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Outline

• Introduction of Clos networks and 
asynchronous circuits

• Classic Synchronous dispatching algorithms 
– Random dispatching (RD)

– Concurrent Round-Robin Dispatching (CRRD)

• Asynchronous Dispatching (AD) algorithm

• Implementation

• Outcome

– 32-port Clos network. Setup 6.2 ns, release 3.9 ns.
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Switching Networks

• Telephone networks

• Asynchronous transfer mode (ATM) and 

IP networks

–ATLANTA chip (622Mb/s/port, 1997)

–Petastar Optical Switch (160Gb/s/port, 2003)

• Intra/inter chip interconnect

–High-radix router with many narrow ports

–SDM: delay guaranteed services
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Asynchronous Circuit

• Asynchronous vs. synchronous

–Low power (clockless)

–Possible performance boost (average latency)

–Tolerance to process variation

• Implementation style

–2-phase vs. 4-phase

–Bundled-data vs. quasi-delay insensitive (QDI)

–4-phase QDI
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Research Target

• An area-efficient and high-speed switching 

network for on-chip networks

–High-radix router

–Low-power consumption

–Tolerance to process variation

–Area efficient
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Clos Switching Network
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3 stages: 
IMs, CMs and OMs

C(n, k, m):
k IM/OMs
n ports per IM/OM
m CMs

LI links between IM/CM
LO links between CM/OM

SMS: buffer CM
MSM: buffer IM/OM
S3: no buffer
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Non-Blocking

• Blocking

– An available input/output pairs may not be 
connected due to internal blocking.

• Strict Non-Blocking (SNB)
– All available input/output pairs are connectable.

–

• Rearrangeable Non-Blocking (RNB)
– Connecting available input/output pairs may 

require internal permutation.

–
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Area Consumption
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Routing Algorithms

• Optimal algorithms

–Algorithms provide guaranteed results for all 
matches but with a higher complexity in time 
and implementation.

• Heuristic algorithms

–Algorithms provide all or partial connections 
in much lower time complexity.

• Most dynamically reconfigurable Clos 

networks use heuristic algorithms
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Dispatching Algorithms

Every Input/output pair has m
paths. Packets are dispatched 
evenly to all CMs.

Dispatching algorithm: 
the algorithm used in IM to 
CM packet dispatching.
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Random Dispatching (RD)

• Phase 1

– IPs send 

requests to 

LIs

– LIs select IPs

• Phase 2

– CMs select 

LIs

– Configure 

granted IPs
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Concurrent Round-Robin 
Dispatching (CRRD) 

• Phase 1

– IPs request

– LIs select

– IPs select

– Go back 

(iteration)

• Phase 2

– Same as RD
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Asynchronous Dispatching (AD)

• Difficulties

– Packets arrive 
asynchronously

– Modules are event-
driven

– Orphans are generated 
by failed requests

• Solution

– Independent 
algorithms (allocators) 
run in IMs and CMs

– Failed requests use 
status feedback from 
CMs as acknowledge.
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Asynchronous Dispatching (AD)

• IM alg.

– IPs request

– LIs select

– OK? Send data

– Fail? Go back

• CM alg.

– CMs grant LIs

– Update status 

feedback

June 23rd 2010Advanced Processor Technologies Group

The School of Computer Science

21

IM(0)

CM(0)

IM(1)

OM(0)

OM(1)

CM(1)

CM(2)

0

2

1

3



Asynchronous Dispatching (AD)

• IM alg.

– IPs request

– LIs select

– OK? Send data

– Fail? Go back

• CM alg.

– CMs grant LIs

– Update status 

feedback

June 23rd 2010Advanced Processor Technologies Group

The School of Computer Science

22

IM(0)

CM(0)

IM(1)

OM(0)

OM(1)

CM(1)

CM(2)

0

2

1

3



Asynchronous Dispatching (AD)

• IM alg.

– IPs request

– LIs select

– OK? Send data

– Fail? Go back

• CM alg.

– CMs grant LIs

– Update status 

feedback

June 23rd 2010Advanced Processor Technologies Group

The School of Computer Science

23

IM(0)

CM(0)

IM(1)

OM(0)

OM(1)

CM(1)

CM(2)

0

2

1

3



Comparison of Algorithms

• Random Dispatching (AD)

– Cannot resolve contention in IMs or CMs.

• Concurrent Round-Robin Dispatching 
(CRRD)
– Handle contention in IMs using iterations.

– Cannot resolve contention in CMs.

• Asynchronous Dispatching (AD)
– Contention in IMs is handled by asynchronous 

arbiter naturally.

– Handle contention in CMs using status feedback.
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Scheduler Architecture
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CM Dispatcher/OM Scheduler

CMa: CM ack

CMs: CM status feedback

CMa and CMs are 

mutually exclusive
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IM Dispatcher
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IM/CM Match Arbiter
(Multi-resource Arbiter)

• S. Golubcovs, D. Shang, F. Xia, A. Mokhov, and A. Yakovlev, “Modular approach to 

multi-resource arbiter design,” ASYNC 2009.
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Request Generation
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Configuration Generation
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Area and Speed
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Dispatching:
setup 4.6 ns   release 2.9 ns

OM Scheduler:
setup 1.6 ns    release 1.0 ns

Total: 
setup 6.2 ns    release 3.9 ns
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MATLAB Simulation Model
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Throughput Analysis
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C(4,8,4) non-blocking load
RD 55%
CRRD (i=4) 70%
AD (i=3) 76%

C(4,8,m) non-blocking load
RD (m=7)        74%
CRRD (m=7)  82%
AD (m=7)        96%



Conclusions

• The first asynchronous routing algorithm 
for general 3-stage Clos networks.

• Better throughput performance than RD 
and CRRD

• Future works

–Optimize the Clos structure

–Reduce area and latency
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Thank you!

Questions?
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Iterations
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Uniform Traffic
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Results after Optimization

• Async

– Setup 3.7 ns

– Reset 3.2 ns

– Period ~ 7 ns (140M)

– 28K Gates

• Sync

– 350 MHz

– Cell time = Iter+1 =5 
(70M)

– 22K Gates

• Optimization 

– Replace multi-
resource arbiter

– Eager request (InpG)

– MUTEX arbiter

– Optimized tree arbiter
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