-4 
pipelines are 1525 and 1825 times longer than the basic 1-of-
2 and 1-of-4 pipelines respectively. When data width rises to 
128-bit, the times become 671 and 774 respectively. For the 
basic 1-of-4 pipeline with a data width of 128 bits, 280057 
out of 810317 transient faults result in errors during the 
whole simulation, while only 331 out of 1119820 transient 
faults lead to errors when the DIRC code and the RPA 
technique is used. The resulting MTBF for the basic pipeline 
is 22.754 ns while it is prolonged to 17621.7 ns for the DIRC 
pipeline. 

VII. CONCLUSIONS 
This paper proposes a new efficient fault-tolerant DIRC 

coding scheme. Using a 1-of-n check word generated from 
multiple 1-of-n data words, 4-phase QDI interconnects can 
tolerate all 1-bit transient faults and some multi-bit transient 
faults. Thanks to its simple structure, this technique can be 
easily used to replace all or arbitrary stages in existing 1-of-n 
interconnects. A new redundant technique named RPA is 
also proposed to protect acknowledge wires from transient 
faults. Several DIRC and basic pipelines are implemented 
using the UMC 0.13�m standard cell library. Detailed 
experimental results show that the DIRC pipelines achieve 
hundred-folds fault-tolerant capability improvement in 
severe simulation environment with reasonable overhead. 
The 128-bit wide 1-of-4 DIRC pipeline is only 13% slower 
than the basic pipeline but the fault-tolerance is estimated 
more than 600 times stronger. Furthermore, the DIRC coding 
scheme can be extended to m-of-n QDI interconnects [19]. 
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