
An Asynchronous SDM Network-on-Chip Tolerating

Permanent Faults

Guangda Zhang∗, Wei Song∗, Jim Garside∗, Javier Navaridas∗ and Zhiying Wang†

∗School of Computer Science, University of Manchester, Manchester, M13 9PL, United Kingdom

Email: {zhangga, songw, jgarside, javier.navaridas}@cs.man.ac.uk
†School of Computer Science, National University of Defense Technology, Changsha, 410073, China

Email: zywang@nudt.edu.cn

Abstract—Asynchronous circuits have been used to implement
Networks-on-Chip (NoCs), resulting in asynchronous NoCs where
the links are usually implemented as quasi-delay-insensitive (QDI)
pipelines to tolerate delay variations. With the ageing process
of circuits, permanent faults may happen on links at runtime,
causing both data errors and deadlocks of the network. This
paper presents an asynchronous Spatial Division Multiplexing
(SDM) NoC which tolerates permanent faults on the QDI links.
Using a time-out mechanism, a general fault-detection technique
can locate the permanent fault in the deadlocked NoC. To
recover the network, a Drain&Release technique releases fault-
free network resources on the deadlocked path. The SDM NoC
physically divides every link and buffer into multiple independent
virtual circuits. By configuring the switch allocator, the faulty
virtual circuit is blocked so that it will not be allocated to any
packets. The succeeding traffic requesting the same link will go
through other fault-free virtual circuits and the network function
is recovered. With regard to intermittent faults, the previously
blocked virtual circuit can be resumed when the fault disappears.
Experimental results show the asynchronous SDM NoC can detect
and recover from permanent faults with reasonable overhead.

Keywords—network-on-chip; asynchronous; permanent fault;
quasi-delay-insensitive; spatial division multiplexing; deadlock

I. INTRODUCTION

Advanced semiconductor technology makes it possible to
integrate multiple processing cores on a single chip, leading to
a multi-core era. The increasing number of processing cores
results in a growing demand for scalable and efficient on-
chip communication fabrics. Network-on-Chip (NoC) [1] has
emerged as an infrastructure promising to support this kind of
communication. It has been extensively studied by both the
academic and industrial communities.

Built from routers and links, NoCs can be either syn-
chronous or asynchronous. Synchronous NoCs depend on
distributing clocks with little skew over long distances; asyn-
chronous NoCs remove this problem. An asynchronous NoC
is implemented as an asynchronous circuit where all commu-
nication is controlled by handshakes [2]–[4]. This provides
clear benefits, including simplified timing closure and reduced
power consumption, which are especially attractive as the
network is scaled up. Quasi-delay-insensitive (QDI) circuits [2]
are a family of timing-robust asynchronous circuits. Since links
of NoCs may be long, they are usually implemented in a QDI
fashion so that delay variations are tolerated. However, the
large number of long wires are vulnerable to faults which cause
unexpected transitions. Fault-tolerance has become an urgent
issue in reliability-critical digital systems.

Permanent faults may happen at runtime with the ageing
process and will never disappear [5]. The resulting permanent
errors will bring lifetime reliability problems, even causing
chips to be discarded. For critical and ultra-expensive systems,
keeping them working is important even with some perfor-
mance loss, leading to a demand for runtime permanent-fault-
tolerant systems. Most of permanent faults can be modelled
as stuck-at faults, including stuck-at-0 (s-a-0) and stuck-at-1
(s-a-1) [6]. Some other permanent faults, such as stuck-open
faults, may have floating values [6].

Permanent-fault-tolerance has rarely been studied on asyn-
chronous NoCs. Handling runtime permanent faults on asyn-
chronous circuits, especially QDI ones, is more difficult than
on synchronous circuits. Besides data errors, which also hap-
pen on synchronous circuits, permanent faults on QDI circuits
can halt the handshake process and cause deadlocks [7].
Considering a NoC, the deadlock may spread over the network,
permanently blocking the traffic and paralysing the NoC.

This paper targets the design of an asynchronous NoC
which tolerates runtime stuck-at permanent faults emerging
on links. The management of permanent faults includes the
fault detection and the network recovery. A new time-out
mechanism utilizing characteristics of the deadlocked network
is proposed to detect and locate positions of permanent faults.
This fault-detection technique is general and it does not rely
on any transient-fault-tolerant techniques. During the network
recovery phase, a Drain&Release technique releases fault-free
network resources (routers and links) which were deadlocked.
Spatial Division Multiplexing (SDM) [8], [9] is employed
where each link and buffer are divided into multiple inde-
pendent virtual circuits. By configuring the switch allocator,
the faulty virtual circuit is blocked. The succeeding traffic
can go through the fault-free virtual circuits of the same link
and the network function is recovered adhered with some per-
formance degradation. Considering intermittent faults (which
may happen as an early symptom of permanent faults) [10],
a recovery mechanism can resume the use of the previously
blocked virtual circuit.

The proposed fault-detection technique relies on analysing
the pattern of the deadlocked network. As long as a permanent
or intermittent fault on links deadlocks the NoC, the faulty
link can be detected and the network is recovered afterwards.
Asynchronous SDM NoCs using the proposed techniques are
implemented and demonstrated with detailed experimental
results.

2014 20th IEEE International Symposium on Asynchronous Circuits and Systems

1522-8681/14 $31.00 © 2014 IEEE

DOI 10.1109/ASYNC.2014.10

9

��� ��� ���

��� ��� ���
��

�
��
�	

��
�	

��
��
�
��

��
�
��
�	

��
�	

��
��
�
��

���

���

�����

���

���

�����

�
	�� �
	�� �
	��

	���	 ��	

���

�	
�

�	� ��

��

����

�

�

�����

�����

�������

�����

�����

�������

� �

�����

�����

�������

�

���

���

Fig. 1. A 4-phase 1-of-n QDI pipeline

�� � � �� �

��

��	

��

��	

�
	��
�	
	

	�

�����	��
 ���
��	��

���
��	� �����
��	�

����	���
��	��

������
���	
	��	�� �������
���	
	

(a) Pipeline model

�	
	�

	�� � � �

��
���	�� ����
���	��

(b) State transitions of a pipeline stage

Fig. 2. Modelling 4-phase QDI pipelines

II. BACKGROUND

A generic asynchronous router can be modelled as a
pipeline where the input/output buffers, crossbar and other
components comprise the pipeline stages. A packet traversing
through multiple routers experiences a long pipeline.

A. Modelling QDI pipelines

Fig. 1 shows a basic 4-phase QDI pipeline [2]. Each
pipeline stage contains multiple 1-of-n slices which are asyn-
chronous latches built from C-elements. An OR-gate acting as
a completion detector (CD) notifies the arrival of a 1-of-n code.
To synchronize slices, all CDs are connected to a multi-input
C-element producing a common acknowledge signal (ack),
whose positive transition denotes a complete word is latched.

A 4-phase QDI pipeline can be modelled as Fig. 2a, which
depicts a transient state of the pipeline with all stages holding
data or a spacer. Encoded as delay-insensitive (DI) codes [2],
the data is either complete or incomplete. Complete data causes
ack high while a spacer resets ack to low. Incomplete data
exists between a complete data word and a spacer. The state
transition of a pipeline stage is shown in Fig. 2b, which depicts
the 4-phase handshake containing a set and a reset phase.

B. Deadlock caused by permanent faults

Unlike synchronous circuits, permanent faults cause dead-
locks in QDI circuits, which disables traditional code redun-
dant methods used in synchronous circuits. A permanent fault
in a synchronous circuit typically causes a permanent error
polluting the succeeding data. The circuit continues under the
control of the clock, making it possible to detect the fault
using accumulated history statistics of the circuit, i.e. error
syndromes which are usually obtained by using transient-fault-
tolerant techniques [11]. If the error syndromes satisfy specific
patterns or some time-out conditions [5], [11], [12], the fault

�� � � �� �

��

��	

��

��	

�
	��
�	
	

	�

��	��
�����	��
 ���
��	��

(a) Data stuck-at-0

�� � � �� �

��

��	

��

��	

�
	��
�	
	

	�

��	��
�����	��
 ���
��	��

(b) Data stuck-at-1

� � � �� �

��

��	

��

��	

�
	��
�	
	

	�

�����	��
 ���
��	��

��	��
� �

(c) ACK stuck-at-0

� � � �� �

��

��	

��

��	

�
	��
�	
	

	�

�����	��
 ���
��	��

��	��
� �

(d) ACK stuck-at-1

Fig. 3. Deadlocked pipelines caused by permanent faults on link wires

is taken as permanent and the recovery process is invoked;
otherwise, it is transient or intermittent.

Controlled by handshake protocols, QDI circuits are event-
driven. A permanent fault not only corrupts data, but also
halts the handshake process, resulting in a deadlock. Most
existing transient-fault-tolerant QDI designs [13], [14] are also
deadlocked when a permanent fault happens. In this case, error
syndromes cannot be easily obtained, making traditional fault-
detection techniques [5], [11], [12] fail. In a NoC, the deadlock
reserves some network resources, which may cause more
deadlocks of the network, reducing the network performance
and finally paralysing the whole network.

III. DETECTING PERMANENT FAULTS ON INTER-ROUTER

LINKS OF ASYNCHRONOUS NOCS

A. Deadlock analysis

A permanent fault divides a QDI pipeline into “upstream”
and “downstream” stages (Fig. 2a). The first upstream stage
connected to the faulty link is the “pre-fault” stage while the
first downstream stage is the “post-fault” stage. Permanent
faults happening on a 4-phase QDI pipeline can be classified
into four classes (Fig. 3):

1) Data stuck-at-0 (Fig. 3a) A stuck-at-0 fault on a data
wire prevents a ‘1’ from being transmitted to the post-
fault stage. As a result, all the downstream stages are
stuck at the set phase. They keep waiting for the lost ‘1’.

2) Data stuck-at-1 (Fig. 3b) A stuck-at-1 fault on a data
wire prevents all downstream stages from being reset as
they keep holding the invalid ‘1’.

3) Ack stuck-at-0 (Fig. 3c) A stuck-at-0 fault on the ack
wire prevents the pre-fault stage from being reset. As a
result, all downstream stages keep waiting for a spacer.
Their ack signals are all ‘1’s

4) Ack stuck-at-1 (Fig. 3d) A stuck-at-1 fault on the ack
wire prevents the pre-fault stage from latching new in-

10

���
��

�� ��

�����	��
����
�� ���
��	��
����
��

��	�� ����	��

��
��
����� ����
�����

�	
	
	�

 ��
�	������
�!
 ��
�	������
�"

����	
���

���

����

#$� �$�

���������������

������	� ������	�

Fig. 4. Connection between two adjacent SDM routers (2 virtual circuits)

coming ‘1’s, making all downstream stages stuck at the
set phase. All ack signals of downstream stages are ‘0’s.

It can be concluded that, all the above cases share the same
pattern: the deadlock caused by a permanent fault leads to
a steady state where all downstream pipeline stages have
the same ack while the ack signals in upstream stages
are alternately valued. This deadlock pattern is the key to
detecting permanent faults on QDI pipelines.

B. Fault detection on asynchronous NoCs

A permanent fault on a link of the NoC will deadlock
the reserved path built by a packet. The faulty link divides
the deadlocked path into upstream and downstream parts. The
upstream routers hold the fault-free flits of the packet while the
downstream routers may hold polluted flits. The first upstream
router before the faulty link is termed as a “pre-fault” router
while the first downstream router after the faulty link is the
“post-fault” one. By checking each pair of adjacent routers and
exchanging some information, the faulty link can be located.

A time-out mechanism is applied to each router to monitor
all links. The intermediate link is the faulty one when the
following conditions are satisfied by the two adjacent routers:

1) Transitions are detected on neither routers (indicating an
idle, a temporarily blocked or a deadlocked link);

2) The ack signals at the preceding router are alternately
valued. For the succeeding router, all pipeline stages on
the reserved path have the same ack.

IV. RECOVERING ASYNCHRONOUS NOCS FROM

PERMANENT FAULTS

A. SDM NoC

Many existing NoCs use virtual channels [15] sharing one
physical link. A fault on the link will pollute the traffic in
all virtual channels. As a result, techniques such as adaptive
routings are often used to detour around the defective link to
recover the network [15].

This paper describes SDM [8], [9] used to construct the
NoC. Assuming an SDM router has p w-bit input/output ports,
every link and buffer are physically divided into m (w/m)-bit
wide virtual circuits so that the crossbar becomes a pm×pm
(w/m)-bit wide one [8]. Fig. 4 illustrates the connection of two
adjacent SDM routers with two virtual circuits. Each virtual
circuit contains an output virtual circuit (OVC), an input virtual

�	
	

���

	�����	
	�	
	 ���

��	����%���%
	��
	��

���
	�

���

���

Fig. 5. The flit sequence in a virtual circuit

���
������
�

&��

'��
�
(�

)�	�

������

������	�
�*+

�*+ ���
�

&��

'��
�
(�

)�	�

�

���
��"���	
��

#$��

#$��

�$��

�$��

Fig. 6. An SDM router (2 virtual circuits)

circuit (IVC) and intermediate link wires. A single fault on the
link affects only the traffic in one virtual circuit.

B. Network recovery from permanent faults

Two operations are needed to recover the SDM NoC from
a permanent fault. The first is to block the faulty virtual circuit.
By configuring the allocator of the pre-fault router, the faulty
virtual circuit (A in Fig. 4) is blocked so that no further
packets will be allocated to the defective link. The traffic
will go through other fault-free virtual circuits (B in Fig. 4).
The second is to release fault-free network resources on the
deadlocked path, achieved by a Drain&Release method:

• Drain Since the flits remaining in the upstream routers
are fault-free, by creating a sink at the output of the
pre-fault router (Fig. 4), all the remaining flits can be
drained out from the upstream routers.

• Release The release of downstream routers can be
achieved by creating a tail flit at the input of the
post-fault router (Fig. 4). The fake tail flit will be
transmitted through all downstream routers to release
them one by one (incomplete data in downstream
routers should be cleaned first).

V. IMPLEMENTATION OF AN ASYNCHRONOUS SDM NOC
TOLERATING PERMANENT FAULTS

This section presents a 2D-mesh asynchronous SDM NoC
to demonstrate how the above permanent-fault-tolerant tech-
niques can be implemented. 4-phase 1-of-4 protocol is applied
to both routers and links. The NoC employs an XY-dimension-
ordered routing algorithm and wormhole routing [16]. Each
packet is divided into head, body and tail flits (Fig. 5). The
destination address is stored in the head flit followed by a
sequence of body flits. A tail flit, indicated by an end-of-packet
(eop) signal, is used to separate consecutive packets.

A. Structure of a basic asynchronous SDM router

The SDM router with five directions is shown in Fig. 6.
Fig. 7 presents the input/output of two adjacent SDM routers.
Each input virtual circuit (IVC) contains pipelined input
buffers, an XY-controller (generating routing requests to the
allocator) and a buffer controller (controlling the flit flow)

11

��

�	

�
,�

�
	����

���
��
"���	
������	

�
	����
����	 ����	

�����

����	 ����	

��������

���	
��������

���
��,� ���
��,�

�
	����

��	
�

����
��
�

���

���

���

�
	����

���

���

���

������
��
������-.���
������

#�
��
 ����

�

��	
��

���

Fig. 7. An unprotected link between adjacent SDM routers (2 virtual circuits)

�
,���

	����

	����/

	���/ �
,��
/

�
,	��

�
,��
� �
,��/

�
,	�/

	�����

0��	�����
1

0���%����
�1

0
	������
1

(a) STG

�
�
,	�

�
,��
	���

�
,��
	����

(b) Implementation

Fig. 8. Buffer controller [9]

while each output virtual circuit (OVC) contains output buffers.
Details of the XY-controller and the crossbar can be found
in [9]. Fig. 8 presents the Signal Transition Graph (STG) of
the buffer controller and its implementation.

Initially a head flit is blocked before Stage0 of the input
buffer. Using the destination address, the XY-controller (Fig. 7)
generates a routing request rt r to the switch allocator. The
allocator will allocate an idle output buffer to the requesting
packet and build a path in the crossbar (indicated by rt ack+).
Then XY-controller is disabled (rt en-) and Stage0 is enabled
(acken-). Body flits of this packet start traversing through the
crossbar. When a tail flit is detected (eop+) and received by the
output (cia+, leading to ackeop+), the buffer controller blocks
Stage0 (acken+), withdraws the tail flit (ackeop-) and resets
the XY-controller (rt rst+, so that the request rt r is cleared).
As a result, the allocated path is released (rt ack-). The input
virtual circuit starts waiting for the next packet (rt en+).

B. Fault-detection circuits for one virtual circuit

This paper focuses on runtime stuck-at faults on the inter-
router links. Fault-detection is executed at the input and output
of each pair of adjacent routers. Fig. 9 presents the structure of
fault-detection circuits monitoring one virtual circuit between
router p and router s. Assume the traffic flow is from router p
to router s. The intermediate link is defective (this virtual
circuit is faulty) if router p is an upstream router and router s
is a downstream router of the faulty link (they are pre-fault
and post-fault routers respectively).

One of the key components for fault-detection is a transi-
tion detector (TD) monitoring the transition of a certain signal.
Fig. 10a presents a TD (a similar design was presented in [17]).
The sig is the signal being monitored and ena is an active-
high enable signal. Initially the detector is disabled by a low
ena and it outputs ‘1’. When ena is high, the detector starts
monitoring sig. The outputs of the two C-elements are either
both high or both low, leading to a low act. If sig changes,
only one C-element changes its output. As a result, act is set

��

�������
	�
��
�

� �

� �

� �

��������

�����

��

��	��

�
����

��	��

�����

�����

������
�

�����

��
���
��

�
�

��	��
��	��

���
������� �! ���
�����" �!

#����$

#���	$ %
�

����
��

�������

������
�

��

��

��

����
�&�����

�

�

%
�

��

Fig. 9. Fault-detection circuits monitoring one virtual circuit

/
�
�
�

��	

���
	

��

(a) Transition detector

����	

�
,	�2�

����	2�

2�

�
	�

2�	���
�

	
�

	
+

	
�

(b) Transition detectors at input

Fig. 10. Structure of transition detectors

high denoting a transition is detected on sig. If act keeps low
when TD is enabled, no transitions are detected.

In each input virtual circuit, three ack signals (rt ack, ipdia
and ipdoa) are monitored by three TDs (Fig. 10b) located in
the combinational circuit (Comb.) in Fig. 9. The start signal
enabling each TD is controlled by a state machine. During the
detection process (start is ‘1’ so that TranDeti is ‘0’ initially), a
high TranDeti denotes transitions are detected on these signals
so that this input buffer is not deadlocked. If no transitions
are detected (TranDeti-) for some time, indicating the input
buffer is idle or blocked (which may be caused by network
congestion or a permanent fault), the ack sequence in the input
buffer is checked against the deadlock pattern (Section III-A).
For a downstream router, a permanent fault causes one of the
following cases in the input buffer (Fig. 7 and Fig. 9):

Case 1: As the general deadlock scenario for all kinds of
stuck-at faults (Fig. 3), the allocator has allocated
an output to this input buffer (rt ack+) and two
consecutive ack signals in the input buffer are equal.
This is indicated by (rt ack & ipdia==ipdoa). In this
case, the head flit has been accepted and the input
buffer holds the polluted flit without being cleared.

Case 2: An Ack stuck-at-1 or a Data stuck-at-0 fault may
prevent this input from receiving a complete head flit
(ack signals are low). As a result, the XY-controller
cannot produce a valid request (rt r) to the allocator.
No output buffer is granted to this input (rt ack-).
This is indicated by (!rt ack & !ipdia & !ipdoa).

Case 3: A Data stuck-at-1 fault may affect the eop wire when
the input is idle, creating a fake tail flit. The fake
tail flit will reach the front of the queue (Stage0 in
the input buffer, Fig. 7) and keep blocking the input
buffer. Without receiving a valid head flit, the input
buffer will not be granted by the allocator (rt ack-).
This case is indicated by (!rt ack & ipeop & !ipdoa).

These cases are checked by a case checker in the input
virtual circuit whose output is AckSeqi (Fig. 9). If none
of them is satisfied, AckSeqi is low indicating the router s
is not a downstream router of the defective link. Network

12

�
	
���3���,���4����,�4��
	�
5

�����

�����

�����

�����

����

�
	�

(�6���%��

�������

��
����

��

�	��

"���6�

Fig. 11. The flow to detect permanent faults

congestion may cause a temporary blockage of a packet, which
is distinguished from a fault-caused deadlock because none of
the above cases is satisfied.

In the output virtual circuit of router p, a TD monitors the
opdoa in Fig. 9, outputting a high TranDeto when transitions
are detected. An XOR gate examines if two adjacent ack
signals (opdia and opdoa) are equal (indicated by AckSeqo).
For an upstream router of the defective link, no transitions
can be detected and adjacent ack signals should be unequal.
Therefore, a high TranDeto or AckSeqo indicates router p is
not upstream.

C. A time-out mechanism detecting the permanent fault

Using the above fault-detection circuits, a time-out mech-
anism is used to detect the faulty virtual circuit between each
pair of routers (router p and router s, Fig. 9). Each router
has a counter producing a timeout signal, which controls a
synchronous state machine at each input virtual circuit. The
state machine has three flip-flops: err r, err conf and start.
Its state transition graph is presented in Fig. 11. The state
transition is only enabled by timeout except when returning to
Idle from Enquiry (the dashed line in Fig. 11).

Idle is the default state after reset. The state machine
transits to Start when the first timeout comes.

Start checks the input virtual circuit to decide if router s
is a downstream router of the defective link (Fig. 9). The state
machine will return to Idle if either transitions are detected
in the input buffer (TranDeti+), or the ack sequence of the
input buffer violates the deadlock pattern of the downstream
router (AckSeqi-, none of the three cases in Section V-B is
satisfied). Otherwise, router s is probably a downstream router
(the input buffer may be idle rather than deadlocked by a fault).
When the second timeout arrives, the state machine proceeds
to Enquiry to examine the output behaviour of the preceding
router by enabling the transition detector in the output virtual
circuit (Fig. 9), starting the third time-out period.

At Enquiry, the state machine will be immediately reset to
Idle (AckSeqo+) if either the ack sequence at the output buffer
violates the deadlock pattern of upstream routers, or this output
virtual circuit is idle (vc busy-). If AckSeqo is low, and no
transitions are detected in this output buffer (TranDeto-, Fig. 9)
and the input buffer of router s (act2-, Fig. 10b) during the
third time-out period, this output buffer satisfies the deadlock
pattern of the upstream router (the idle case is excluded). Bear
in mind that router s has been taken as a possible downstream
router. It can be inferred that router p is an upstream router

�
,��

+�
��
��

�	
��
�
�

��
,	��

�
,��
�
,	��

+�����
�	���
��

 ,��%� ,��%�

 ,���%�

���4� ���4�

���4� ���4�

����

���� ����

����

 ,���%�

Fig. 12. Switch allocator [9], [18]

while router s is a downstream one. As a result, when the third
timeout comes, the fault detection circuit in the input virtual
circuit of router s will be confirmed that router s is the post-
fault router (router p is the pre-fault one). The faulty virtual
circuit (containing the defective link wire) is precisely located.
The state machine transits to Confirm (err conf +) to invoke
the network recovery operation.

The state machine is driven by signals from the asyn-
chronous circuit. An And-gate (in Comb. of Fig. 9) guarantees
that only when these sampled signals are assumed stable
(no transition activities for a time-out period, TranDeti-), the
generated AckSeqi can trigger the state transition to Enquiry.
Even if some of the monitored signals just toggle when timeout
arrives, resulting in metastability, the state machine transits
to either Enquiry where the deadlock pattern is re-examined,
or Idle where the detection process restarts. The sync/async
interface requires no synchronizer and the metastability does
not affect the detection accuracy.

It can be inferred that it needs two to four time-out periods
to detect the faulty virtual circuit from the occurrence of the
deadlock. The state machine will get stuck at Confirm to block
the faulty virtual circuit permanently. Considering long lasting
intermittent faults, a recovery mechanism is required to revoke
the asserted err conf and resume the usage of the previously
blocked virtual circuit when the fault disappears. A transition
from Confirm to Idle is added (the red dotted arc in Fig. 11).
When the fault disappears, some transitions may happen on
data, eop or ack wires. These further cause transitions on
opdoa or ipdia which can be detected by transition detectors
(TranDeto+ or ack2+). When the next timeout arrives, the state
machine is reset to IDLE. The blocked virtual circuit can be
reused. This method can also tackle permanent faults with
floating values [6] to some extent. It can be concluded that,
as long as a permanent or intermittent fault on the inter-router
link causes a deadlock in the NoC, it can be detected using
this fault-detection method.

D. Blocking the faulty virtual circuit

The network recovery process is invoked by a high err conf
indicating the defective link is located. The next step is to block
the faulty virtual circuit and release the deadlocked fault-free
network resources. The purpose of blocking the faulty virtual
circuit is preventing the succeeding traffic from being allocated
to it, which can be achieved by configuring the switch allocator
of the pre-fault router.

In SDM routers the output has multiple separated virtual
circuits so that the allocator needs to allocate one of the

13

����	

�

�
7�7

�
� ����	

���,���

����

�
	����

��

(a) Output buffer

�

�
7�7

����	

���,���

�
�

�
�

���
������

�
	����

��
����	

�����
���

(b) Input buffer

Fig. 13. Modified output/input buffer for network recovery

multiple resources to one request each time. Fig. 12 shows
a multi-resource arbiter [9], [18] used to implement the switch
allocator where two requests compete for one of the two
resources (i.e. output virtual circuits). Two 2-input arbiters
are used to select one request and one output virtual circuit
respectively. The state of the output virtual circuit is indicated
by vc rdy or vc busy (vc rdyi=!vc busyi). A low vc rdy
indicates the output virtual circuit has been allocated to a
request and it cannot be reallocated to another request before
it is released. Details can be found in [9], [18].

To block the faulty virtual circuit, an asymmetric C-element
is inserted before the inverter generating vc rdy from vc busy
(Fig. 9). It ensures that the fault can be confirmed (err conf +)
only when vc busy is high. As a result, when the defective
link is detected, the allocator of the pre-fault router surely
has allocated this link to one request (vc busy+). This makes
vc rdy low permanently as long as the fault exists, preventing
the following packets from using this defective link again.
The succeeding packets requesting the same direction will be
detoured to other fault-free virtual circuits.

E. Modifying output buffers for the Drain operation

To release the fault-free network resources on the upstream
deadlocked path, a Drain operation is executed at the output
of the pre-fault router. The modified output buffer is presented
in Fig. 13a. Using a sink which sends back a low or high
ack when detecting a spacer or a complete data word, the
remaining fault-free flits blocked in upstream routers will
traverse through the previously allocated path and get drained
at this output. A multiplexer is used to clear data (including the
eop) when a fault is detected so that the remaining flits from
the upstream will not affect the defective link during the Drain
operation. With the proceeding of the tail flit, the upstream
routers are released one by one. The completion detector (CD)
of the sink can reuse the CD of the preceding pipeline stage
if the output buffer has multiple stages.

F. Modifying input buffers for the Release operation

The Release operation is executed at the input of the
post-fault router to release the downstream deadlocked routers
and links. The modified input buffer is shown in Fig. 13b.
Three multiplexers are inserted before Stage0 to change the
connection when a fault is detected (err conf +): the upper-
most multiplexer is used to clear the incomplete data in the
downstream deadlocked path; the bottom one and a CD (which
can reuse the CD of the preceding stage if the input buffer has
multiple stages) comprise a sink generating ack (ipdia) to the
preceding pipeline stage. The intermediate one is used to create
a tail flit. At Confirm, the STG of the buffer controller may
be halted at three places (1©, 2© and 3© in Fig. 14a).

�
,���

	����

	����/
	���/ �
,��
/

�
,	��

�
,��
� �
,��/

�
,	�/

	�����

 ��
�

 ��
�

 ��
�

��

��

���

(a) Deadlocked STG

/
� ���,���

	��� �
���,���

�	

(b) EOP-generator

Fig. 14. Buffer controller at deadlocked states

1© A fault may pollute a head flit or prevent a head flit
from entering into the input of the post-fault router. As a result,
the XY-controller cannot generate a valid request (rt r) to the
allocator. Without being granted (rt ack-), the polluted head
flit is blocked before Stage0 of the input buffer which is the
end of the deadlocked path. This post-fault router is the only
downstream router. No further operation is required.

For the other two cases, rt ack to this input buffer is
high (Fig. 7) and there are multiple downstream routers.
The Release operation starts releasing downstream network
resources by creating a tail flit. The circuit generating the tail
flit (EOP-generator) is shown in Fig. 14b. When the faulty
virtual circuit is located (err conf +), eop err goes to Stage0
of the input buffer and replaces the original eop (Fig. 13b and
Fig. 7). It should be noticed all signals in the input buffer of
the post-fault router are stable. The replacement of eop in a
deadlocked asynchronous circuit is safe.

2© A fault may deadlock the network when a body or
tail flit is traversing through the link. As a result, the tail flit
cannot reach Stage0 of the input buffer (ackeop-, Fig. 7). The
buffer controller is halted at acken- (Fig. 14a). The uppermost
multiplexer in Fig. 13b clears data ensuring a low cia (Fig. 7)
after the fault is detected. Thus, a high eop err (Fig. 14b) can
replace the original low eop and be transmitted to the output,
which is equivalent to creating a tail flit. The fake tail flit is
detected by the buffer controller (ackeop+, Fig. 7). The STG
transits from Halted to ackeop+ and finally reaches the initial
state waiting for a new packet (Fig. 14). The fake tail flit will
traverse through all downstream routers and release them one
by one.

3© An eop stuck-at-1 or an Ack stuck-at-0 fault may
block the buffer controller at acken+, which is equivalent to
a tail flit without being withdrawn (cia-, Fig. 7). When the
fault is detected, a low eop err will replace the original eop
and transmit to the output (leading to ackeop-). The STG
will transits to ackeop- and finally reaches the initial state
waiting for a new packet. With the withdrawal of the tail flit,
downstream routers are released in sequence.

For all the cases, after the Release operation, the input
virtual circuit of the post-fault router is halted and keeps
waiting for a valid head flit (i.e. a new fault-free packet).
When the fault disappears (it is intermittent), transitions will
be detected at the input/output of the post/pre-fault router (the
faulty bit will get drained at the sink of the input buffer of the
post-fault router). Then the blocked link is resumed (err conf-)
and packets can be allocated to this virtual circuit again.

14

G. Some technical details

There is no requirement on the skew, jitter and frequency
of the clock signal used by the fault-detection. The clock needs
to drive only the state machine. It can be easily got from local
synchronous IP cores or other clock sources. Different routers
may use different clocks, producing different time-out periods.
The only requirement is that the time-out period should be
longer than the time needed by a packet to traverse a router,
ensuring the Drain&Release operations are completed before
the next timeout arrives (which starts a new fault-detection
cycle). The possible signal transitions happening during the
Drain&Release process will not cause transitions of the state
machine. The state machine can leave Confirm only when the
fault disappears (an intermittent fault case).

The fault-detection brings four extra wires to each virtual
circuit (Fig. 9). Currently, these extra wires along with the
added logic are not protected. They increase the area and may
have a negative impact on the chip reliability. However, there
are far fewer activities on these extra wires and logic than those
on the usual data wires and router logic, especially when a long
timeout period is used. Considering the fact that most runtime
permanent faults coming with the ageing process are strongly
related to the workload or activities of the device [19], these
redundant circuits are expected to have a significant longer life-
time than the usual ones. The overall reliability of the system
increases through protecting the links. Using some physical
redundancy techniques [13], the extra circuits can be protected.

This paper focuses on tolerating the stuck-at faults only
on the inter-router links rather than the logic inside routers.
With the ageing process, all transistors and wires in a chip
will experience a degradation process and may face permanent
faults. Although this paper has not targeted the permanent
faults inside routers, to our best knowledge, there is no
previous publication which fully tolerates the permanent faults
on the links between QDI routers. It is believed that the method
proposed in this paper can be extend to protect the switches
inside QDI routers, which will be explored in the future.

VI. EXPERIMENTAL RESULTS

A. Hardware evaluation

The protected asynchronous SDM routers using the pro-
posed techniques are implemented using the UMC 130nm
standard cell library. Asynchronous cells, such as C-elements,
are built using standard cells. As a comparison, unprotected
SDM routers are also implemented. Besides the implementa-
tion details revealed in Section V, the input buffer of a router
has two pipeline stages while the output buffer has one.

Fig. 15a compares the area of different routers under
different configurations. DW is the data width of a link (in
bits) which has VN virtual circuits. On average, the area of the
protected router increases by 17.0% compared with that of the
unprotected router. As an example, the area of the unprotected
router with DW=64, VN=2 is 92701μm2 while the area of the
protected one using the same configuration increases by 18.3%
and reaches 109684μm2. Notice that although the router with
DW=64, VN=2 has a larger data width than the DW=32, VN=4
one, the latter router has larger area due to the more buffer
controllers, and the larger allocator and crossbar caused by
the larger VN [9].

To evaluate the network performance, a SystemC/Verilog
mixed environment is built to connect 16 post-synthesis routers
(annotated with the gate latency), constructing a 4×4 2D-mesh
NoC. The synchronous IP cores are SystemC models which
inject data into the network using the maximum rate. The
packet size is fixed at 64-byte. The flit size is the same as
the data width of a virtual circuit. All packets are generated
randomly and the network traffic is uniformly distributed. The
clock and time-out frequencies are set to 100MHz and 1.5MHz
respectively. Fig. 15b presents the saturation throughput of
different NoCs which increases with DW and VN. Compared
with the unprotected NoC, the throughput of the protected
NoC decreases by 7.4% on average. Fig. 15c summarizes the
energy consumption of different routers. On average the energy
of protected SDM routers increases by 16.0% compared with
unprotected ones.

B. Fault-tolerance evaluation

Using the built environment, permanent (or intermittent)
faults can be inserted on any links at any time to verify the
fault-tolerance of the network. The test results show that for
a 1-bit fault in the NoC, the fault-detection achieves 100%
detection accuracy and the network is successfully recovered.
For intermittent faults which disappear after some time, the
previously blocked virtual circuit can be reused again. As an
example, Fig. 16 compares the throughput of the unprotected
and protected NoCs (DW=64, VN=2) where a stuck-at-1 fault
is inserted. The time-out period is set to 10μs which is far
larger than the packet latency through a router (around 70ns).
The fault is inserted on the East link of router(1,2) to the Y+
direction at 30μs, leading to a steep decrease of the network
throughput. For the unprotected NoC (Fig. 16a), the through-
put finally drops to 897MByte/s/node which is decreased
by 16%. For the protected NoC, the throughput is around
993MByte/s/node initially. The fault is detected at 50.2μs
(Fig. 16b). The throughput first decreases to 749MByte/s/node
and then returns to 954MByte/s/node after the network is
recovered, which is 6% higher than the final throughput of the
unprotected NoC. The proposed technique can tolerate some
multi-bit permanent faults if the resulting deadlocked paths
have no intersections and the faults do not block a whole link.
When multi-bit faults happen, multiple virtual circuits may
be blocked, leading to a fully blocked link. Using adaptive
routings [15], the network can be recovered.

C. Comparison with related work

Most existing permanent-fault-tolerant NoCs are either
synchronous [5], [12] or bundled-data designs [11]. Their fault-
detection techniques cannot be easily used in asynchronous
NoCs with QDI links [3] or QDI NoCs [4], [9]. A time-out
mechanism using delay-lines was proposed in [15] to detect
both transient and permanent faults on the LEDR [20] encoded
links in an asynchronous NoC. Its router is a bundled-data self-
timed design. Their method cannot be used in a QDI NoC but
ours can. The fault-detection technique proposed in our paper
uses a time-out mechanism controlled by clocks. It is general,
independent of any transient-fault-tolerant techniques, and can
be used in 4-phase QDI NoCs [4], [9] to detect permanent
faults on links (including both data and ack wires). A method
similar to the presented Drain&Release was proposed in [21]

15

�������	��

�������	�

����
��	��

����
���	�

��������	��

��������	�

�

���

���

���

����

����

����

����

��
��

���
	

 �

�������	
�	�
�����	
�	�

����

����

���

���

����

����

����

�
�

��
��

��

��	��	��

(a) Router area

�������	��

�������	�

����
��	��

����
���	�

��������	��

��������	�

��
���
���

���
���

��
���
���
����
����
�
��

��
��

��
��

��
	
�

�
��

��
��

��
��

�������	
�	�
�����	
�	�

����

����

���

����

����

���

�
��

��
��

�

��	��	��

	

(b) Saturaion throughput

�������	��

�������	�

����
��	��

����
���	�

��������	��

��������	�

���

���

���

���

��

��

���

��
��

��
�	

��
�

��
�

�������	
�	�
�����	
�	�

����

����

���

���

����

����

��	��	��

�
��

��
��

��

(c) Energy consumption

Fig. 15. Performance evaluation of different NoCs

' (')' *' +' ,' -' .' /' 0' (''

.,'

/''

/,'

0''

0,'

('''

(','

((''

�������!

�&
��
��
&�
�

��1

2
$

�3
3
��
	�
!

�

�

����4�	�
&����&��

5�

�	�
&����&��

(a) Unprotected

' (')' *' +' ,' -' .' /' 0' (''
.''

.,'

/''

/,'

0''

0,'

(6'''

(6','

�������!

�&
��
��
&�
�

��1

2
$

�3
3
��
	�
!

�

�

����4�	�
&����&��

5�

�	�
&����&��

�������	�	
�����
	�������	
��	��

(b) Protected

Fig. 16. Throughput of NoCs with a stuck-at-1 fault

to deal with LEDR [20] encoded links rather than the 4-phase
1-of-n links in this paper. Techniques including spare wires
replacement [11], splitting transmission [22] and fault-tolerant
routings [12], [15] have been used to recover the network
from permanent faults. Without relying on these conventional
techniques, this paper makes use of the SDM to recover the
network. To our best knowledge, this is the first research on
permanent-fault-tolerant asynchronous SDM NoCs.

VII. CONCLUSION

The links of asynchronous NoCs are usually implemented
as QDI pipelines to tolerate delay variations. This paper
presents an asynchronous SDM NoC tolerating permanent
faults on links. Such a fault will cause a deadlock, which can
be precisely detected by monitoring the transition activity and
the ack sequence of adjacent routers. A time-out mechanism
controls the detection process. The fault-detection technique
can locate a permanent or intermittent fault as long as it
deadlocks the network. To recover the network, the router is
implemented using SDM. Using a Drain&Release technique,
the fault-free deadlocked network resources are released. By
configuring the allocator, the defective link is blocked and all
the following traffic to the same direction will be allocated
to other virtual circuits. Consequently, the network function
is recovered with some performance loss. For an intermittent
fault, the previously blocked link can be resumed to use.

ACKNOWLEDGMENT

The authors would like to thank the various grants from the
National Natural Science Foundation of China (61272144), the
China Scholarship Council, and the Engineering and Physical
Sciences Research Council (EP/I038306/1).

REFERENCES

[1] W. J. Dally and B. Towles, “Route packets, not wires: On-chip inter-
connection networks,” in Proc. of DAC, 2001, pp. 684–689.

[2] J. Sparsø and S. B. Furber, Principles of Asynchronous Circuit Design:
a Systems Perspective. Kluwer Academic Publishers, 2001.

[3] R. Dobkin, R. Ginosar, and A. Kolodny, “QNoC asynchronous router,”
Integration, the VLSI Journal, vol. 42, no. 2, pp. 103–115, 2009.

[4] F. Clermidy, C. Bernard, R. Lemaire, J. Martin, I. Miro-Panades,
Y. Thonnart, P. Vivet, and N. Wehn, “A 477mW NoC-based digital
baseband for MIMO 4G SDR,” in Proc. of ISSCC, 2010, pp. 278–279.

[5] T. Lehtonen, D. Wolpert, P. Liljeberg, J. Plosila, and P. Ampadu, “Self-
adaptive system for addressing permanent errors in on-chip intercon-
nects,” IEEE Tran. VLSI, vol. 18, no. 4, pp. 527–540, 2010.

[6] S. A. Al-Arian and D. P. Agrawal, “Physical failures and fault models
of CMOS circuits,” IEEE Tran. Circuits and Systems, vol. 34, no. 3,
pp. 269–279, 1987.

[7] C. LaFrieda and R. Manohar, “Fault detection and isolation techniques
for quasi delay-insensitive circuits,” in Proc. of DSN, 2004, pp. 41–50.

[8] A. Leroy, D. Milojevic, D. Verkest, F. Robert, and F. Catthoor, “Con-
cepts and implementation of spatial division multiplexing for guaranteed
throughput in networks-on-chip,” IEEE Tran. Computers, vol. 57, no. 9,
pp. 1182–1195, 2008.

[9] W. Song and D. Edwards, “Asynchronous spatial division multiplexing
router,” Microprocessors and Microsystems, vol. 35, no. 2, pp. 85–97,
2011.

[10] C. Constantinescu, “Trends and challenges in VLSI circuit reliability,”
IEEE Micro, vol. 23, no. 4, pp. 14–19, 2003.

[11] T. Lehtonen, P. Liljeberg, and J. Plosila, “Online reconfigurable self-
timed links for fault tolerant NoC,” VLSI Design, 2007.

[12] C. Feng, Z. Lu, A. Jantsch, M. Zhang, and Z. Xing, “Addressing
transient and permanent faults in NoC with efficient fault-tolerant
deflection router,” IEEE Tran. VLSI, vol. 21, no. 6, pp. 1053–1066,
2013.

[13] W. Jang and A. J. Martin, “SEU-tolerant QDI circuits,” in Proc. of
ASYNC, 2005, pp. 156–165.

[14] G. Zhang, W. Song, J. D. Garside, J. Navaridas, and Z. Wang, “Transient
fault tolerant QDI interconnects using redundant check code,” in Proc.
of DSD, 2013, pp. 3–10.

[15] M. Imai and T. Yoneda, “Improving dependability and performance of
fully asynchronous on-chip networks,” in Proc. of ASYNC, 2011, pp.
65–76.

[16] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks. Morgan Kaufmann Publishers, 2003.

[17] Y. Shi, S. B. Furber, J. Garside, and L. A. Plana, “Fault tolerant delay
insensitive inter-chip communication,” in Proc. of ASYNC, 2009, pp.
77–84.

[18] S. Golubcovs, D. Shang, F. Xia, A. Mokhov, and A. Yakovlev, “Modular
approach to multi-resource arbiter design,” in Proc. of ASYNC, 2009,
pp. 107–116.

[19] R. Aitken, G. Fey, Z. T. Kalbarczyk, F. Reichenbach, and M. Sonza Re-
orda, “Reliability analysis reloaded: How will we survive?” in Proc. of
DATE, 2013, pp. 358–367.

[20] M. E. Dean, T. E. Williams, and D. L. Dill, “Efficient self-timing
with level-encoded 2-phase dual-rail (LEDR),” in Proc. of Advanced
Research in VLSI, 1991, pp. 55–70.

[21] T. Yoneda, M. Imai, N. Onizawa, A. Matsumoto, and T. Hanyu, “Multi-
Chip NoCs for automotive applications,” in Proc. of PRDC, 2012, pp.
105–110.

[22] M. Zhang, Q. Yu, and P. Ampadu, “Fine-grained splitting methods to
address permanent errors in network-on-chip links,” in Proc. of ISCAS,
2012, pp. 2717–2720.

16

