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An Asynchronous Routing Algorithm for Clos
Networks

1 INTRODUCTION

Clos networks are a class of multi-stage switching net-
works proposed in last 50s [1]. It provides the theo-
retically optimal solution to build high-radix switches
when the requirement exceeds the capacity of a feasible
single-stage crossbar switch. Although the emergence of
VLSI technologies intensively reduces area of a single
crosspoint and enlarges the capability of a crossbar,
the insatiably desire for speed and performance always
pushes router designs to the very limit. Clos networks
still live in cutting edge designs.

The early telephone networks are circuit switched net-
work where switches are statically configured. The later
asynchronous transfer mode (ATM) networks and IP net-
works achieve higher throughput using packet switching
technologies [2], which require switching networks to
be dynamically reconfigured. The random dispatching
algorithm used in the ATLANTA chip [3] demonstrates
a feasible way of dynamically reconfiguring a three-
stage Clos network by heuristic algorithms. From then
on, numerous routing algorithms have been proposed
to improve the throughput performance [4]-[9]. A Clos
network designed for current optical backbone networks
has already achieved peta-bit throughput performance
[10].

Clos networks also find their utilization in the field of
intra- and inter-chip interconnection networks. Transis-
tor scaling increases the pin bandwidth available for a
router chip and the wire resource in on-chip networks.
However, it is found out that a router with many nar-
row ports is more efficient than a router with a few
wide ports [11], [12]. A folded-Clos network is used in
the Cray BlackWidow multiprocessor to achieve high
bandwidth communications [13] and a Bene$S network
(a case of multi-stage Clos network) has been used in a
router for on-chip networks to provide delay guaranteed
services [14].

Asynchronous quasi delay insensitive (QDI) circuits
are well known for their low power consumption and
tolerance to process, voltage and temperature variations.
Considering the high power consumption of current
communication fabric and the increasing process vari-
ation, it is beneficial to implement high-radix routers
asynchronously. However, dynamically reconfiguring a
three-stage Clos network is complicated and area con-
suming even for synchronous circuits. Furthermore,
asynchronous arbiters are inadequate to allocate mul-
tiple resources concurrently until a recently proposed
multi-resource arbiter [15]-[17].

In this paper, the first asynchronous routing algorithm
for general three-stage Clos networks is proposed and
implemented. The remainder of this paper is organized
as follows: Section 2 introduces some fundamental con-
cepts of Clos networks. Section 3 analyzes two classic
routing algorithms used in synchronous Clos networks
and proposed the asynchronous routing algorithm. Sec-
tion 4 evaluates the performance of these routing algo-
rithms on behavioral level. Section 5 demonstrates the
detailed implementation of the routing algorithm and
section 6 shows the hardware performance. Finally the
paper is concluded in section 7.

2 CLOS NETWORK

Fig. 1 shows a three-stage Clos network. The terminol-
ogy used in this paper is as follows.
Input module at the first stage.

CM Central module at the second stage.

oM Output module at the third stage.

n Number of input ports (IPs)/OPs in each
M/OM.

k Number of IMs/OMs.

m Number of CMs.

i Index of IMs (0 < i < k).

j Index of OMs (0 < j < k).

r Index of CMs (0 < r < m).

h Index of IPs/OPs in an IM/OM
(0 < h <n).

IM(3) The (i + 1)th IM.

OM(j) The (j + 1)th OM.

CM(r) The (r + 1)th CM.

IP(z, h) The (h + 1)th IP in IM(3).

OP(j, h) The (h + 1)th OP in OM(j).

LI(¢,r) The link between IM(:) and CM(r).

LO(r, 5) The link between CM(r) and OM(j).

C(n,k,m) A Clos network has m CMs and k

IMs/OMs with n IPs/OPs.
N The total number of IPs/OPs (N = nk).

The first stage contains k£ IMs, each of which is an
n X m reconfigurable crossbar. CMs in the second stage
are statically connected with IMs and each CM is a
k x k reconfigurable crossbar. The third stage contains k&
OMs, each of which is an m x n reconfigurable crossbar
statically connected with CMs.

Switching networks could be classified into three cat-
egories [2]: Blocking: the switches have possible con-
nection states such that an available input/output pair
cannot be connected because of an internal blocking.
Strict Non-Blocking (SNB): the switches ensure the con-
nection of any available input/output pairs without
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altering any established connections. Rearrangeable Non-
blocking (RNB): the switches ensure the connection of any
available input/output pairs with possible modification
of established connections. A three-stage Clos network
could be an SNB network or a RNB network depending
on the number of CMs. An SNB Clos network requires
more than 2n—1 CMs (m > 2n—1), while a RNB network
needs only n CMs (m = n) [2].

The major advantage of Clos networks over crossbars
is area efficiency. The area of a switching network is
linear with the number of crosspoints inside it. For a
crossbar with N input/output ports the area is linear to
the cost C.

Cep = N?

Both SNB and RNB Clos networks have the minimal cost
when k = v2N.

Cclos.sng > 2(2N)H5 — 4N
Ccilos.rNB > (2N)*?

Fig. 2 demonstrates the area of crossbars and Clos net-
works with various number of ports. Both SNB and RNB
Clos networks reduce area overhead significantly but
RNB Clos networks have the minimal area.

There are two classes of routing algorithms for Clos
networks [5]: Optimized algorithms, which provide guar-
anteed results for all matches but with a higher com-

plexity in time or implementation. Heuristic algorithms,
which provide all or part of matches in much lower time
complexity. Although optimized algorithms guarantee
the connection of any IP/OP pairs, they often require
the global view of all modules and use more time to
reconfigure. The majority of current dynamically recon-
figurable Clos networks utilize heuristic algorithms [3]-
[9].

Buffer insertion is a usual way of improving perfor-
mance in Clos networks. According to the stage where
buffer is inserted, a Clos network could be a space-
space-space (S®) network without buffer, a memory-
space-memory (MSM) network with buffer insertion in
IMs and OMs, or a space-memory-space (SMS) network
with buffer insertion in CMs. S3 networks are easier
to control than the other two structures but have the
worst performance. Normally SMS networks show better
performance than MSM networks because the buffers
in CMs resolve the contention between IMs and CMs;
however, this scheme requires a re-sequencing function
in OMs because data stored in buffers are issued to OMs
out-of-order. MSM is the most utilized scheme. Buffers
in IMs and OMs improve network throughput and
eliminate the out-of-order problem. However, the OMs
are required to speed-up m times to avoid throughput
degradation (the detailed comparison of buffer insertion
schemes and memory speed-up could be found in [2],
[9D.

In this paper, we are proposing the first asynchronous
heuristic routing algorithm for general three-stage S*
Clos networks. It is possible to modify the algorithm to
control MSM networks in the future.

3 ROUTING ALGORITHMS

All heuristic algorithms process a request from IP(iy, h1)
to OP(j2, ho) in two stages [8]: module matching, select-
ing a CM and reserving the corresponding links LI(i1,7)
and LO(r, j2); and port matching, connecting IP(i1, h1) to
LI(ih ’I“), Ll(il,’l“) to LC)(’I“7 jQ) and LO(T, jz) to OP(]Q, hg)
As all modules in an S® Clos network are crossbars,
the port matching process is block-free. On the contrary,
CMs are shared by all IMs and OMs. Any sub-optimized
CM allocation leads to internal block states. The module
matching procedure determines the overall performance
of an algorithm. As a result, the algorithm used in
module matching, namely dispatching algorithm, is the
key research issue.

Before introducing the first asynchronous routing al-
gorithm, we need to review the classic dispatching algo-
rithms used in synchronous Clos networks.

3.1

The data transmitted in Clos networks are routed in
units of cell, a small fraction of a packet with fixed
size. Multiple cells are transmitted synchronously from
IMs to OMs in one cell time. The reconfiguration of
switches proceeds concurrently with cell transmission in

Random Dispatching (RD)



IM(i)

IP(i,0) LI,0)
IP(i, 1) ==X = LI, 1)
1P(i,2) = = LI(i,2)
IP(i,3) ==X = LI(i,3)

Fig. 3. Example of uneven matching in IMs

a pipelined manner. The new configuration generated
in current cell time takes effect in the next cell time.
A cell time could be one clock cycle or multiple cycles
depending on the complexity of the routing algorithm
in use.

The random dispatching (RD) algorithm utilized in
the ATLANTA router chip [3] is the predecessor of
many current heuristic algorithms. The Clos network in
ATLANTA is an MSM network and the RD algorithm
randomly dispatches packets from buffered IMs to OMs.
This algorithm can be used in S*® Clos networks. A
simplified description is as follows [4]:

o Phase 1: Matching within IMs.

— Step 1: Every non-idle IP(¢, k) sends requests to
all LIs in IM(3).

— Step 2: Each LI(4, r) randomly selects an request-
ing IP(i, h) and up to m requests are proposed
to CMs.

o Phase 2: Matching between IMs and CMs.

— Step 1: CM(r) receives up to k requests from
IMs. According to the availability of LOs, up to
k requests are granted.

— Step 2: IMs receive grants from CMs and send
the corresponding cells in the next cell time. The
cells without grants need to request again in the
next cell time.

RD dispatches incoming cells in two phases: matching
in IMs and matching between IMs and CMs. In phase 1,
each LI randomly selects a non-idle IP in the same IM.
Since one IM has m output ports, up to m requests are
sent to CMs. The requests are statically distributed to all
CMs in the same way as the Clos network itself. In phase
2, a CM receives up to k requests. If multiple requests
ask for the same LO, one of them is selected randomly.
Consequently up to k requests are granted. The granted
IPs send cells in the next cell time while other IPs enter
the next round of requesting.

The RD algorithm cannot achieve high switch
throughput due to its matching within IMs. Since Lls
select IPs independently, some IPs could be selected by
multiple LIs while other IPs are rejected by all Lls. An
example is shown in Fig. 3. Suppose all IPs in IM(3)
are requesting and all LIs are available, IP(i, 0) has been
selected by LI(¢,0), LI(4,2) and LI(¢,3) leaving IP(i,1)
and IP(z,3) unselected. Uneven matching is therefore
generated in phase 1.

3.2 Concurrent Round-Robin Dispatching (CRRD)

The concurrent round-robin dispatching (CRRD) algo-
rithm [4] resolves the uneven matching problem inside
IMs. It is claimed that using CRRD in MSM Clos net-
works achieves 100% throughput under uniform traffic.

Instead of using random arbiters, CRRD uses round-
robin arbiters. In each IM, every LI has an output-
link round-robin arbiter and every IP has an input-
port round-robin arbiter. Each CM has k round-robin
arbiters on k& LOs respectively. All round-robin arbiters
are independent. A simplified description of CRRD is as
follows:

o Phase 1: Matching within IMs.

— First iteration

* Step 1: Each non-idle IP sends requests to all
output-link arbiters.

* Step 2: Each output-link arbiter selects an IP
using its own pointer.

* Step 3: Each non-idle IP accepts one of the
grants from all output-link arbiters using its
round-robin arbiter.

— ith iteration (i > 1)

* Step 1: Each unmatched IP sends requests to all
unmatched output-link arbiters.

* Step 2 and 3: The same as the first iteration.

o Phase 2: Matching between IMs and CMs.

— Step 1: Each matched LI sends a request to
CMs. Each round-robin arbiter in CMs selects
one request and sends a grant to the IM.

— Step 2: IMs receive grants from CMs and send
the corresponding cells in the next cell time. The
cells without grants request again in the next
cell time.

Similar to RD, the dispatching procedure of CRRD is
also divided into two phases but phase 1 contains several
iterations. In each iteration, IMs try to match as many
unmatched IPs as possible to unoccupied Lls in a round-
robin fashion. Unlike RD, CRRD guarantees that an IP is
selected by only one LI in phase 1. The phase 2 of CRRD
is similar to that of RD except that round-robin arbiters
are used.

Fig. 4 shows an example of one iteration in CRRD.
IM(%) has the same initial states as in Fig. 3. All IPs have
received new packets and all LIs are available. As shown
in Fig. 4a, each IP sends requests to all available Lls.
Then each LI grants one IP using its output-link round-
robin arbiter. Fig. 4b shows the same grant results as
the RD example in Fig. 3. However, the step 3 of CRRD
forces all IPs to accept only one LI In this way, the IPs
unmatched in the current iteration can try again in the
next iteration as shown in Fig. 4d.

CRRD improves switch throughput thanks to its bal-
anced matching between IPs and LIs. The number of
iterations is limited by the cell time. It is required to
extend the cell time until the balanced matching is
achieved by enough iterations.
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3.3 Asynchronous Dispatching (AD)

Reconfiguring an asynchronous Clos network has some
fundamental differences with its synchronous counter-
part:

o Incoming packets arrived asynchronously and are
handled asynchronously. There is no need to divide
them into cells and a Clos network is reconfigured
for packets instead of cells.

e Modules are event-driven without synchroniza-
tion. The dispatching algorithm cannot proceed in
two sequential phases but two concurrent sub-
algorithms in IMs and CMs.

o The arbiters in asynchronous circuits are also event-
driven. There is no need to keep a pointer in each
asynchronous arbiter as the round-robin one.

o The step 3 in phase 1 of CRRD generates orphans.
Grants from arbiters are normally used to generate
acknowledgement. When output-link arbiters send
grants to IPs, IPs are immediately acknowledged.
However, when multiple grants are received by the
same IP, these grants would arrive asynchronously
and the first grant is selected. The unselected grants
will reset the corresponding requests which is not
observable to the initial request. Deferring the ac-
knowledgement could solve this problem but, obvi-
ously, a significant control overhead is introduced.

As a solution to all these problems, a new asyn-
chronous dispatching (AD) algorithm is proposed. In
this algorithm, an IP requests only one LI to avoid
orphans. CMs automatically update their states to IMs
as feedback. Since IMs know the availability of CMs,
IPs are always matched with the LIs connecting to idle
CMs. The algorithm is divided into two independent
sub-algorithms running in IMs and CMs. A simplified
description is as follows:

 Sub-algorithm 1: Matching within IMs.
— Step 1: A new packet arrives at IP(3, h).

— Step 2: IM(¢) selects an idle CM(r) according to
feedback states from CMs.

— Step 3: IM(7) sends a request to CM(r) through
LIz, 7).

— Step 4a: IM(i) successfully receives a grant from
CM(r) and the packet is forwarded.

— Step 4b: Otherwise, the state of CM(r) is up-
dated. CM(r) is occupied by another IM; there-
fore, IM(i) goes back to step 1 to select a new
CM.

o Sub-algorithm 2: Matching within CMs.

— Step 1: A request is received.

— Step 2: A grant is sent back if the target LO is
available.

— Step 3: The updated states are sent to all IMs.

The AD algorithm is similar to the RD algorithm.
IPs and LIs are randomly matched in IMs. CMs simply
accept requests from IMs when the target LO is available.
The AD algorithm also has iterations as the CRRD
algorithm. When two requests from different IMs request
the same LO, the first one is granted. Thanks to the state
feedback, the IM lost arbitration will notice the state
change and select another CM as described in step 4b
of sub-algorithm 1.

Fig. 5 illustrates an example of iterations in AD. As
shown in Fig. 5a, the C(4,3,4) network already has
some links occupied in IM(0) and IM(1). Two concurrent
packets arrived at IP(0,1) and IP(1,0) request OP(1,1)
and OP(1, 3) respectively. Suppose both IM schedulers in
IM(0) and IM(1) have selected CM(1) for the incoming
packets (both of them need LO(1,1)) and the request
from IM(0) is slightly faster than that from IM(1). Ac-
cording to sub-algorithm 2 of AD, CM(1) grants IM(0).
Thus in Fig. 5b, the link between IM(0) and CM(1) is
established and the updated states are sent back to all
IMs including IM(1). After IM(1) has noticed its failure,
it selects CM(2) to request again as depicted in Fig. 5c.
The conflict between IP(0, 1) and IP(1, 0) is thus resolved.

4 PERFORMANCE OF RD, CRRD, AND AD

In this section, the performance of RD, CRRD and AD
algorithms is evaluated using behavioral level models
written in MATLAB. A C(4,8,4) S* Clos network is
built and injected with various traffic patterns. Some
assumptions are taken to proceed a fair comparison:

o Random arbiters are utilized in all algorithms.
Round-robin is a practical way to implement
pseudo-random arbiters in synchronous circuits. Us-
ing random arbiters does not compromise the per-
formance of CRRD.

o Only single cell packets are injected. Asynchronous
Clos networks are reconfigured for packets instead
of cells. Transferring multiple cells using the same
path in synchronous Clos network is referred as
bursty transmission [2] which normally compro-
mises performance.

o Latency is estimated in units of cell time. Since
packet length is one, the minimal reconfiguration
time for a packet in asynchronous Clos networks
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is equivalent to cell time in synchronous Clos net-
works.

o Packets arrive synchronously. It is difficult to model
a real event-driven simulation in MATLAB. The AD
algorithm is still simulated in cycles but incoming
packets are handled in a randomized sequence to
simulate the event-driven behavior.

4.1 Non-blocking uniform traffic

Non-blocking uniform traffic spreads network load to all
output ports without generating any head-of-line (HOL)
blockage. Therefore, any blockage in this traffic is caused
purely by routing algorithms. p(s,d) is the normalized
load between IP(s) and OP(d) where 0 < s,d < N. A
packet is injected in every cell time when p = 1 and
no packet is injected when p = 0. The injected packet
sequence of IP(s) complies with a Bernoulli process

N-1
> p(s,d). The individual
d=0

load between any IP and OP is:
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is guaranteed to avoid overloaded OPs.

Fig. 6 shows packet latency and switch throughput
performance using different routing algorithms. The RD
algorithm has the maximal packet latency and the lowest
switch throughput. The CRRD algorithm with 5 itera-
tions increases throughput to 70% which is surpassed
by the AD algorithm with 2 iterations. When it is fast
enough to run 3 iterations, the AD algorithm reaches
the maximal switch throughput around 76%.

The CRRD algorithm can reach 100% switch through-
put in MSM networks [4] because IPs can send other cells
when one is blocked. However, in an S® Clos network,
an IP is blocked until the blocked cell is successfully
forwarded.

Although CRRD resolves the uneven matching in
IMs, it cannot avoid any conflicts in CMs, such as the
problem shown in Fig. 5a. The AD algorithm has state
feedback from CMs. Thus when any conflicts occur in
CM schedulers, IMs can notice the conflicts and resolve
them accordingly. As a result, the AD algorithm provides
better latency and throughput performance than CRRD
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and RD.

It is known that increasing the number of CMs im-
proves throughput [3]. As shown in Fig. 7, all routing
algorithms have better performance with more CMs.
According to the theory of Clos networks, when the
number of CMs is more than 7 the Clos network (n = 4)
is an SNB network. However, none of these routing
algorithms reach 100% throughput even with more than
7 CMs. The basic difference between heuristic algorithms
and optimized algorithms is that heuristic algorithms
provide sub-optimized routing results with less latency
overhead. Since none of these routing algorithms can
resolve all conflicts, the accepted load is always less than
100%.

It is shown in Fig. 7 that CRRD does not benefit as
much as other algorithms. It achieves lower throughput
than RD when there are 12 CMs because of conflicts in
CMs. Once a conflict occurs, at least one IP needs to
request again in the next cell time. Compared with it, RD
allows an IP to be matched with multiple LIs. As long as
one of these LlIs is successfully granted, the requesting IP
is successfully acknowledged. Therefore the multi-match
issue of RD reduces conflict rate, although it is also the
cause of the uneven matching in IMs. Iterations in AD
resolve both the uneven matching in IMs and conflicts.
It has the best performance.

Fig. 8 shows the maximal accepted load of CRRD and
AD with various number of iterations. CRRD achieves
peak throughput with more than four iterations. Since an
IM in a C(4, 8, 4) network has four IPs, four iterations are
enough to match all possible IPs. AD always provides
higher throughput than CRRD because the AD algorithm
can resolve conflicts in CMs. As shown in Fig. 8, the peak
switch throughput of AD in a C(4,8,4) Clos network is
around 82%.

4.2 Blocking traffic patterns

The traffic patterns generated by real applications are
blocking. Uniform traffic is one of the most analyzed
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synthetic traffic pattern, which is defined as

. p(s)

pls,d) = =
Uniform traffic has the same load description as the
non-blocking uniform traffic but without the extra non-
blocking constraint; therefore, in some occasions, an
OP could be loaded with traffic exceeding its actual
bandwidth and some IPs are thus blocked.

Fig. 9 shows the accepted load under uniform traffic
for all routing algorithms. S* Clos networks are input
buffered switching networks. (Every IP is connected
with an input buffer in simulation. This is different
with the buffered IM scheme where an IP is connected
to multiple virtual output queues inside the IM.) It is
known that the maximal accepted load for an input
buffered switching network is 58.6% [18]. When the
number of CMs is 4 (m = 4), the Clos network is a
RNB network where connection capability is restricted.
As a result, the maximal accepted load of all routing
algorithms is less than 58.6%. As shown in Fig. 9, the
AD algorithm with 3 iterations has the best throughput
performance of 50%, which is 1.3% higher than that of
CRRD but 8.6% lower than the optimal throughput. We
have simulated the performance of AD with 3 iterations
in an SNB Clos network (m = 7). The maximal accepted
load increases to 57.1%, which is only 1.5% lower than
the optimal one.

Unbalanced traffic is used to evaluate the throughput
performance under different level of conflicts. The traffic
pattern is defined as

1
i ﬁ(s)-(w+Tw), if s = d,
p(57 d) = B 1—w h .
p(s) - N otherwise.
where w is the unbalanced factor. When w = 0, the

injected traffic is uniform. On the other hand, when
w = 1, the traffic is totally unbalanced and all traffic
loaded on IP(s) is heading for OP(d), where s = d. In this
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Fig. 10. Accepted load under unbalanced traffic

case, the conflicts in CMs are eliminated by the traffic
pattern itself.

Fig. 10 shows the maximal accepted load of all routing
algorithms. Due to the uneven matching in IMs, RD has
the lowest throughput in all algorithms. Both CRRD and
AD algorithms can resolve the uneven matching in IMs.
Conflicts in CMs are gradually alleviated along with
the increasing unbalanced factor. Both CRRD and AD
demonstrate 100% throughput performance when w = 1.

5 IMPLEMENTATION

In this section, the AD algorithm is implemented into a
hardware scheduler to control a 32-port C(4, 8, 4) S* Clos
network.

Fig. 11 depicts the internal architecture of the Clos
scheduler. As described in the beginning of section 3,
the routing procedure is divided into two stages: module
matching and port matching. The AD algorithm is used
in module matching (IM_Dis and CM_Dis) to reconfig-
ure IMs and CMs. Once module matching is finished,
the request information for port matching (OMr) is for-
warded to OMs using the configured RIMs and RCMs.
After an OM scheduler (OM_Sch) has successfully allo-
cated an OP for the incoming request, the grant signal
travels backward through the Clos network and finally
an IP is acknowledged.

IM_Sch(0) CM_Sch(0)
OMr R
req(0,0) «— : e a N . — o N OM_Sch
re0.1) «—p] InpG1 ]+ & A (0)
o2 —{iee2] -7 IM_Dis / | cM_Dis
a0 «—p{ipGa’ | .
IM: | OM_Sch
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req(i,0) «— L
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Fig. 11. Architecture of the Clos Scheduler

r_ack ——@7
— 1 IMa
r_mod 7 P IMr
L =i £ OMa
j_—@ OMr
— ’? F : n
r_port JEC}
n +

Fig. 12. Input generator

5.1 Input generator (InpG)

An IP can requests for up to 32 OPs in a C(4,8,4)
network. In module matching, an IM containing a re-
questing IP is required to find out the OM containing
the target OP from a total of ¥ OMs and reserve a
path to it. Then the target OP, one of the n OPs in the
OM, is allocated in port matching. Therefore, the request
from an IP is divided into two sub-requests: r_mod that
denotes the target OM, and r_port that denotes the target
OP in that OM. In this paper, we suppose the incoming
request is already divided into sub-requests and one-hot
coded.

An input generator module is added on each IP to feed
requests to IMs and OMs separatively, and generate the
final acknowledgement to the IP. The internal structure
of an InpG is shown in Fig. 12. Since a path from IMs to
OMs is reserved before port matching, the request (IMr)
used in module matching is generated immediately after
the incoming request and held until the reserved OM is
released, which is indicated by the drop of OMa. The
requests to OMs (OMr) are generated after a path to the
target OM is reserved, indicated by IMa +, and released
before IMr.

5.2 IM dispatcher (IM_Dis)

IM dispatchers are the most important and complicated
modules of AD. They receive requests (IMr) from IPs,
match IPs to LIs according to the state feedback of CMs
(CMs), and configure IM switches.

Fig. 13 demonstrates an IM dispatcher for a C(4,8,4)
Clos network. It recieves four requests, IMr(0 ~ 3), from
its four IPs and each bit of IMr denotes a target OM
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in the eight OMs. Accordingly, the four states feedback
signals, CMs(0 ~ 3), from the four CMs denotes the
availability for all OMs in each CM. One IM/CM match
arbiter is a 4 x 4 multi-resource arbiter [15]-[17] which
can match up to four IPs requesting the same OM to four
LIs sequentially. Since there are eight OMs in C(4,8,4),
an IM dispatcher has eight IM/CM match arbiters to
handle requests to the eight OMs concurrently. However,
a LI could be selected by more than one IM/CM match
arbiters simultaneously. A LI arbiter is thus added to
select one active request of them. The internal states of
all IM/CM match arbiters are forwarded to the config-
uration generator (CfgG), which uses the acknowledge
signals from CMs (CMa) to generate the IM configuration
(IMcfg) and the acknowledgement to InpGs (IMa).

Fig. 14 shows the internal structure of the IM/CM
match arbiter for OM(j). IMr(0, j)~IMr(3,j) are active
high requests targeting OM(j). CMs(0, j)~CMSs(7, j) are
state feedback signals from CMs. When CMs(r,j) is
low, the LO(r,j) connecting CM(r) to OM(j) is avail-
able. Multiple requests could arrive simultaneously and
multiple CMs could be available at the same time as
well. Therefore, two tree arbiters [19], [20] are added
to ensure only one IP and CM pair is matched at one
time. The tile-based matrix are QDI circuits ensuring
the corresponding match result h(j, h,r) are safely and
explicitly notified. Since only one pair of IP and LI is
matched at one time, the match result is first captured
by the following circuits (CMrMx(r, j, h) in Fig. 15) and
the request IMr(h,j) and the state signal CMs(r,j) are
consequently blocked by IMrb(h,j) and CMsb(r,j) to
allow other pairs to be matched. The detailed timing
analysis and circuit implementation of the tile-based
multi-resource arbiter is described in [16], [17].

Fig. 15 shows the connection between IM/CM match
arbiters and LI arbiters. The match result h(j, h,r) is
captured by CMrMx(r,j,h), a three-dimension matrix.
After the C2N elements in Fig. 15 has captured the value,
corresponding block signals IMrb(h,j) and CMsb(r, j)
are fired to withdraw h(j, h,r). CMrMx(r, j, h) would be
released under two situations: the request from IP(h)
has been successfully served (denoted by IMr(h, j)-),
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or the target OM(j) has been allocated to other IMs
(indicated by CMs(r, j)+). As mentioned earlier, multiple
IM/CM arbiters could select the same LI. The LI arbiter
on CMrME(r) selects one active request and CMr(r) is
therefore one-hot coded. For those requests blocked by
LI arbiters, they will be reset when feedback signals CMs
are driven by the chosen requests.

As shown in Fig. 16, the configuration generator uti-
lizes the captured match results (CMrMx), the requests
sent to CMs (CMr) and the grant signals from CMs
(CMa) to generate the configuration signals IMcfg and
acknowledgement IMa. CMr(r, j) specifies that the active
match CMrMx(r, j, h) is selected by the LI arbiter. When
a positive grant on CMa(r, j) is detected, the correspond-
ing bit in the configuration matrix cfgMx is notified.
The switch configuration signal IMcfg(r, ) is synthesized
from cfgMx using an OR gate. Using the same structure,
the acknowledgement signal IMa(h) is generated from
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IMcfg.

5.3 CM dispatcher (CM_Dis)

CM dispatchers reconfigure the central stage of a Clos
network using the AD algorithm. They are similar to
the arbiters of crossbars where each output port has
an independent arbiter to grant requests from all input
ports.

Fig. 17 shows a part of the CM dispatcher in CM(r).
Since a CM in C(4,8,4) is a 8 x 8 switch, there is a 8-
input arbiter on each output port, such as the one for
LO(r, j) shown in Fig. 17. CMa(i, j) and CMs(i, j) is a
pair of complementary acknowledgement for CMr(3, j)
where CMal(i, j) denotes a successful grant and CMs(3, j)
indicates the resource is occupied by other requests.
CMs(i, j) is generated by an OR gate tree. When CMs(i, j)
is notified by the upper half of the tree, the input link
LI(é,7) is occupied by another request from the same
IM; when CMs(i,j) is notified by the lower half of
the tree, the output link LO(r, ) is occupied by other
requests from other IMs. In either case CMr(r, j) should
be withdrawn.

5.4 Other parts of the Clos scheduler

RIMs and RCMs are crossbars controlled by IM_Dises
and CM_Dises respectively. They transmit OMr from
InpGs to OM_Sches once the first two stages are re-
configured by the AD algorithm. OM_Sches are normal
crossbar arbiters which have the same structure as the
CM_Dis as shown in Fig. 17 but without the OR gate
trees. The grant signal from OM_Sches are sent back to
InpGs using the same path reserved in RIMs and RCMs.

TABLE 1
Area Breakdown

area gate count percent
(um?) (NAND2X1)
InpG 6.26K 1.6K 2.5%
IM_Dis | 175.06K 43.8K 67.2%
CM_Dis | 33.75K 8.4K 12.9%
OM_Sch | 10.06K 2.5K 3.8%
RIM & RCM | 13.46K 3.4K 5.2%
other | 22.15K 5.5K 8.4%
Total | 260.74K 65.2K
Reg+ m» IMr+ &» CMr+

R
CMs+ 2

IMa+
Ack+ 1.6 ns _—

Req - 29 ns -

1.0 ns

IMa -

Ack - -

Fig. 18. Speed performance

6 HARDWARE PERFORMANCE

The Clos scheduler is implemented using the Faraday
0.13 pm standard cell based on the UMC 0.13 pum
technology. All modules including the basic C elements
and MUTEX gates are manually written by Verilog HDL
using standard cells only. The design is synthesized
by Design Compiler and post-synthesis simulations are
back-annotated with cell latency:.

Table 1 shows the area consumption of the Clos
scheduler. IM dispatchers are the most area consuming
modules that use 67.2% of the total area. Since an IM_Dis
contains £ IM/CM match arbiters (n x m) and two
k xmxn signal matrices (CMrMx and c¢fgMx), the area of
a single IM_Dis is proportional to kxmxn and, therefore,
the area of all IM_Dis modules is proportional to k?mn.
When the Clos network is a RNB network, m = n and
k*mn = N?. The area of IM_Dis modules is proportional
to N2 in a RNB Clos network.

The speed performance of the Clos scheduler is
demonstrated in Fig. 18. When no conflicts occur in the
Clos network, a path is allocated in 6.2 ns and released in
3.9 ns. The AD algorithm requires 4.0 ns to reconfigure
the first two stages. We also evaluate the latency of the
iterations between IMs and CMs. When a request is sent
to a CM, the state feedback CMs is sent to other IMs
in 1.4 ns. Therefore, the latency of an iteration from
IM+ to CMs+ is 3.8 ns. When the request from an IP
is withdrawn immediately after the path is reserved, the
request procedure reaches the minimal period of 10.1 ns,
which contains 2.66 iterations. As a result, the iteration
limit of the AD algorithm in this implementation is 2.66.

It is possible to evaluate the consistency between the
hardware implementation and the behavior models used
in section 4. The post-synthesis netlist is injected with
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the non-blocking uniform traffic pattern described in
section 4.1. The injected load is normalized by converting
the minimal period of 10.1 ns to a cell time. As shown in
Fig. 19, the latency performance of the hardware imple-
mentation is in the between of the two behavior models.
Therefore, the behavior level estimations in section 4 is
consistent with the practical hardware performance.

7 CONCLUSION

In this paper, the first asynchronous routing algorithm
for three-stage Clos networks is proposed and imple-
mented.

The first asynchronous dispatching algorithm for the
first two stages of a Clos network, namely the asyn-
chronous dispatching (AD) algorithm, is proposed and
evaluated. We have analyzed two classic dispatching
algorithms used in synchronous Clos networks: random
dispatching (RD) and concurrent round-robin dispatch-
ing (CRRD). Both of them are heuristic algorithms that
provide fast configurations. However, they cannot be
directly utilized to control an asynchronous Clos net-
work. The proposed AD algorithm is capable of routing
a Clos network asynchronously by using state feedback
from CMs and dividing the sequential algorithm, such
as RD and CRRD, into two independent sub-algorithms
running in IMs and CMs. All algorithms have been
evaluated on behavior level. The results show: the AD
algorithm outperforms both RD and CRRD under all
traffic patterns; without buffering in IMs, none of the
algorithms reaches 100% load but the AD algorithm
shows only 1.5% load loss compared with the optimal
58.6% load performance under uniform traffic.

The new routing algorithm has been implemented
into a Clos scheduler to control a 32-port C(4,8,4) S3
Clos network using the Faraday 0.13 pum cell library.
Only standard cells have been used with no custom
asynchronous cells. The Clos scheduler consumes 65.2K
gates. Post-synthesis simulations with back-annotated
cell latency show that the Clos scheduler can reserve a
path in 6.2 ns and release it in 3.9 ns. The loop latency
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of an iteration is 3.8 ns and the minimal configuration
period of 10.1 ns contains 2.66 iterations.
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