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Abstract—High Level Synthesis (HLS) languages and tools
are emerging as the most promising technique to make FPGAs
more accessible to software developers. Nevertheless, picking the
most suitable HLS for a certain class of algorithms depends
on requirements such as area and throughput, as well as on
programmer experience.

In this paper, we explore the different trade-offs present when
using a representative set of HLS tools in the context of Database
Management Systems (DBMS) acceleration. More specifically, we
conduct an empirical analysis of four representative frameworks
(Bluespec SystemVerilog, Altera OpenCL, LegUp and Chisel) that
we utilize to accelerate commonly-used database algorithms such
as sorting, the median operator, and hash joins. Through our
implementation experience and empirical results for database
acceleration, we conclude that the selection of the most suitable
HLS depends on a set of orthogonal characteristics, which we
highlight for each HLS framework.

I. INTRODUCTION

The amount of data in our world is growing rapidly.
Processing large volumes of data at high speed is of great
interest to companies and organisations. Database queries
often make exhaustive use of a significant set of algorithms,
some of which are good candidates for FPGA acceleration,
in order to substantially improve overall query processing
performance [1, 2, 3, 4].

Unfortunately, FPGAs are notoriously difficult to program
and even more difficult to debug. Traditional hardware de-
scription languages (HDLs) such as VHDL and Verilog lack
many of the high-level and abstraction facilities commonly
found in modern mainstream languages. As a consequence,
the development of hardware can become tedious, inefficient
and error-prone for non-expert designers. It might also affect
expert FPGA designers from the productivity point of view.

In recent years, several new approaches have been proposed
to lower the complexity of hardware development and to make
it more attractive to software developers. The most prominent
approach is through the use of High-Level Synthesis (HLS)
languages and tools, which translate software languages, of-
ten C and it variants, into low-level Register-Transfer Level
(RTL) descriptions [5, 6, 7, 8]. HLS languages are gaining
popularity as they have the potential of “opening FPGAs to the
masses”. Consequently, FPGA/EDA vendors are increasingly
adopting and supporting them. The ease of programmability,
performance, resource usage and efficiency can vary from one

HLS technology to another, and usually there is a tradeoff
between these characteristics.

The main objective of this paper is to undertake a study
that analytically and qualitatively compares some of the major,
emerging HLS languages in the context of database hardware
acceleration using FPGAs. Our study makes the following
contributions:

• We select 4 HLS languages and tools for FPGA
programming: Bluespec SystemVerilog [9], Altera
OpenCL [10], LegUp [11] and Chisel [12]. We justify
why we believe that our selection represents most
categories of HLS frameworks.

• Based on the literature, we choose 4 algorithms that
can accelerate time-consuming database queries, more
specifically: bitonic sorting, spatial sorting, the median
operator and hash probe. We implement these algo-
rithms using Verilog and the 4 HLS languages, and
compare them to analytical models, when applicable.

• We report the results and our experience as program-
mers using these 4 high-level languages and present
the various trade-offs in terms of performance, pro-
grammability and resource utilization in the context of
developing FPGA accelerators for databases. We show
that HLS languages and tools can achieve manually-
optimized, RTL-like performance and area results, but
not all algorithms are suitable for all HLS languages.

The rest of the paper is organized as follows. The next sec-
tion provides background for the evaluated languages, where
we justify our selection. Section III describes the algorithms to
be implemented. We compare our implementations in Section
IV, reporting our experience. In Section V we compare the
analytical results, and highlight the characteristics of each HLS
framework. Section VI summarizes related work and finally,
Section VII concludes the paper.

II. BACKGROUND

HLS tools fill the gap between low-level RTL and high-
level algorithms, raising the level of abstraction and effectively
hiding the low-level details from the designer. Each proposal
stresses a different characteristic (eg., productivity, learning
curve, versatility, performance, etc.) resulting in various trade-
offs among them.



To classify HLS, we adopted the taxonomy of Ba-
con et al. [6] which defines HLS as any language or tool
that includes a high-level feature which RTL does not have.
Their classification has five categories: HDL-like languages,
CUDA/OpenCL frameworks, C-based frameworks, high-level
language-based frameworks and model-based frameworks. In
the following subsections, we describe the first four groups
and select one language from each for our evaluation. Model-
based frameworks are not included in our study because of
their specificity to particular domains (eg., DSP modeling).

A. HDL-like HLS: Bluespec SystemVerilog

The first category comprises of modern HDL-like lan-
guages, which borrow features from other programming lan-
guages to create a new one. This is the case with Sys-
temVerilog [13] and the rule-based Bluespec SystemVerilog
(BSV) [9]. We have chose BSV because it is a radically
different approach to hardware description, based on guarded
rules and syntax inherited from SystemVerilog. In this para-
digm, hardware designs are described as data-flow networks
of guarded atomic rules. Actions in rules are executed in a
transactional manner: state changes happen all-at-once when
the rule is fired. Parallelism is achieved through concurrent
execution of non-conflicting rules.

B. CUDA/OpenCL HLS: Altera OpenCL

Open Computing Language (OpenCL) is an open industry
standard for programming heterogeneous computing platforms
(a host CPU, GPU, DSP or FPGA). It is based on standard
ANSI C (C99) with extensions to create task-level and data-
level parallelism. Altera’s SDK for OpenCL (AOCL) [10] ex-
ploits parallelism in data-independent threads, or “work items”
in OpenCL speak. AOCL translates the software description
into a pipelined hardware circuit, where each stage of the
pipeline executes a different thread. This approach is less
versatile than general-purpose C compilers, but can be more
efficient for data-flow and streaming applications, which is one
of the drawbacks of other HLS. We have included this tool in
our study because we believe it is representative of HLS tools
targeted at streaming problems, such as Impulse C or those
based on CUDA.

C. C-based HLS: LegUp

The other categories in Bacon et al.’s classification are
frameworks that target subsets, or extensions of already-
existing software languages. In most of the cases, the designers
adopt a popular language to smoothen the learning curve. The
most prominent group is based on C: LegUp [11], ROCCC [14]
and Impulse C (specialized in stream programming) [15]
support C subsets. xPilot [16] (now Xilinx Vivado [17]) and
Calypto Catapult C [18] also accept C++ and SystemC.

We included LegUp in our evaluation for two reasons. First,
(i) it is open-source, and (ii) we believe that the synthesis
mechanism is similar to those used in other C-based HLS tools.
Many C-based HLS tools perform hardware synthesis after
transforming C into an intermediate representation, usually
using external tools such as LLVM [19]. LegUp compiles
LLVM code into Verilog. The C functions are converted
into Finite State Machines (FSM). Local and global variables

are stored in shared memories (Block RAMs or external
DDR), and are accessed by the FSMs, which load, modify
and store the data following the algorithm. The efficiency
of this approach is based on executing independent LLVM
instructions concurrently, and other advanced techniques such
as loop unrolling and pipelining (with certain limitations).

D. High-level Language Frameworks: Chisel

This last group includes frameworks that translate high-
level languages (other than C) into hardware. Some examples
are the event-driven Esterel [20], Kiwi [21] (C#) and Lime [22]
(Java). Chisel [12] is based on the functional language Scala
(which is based on Java), and therefore targeted to high-
productivity. The hardware designs are pure Scala applications
and can be synthesized into C++ simulators or Verilog RTL
descriptions. The framework is made with Scala, and provides
basic data types, structures and language constructs. However,
the interconnection of the elements (ie., modules, wires, reg-
isters) is done in an RTL-like manner.

III. STUDIED DATABASE ALGORITHMS

Our comparisons focus on three common and time-
consuming database operations: sorting, aggregation and joins.
The inherent parallelism of sorting makes it suitable for effi-
cient FPGA implementations [23]. We chose two sorting algo-
rithms that are suitable for hardware implementation, namely
bitonic and spatial sorters. For aggregation, we implemented
the median operator with a sliding-window, also used in [3].
Finally, for table joins, we included a hash probe algorithm to
accelerate hash join operations [4].

A. Bitonic Sorter

A bitonic sorter is a type of a sorting network [24]
particularly efficient in hardware, consisting of multiple levels
of compare-and-exchange units. The sorting is performed in
O
(
log2 n

)
time complexity, and requires O

(
n log2 n

)
com-

parators that can be pipelined, increasing the frequency and
the throughput. Figure 1a shows an 8-input bitonic sorter.
Such a sorting network is straightforward to write in almost
any language. It can be expressed recursively and composed
together to form larger networks. Since it produces sorted
sets every cycle, it is appropriate for high-bandwidth I/O
interfaces, in particular parallel ones. However, this parallelism
also results in high resource usage.

B. Spatial Sorter

The spatial sorter [25] is composed of an array of sorting
registers, each of which effectively does a compare and swap
operation [1]. As seen in Figure 1b, the main ingredients
of a sorter node are a comparator, two registers and two
multiplexers. New elements are inserted at the beginning of
the sorter array. At each clock cycle and on each node, an
input value is compared with the current value. The greater
value is stored in the sorter node, and the smaller value is
passed to the next node.

The spatial sorter has a worst case time cost of 2n cycles to
sort an input set of size n. After 2n cycles, the sorted set starts
to be emitted by the last node. In order to accept an input and



(a) 8-input Bitonic sorter.
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Fig. 1: The Bitonic sort, spatial sort and median operator algorithms. In sorting networks the horizontal arrows are input values,
and the vertical lines are the Knuth compare-and-exchange operator ( ). Sorting stages are shaded in gray.
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Fig. 2: Hash probe algorithm. Detail of the state machine.

to produce a sorted output at each clock cycle, this mapping-
friendly sorting infrastructure could simply be duplicated, to
take turns processing the inputs, and not to stall. It can also
be coupled with merging circuitry to merge-sort even larger
sets, as shown in [25]. The resource usage of the spatial sorter
is proportional to its number of inputs, whereas the bitonic
sorter grows supra-linearly. Therefore, the spatial sorter is more
appropriate for lower bandwidth I/O interfaces.

C. Median Operator

Aggregation operations, which reduce a stream of data
to a single result, are ubiquitous in database queries. We
implemented the median operator as in Mueller et al. [3],
expressed by the CQL [26] query Q1:

SELECT median(v) FROM S [ Rows 8 ]. (Q1)

This expression describes a median operator over a sliding
window of 8 elements. Figure 1c depicts our implementation
using a bitonic sorter. For every cycle and for each new element
inserted into the window, a new median value is calculated.
Since only the median values of the sorter are used, some
comparators and registers are optimized away by the synthesis
tool. We used a 16-input window for evaluating this algorithm.

D. Hash Probe

Database operations that join two tables using a com-
mon column are frequent and time-consuming. The hash join
algorithm consists of first building a hash table using the
smaller table (T1) and then probing it with all the rows of
the larger table (T2). In our implementation, each hash table
entry contains the matching key and a pointer (ptr) to a list
of all the rows with that key in T1. The hash function was
implemented as a Linear Feedback Shift Register (LFSR). If

the hash indexes of two keys collide, the latter key is inserted
in the next consecutive empty bucket of the hash table.

We preload the hash table into the BRAMs of the FPGA.
Then, for each (key, rowID) input tuple of table T2, a hash
index is calculated and the hash table is probed for matches.
Starting from that index, all the non-empty consecutive entries
of the hash table are checked. If the keys in the hash table
entry and the T2 tuple match, the result (T1 ptr, T2 rowID)
is output. If an empty bucket is found, the current T2 tuple
does not exist in the hash table and is skipped.

In contrast to previous algorithms that require more com-
putational power, hash probe hardware essentially consists of a
memory that is randomly accessed and some control logic. In
Figure 2 we show the main elements of the hardware model.
The Probe state machine implements the hash table probe
algorithm. The 16-iteration LFSR-based hash function can be
pipelined to allow constant throughput.

IV. PROGRAMMING EXPERIENCE EVALUATION

In this section, we share our experience implementing the
algorithms using the different languages. For sorting algo-
rithms, the input data is 32-bit key – 32-bit value pairs (ie.,
16 × 64 = 1,024 bits in size). The median operator uses 32-
bit key inputs. The hash probe uses 16-bit key – 32-bit value
pairs, and a hash table with 64K × 64-bit buckets (512 KB)
and a load factor of 0.6. The size of (T1) is 400 MB and the
size of (T2) is 600 MB. None of the tools required more than
30 seconds to generate the Verilog descriptions.

A. Bluespec SystemVerilog

All the algorithms were substantially easy to describe using
the data-flow, rule-based paradigm of BSV. The advanced
evaluation system of BSV handles well the recursive definition
of the bitonic sorter. The BSV models are fully parametrized,
and can generate hardware models for arbitrary input sizes, as
well as to perform a different number of comparisons at each
pipeline stage. In Figure 3a, we show one of the submodules
of the bitonic sorter in BSV.

Implementing hash probe in BSV proved to be more
difficult than in Verilog. Obtaining an optimal scheduling
in BSV can sometimes require some extra effort from the
designer, due to the strict sequentially consistent paradigm of
the language, which might not be obvious to designers with



module mkSorter (SortBox#(n,t));
...
rule do_bitonic_sort;

Integer stage = 0;
for (Integer ai=2; ai <= valueOf(n); ai=ai*2)
for (Integer bi=ai; bi > 1; bi=bi/2) begin

let x = regs[stage];
let y = (stage+1 < valueOf(num_stages)) ?
regs[stage+1] : destW;

for (Integer i=0; i < valueOf(n); i=i+bi)
for (Integer j=0; j < bi/2; j=j+1) begin
let k2 = bi!=ai?(i+j+bi/2):(i+bi-j-1);
Bool swap = compareData(x[i+j], x[k2]);
y[i+j] <= (swap ? x[k2] : x[i+j]);
y[k2] <= (swap ? x[i+j] : x[k2]);

end
stage = stage + 1;

end
endrule
...

endmodule

(a) Example Bluespec SystemVerilog code

__kernel
__attribute__((

reqd_work_group_size(WORKGROUP_SIZE,1,1)))
void bitonic(

__global int2* restrict input_data,
__global int2* restrict output_data) {

const unsigned group = get_group_id(0)*16;
int2 temp[16];
#pragma unroll
for (unsigned i = 0; i < 16; ++i)
temp[i] = input_data[group+i];

compAndSwap(&temp[0], &temp[1]);
compAndSwap(&temp[2], &temp[3]);
compAndSwap(&temp[4], &temp[5]);
compAndSwap(&temp[6], &temp[7]);
...
#pragma unroll
for (unsigned i = 0; i < 16; ++i)
output_data[group+i] = temp[i];

}

(b) Example Altera OpenCL code

volatile int input_data[16];
volatile int output_data[16];
int main() {
int i, temp[16];
for (i = 0; i < 16; ++i)
temp[i] = input_data[i];

compAndSwap(&temp[0], &temp[1]);
compAndSwap(&temp[2], &temp[3]);
compAndSwap(&temp[4], &temp[5]);
compAndSwap(&temp[6], &temp[7]);
...
for (i = 0; i < 16; ++i)
output_data[i] = temp[i];

return 0; }

(c) Example LegUp code

class Bitonic(val n:Int,k:Int,d:Int)
extends Module {

val io = new BitonicIfc(n, k, d)
...
val subu = Vec.fill(2) {
Module(new Bitonic(n/2, k, d)).io }

for (t <- 0 until n/2 ) {
subu(0).in(t) := io.in(t)
inputs0(t) := subu(0).out(t)
subu(1).in(t) := io.in(t+n/2)
inputs0(t+n/2) := subu(1).out(t)

}
...

}

(d) Example Chisel code

Fig. 3: Bitonic sorter code snippets for each HLS framework

an RTL background. Although Bluespec adopts many syntax
expressions from SystemVerilog, the learning curve is steep
even for developers with background in hardware design. The
type system is powerful but complex, and the programmer
must think in terms of rules and dataflow. However, once a
critical knowledge level is reached, the productivity can be
very high. Another benefit is the strict control over the timing
model, which is not possible in C-based HLS frameworks.

B. Altera OpenCL

Altera OpenCL is strongly influenced by GPU program-
ming. However, our implementation of the bitonic sorter
is slightly different from the typical GPU implementation
to enable us to fully exploit parallelism on the FPGA.
Figure 3b shows a snippet of the OpenCL code. The code
to be accelerated (“kernel” in OpenCL speak) contains the
hard-coded compare-and-exchange operations of the 16-input
bitonic sorter. We had to hard-code the 16-input version of the
bitonic sorter, as we did for LegUp. The software region to be
accelerated is marked with the __kernel keyword, which is
pipelined by AOCL. The programmer can use directives, such
as the #pragma unroll, to guide the compiler.

The spatial sorter was more difficult to implement than
the bitonic sorter, as in LegUp, even with the multithreading
capabilities of OpenCL. In our implementation, each work-
item fetches an incoming value from the global memory and
informs the master thread (work-item 0) about its position in
the array. The master thread is responsible for appropriately
moving data between the threads. At the end of the loop
iteration, the sorted data is written back to global memory.
The calculation of the median operator is performed by work-
groups of threads. As work-groups are mutually independent,
each one needs to have its own input buffers to avoid conflicts.
Similarly to LegUp, the hash probe algorithm was ported
easily to OpenCL. But in this case, we used a sequential
implementation and relied on AOCL to pipeline the design
and to optimize memory accesses.

We found that AOCL has a steeper learning curve than
LegUp. The programmer needs considerable knowledge about
underlying OpenCL concepts such as work-groups and work-
items. On the other hand, the efficiency obtained can be much
higher for some classes of database problems, as we describe
in the next section.



TABLE I: Analytical models for the resource usage of the studied algorithms.

Stages (S) Registers Logic
Algorithm Value Complexity Value Complexity Value Complexity

bitonic
∑log n

i=1
i O

(
log2n

)
nSw O

(
nw log2 n

)
nSw

2 O
(
nw log2 n

)
spatial n O

(
n
)

2nw O
(
nw
)

2nw O
(
nw
)

median
∑log n

i=1
i O

(
log2 n

)
nSk − 2k

∑log n−2

i=0

(
n
2 − 2i

)
O
(
nk log2 n

)
nSk
2 − k

∑log n−3

i=0

(
n
4 − 2i

)
O
(
nk log2 n

)
Note: k = key bits, v = value bits, w = k + v. Median only uses k.

C. LegUp

The main advantage of pure-C HLS tools is that the learn-
ing curve is very smooth, as most programmers are already
familiar with C. On average, the algorithms required very
few lines of code. Moreover, most already-existing algorithms
written in C can be ported to an FPGA almost seamlessly.
However, obtaining an efficient implementation requires ex-
perience using the tools, as well as prior knowledge on the
target technology to later optimize it. In addition, a substantial
rewriting of the initial code may be required.

In Figure 3c, we show the most interesting fragments of
our C version of the bitonic sorter. The LegUp code, which
can be compiled as regular C code and executed on any
processor, is completely straightforward to a C programmer.
The resulting binary is functionally equivalent to the hardware
generated by LegUp. This feature is interesting for fast simu-
lation and debugging, as well as for the migration of software
kernels to an FPGA. On the other hand, the C language
has a limited evaluation system, the C preprocessor, based
on conditional directives and macros. In this sense, Verilog
allows recursive and iterative code generation, and Chisel and
BSV have advanced evaluation systems. Due to the limitations
of the C preprocessor, we hard-coded the 16-input bitonic
algorithm, which makes the code not parametrizable and less
reusable. Another option would be having the compiler unroll
the parameterized structures, such as loops. Unfortunately, the
current version of LegUp has limited support for nested loops
or array-based dependencies (where the destination and the
source are in the same array).

We had to learn how to correctly describe the hardware
using C. For instance, input and output buffers (input_data
and output_data) are marked as volatile to indicate
the compiler not to try optimizing away memory accesses.
Instead of operating over data in the main function the data
is copied into a temporal buffer. This will make the compiler
read all the input data and optimize the sorting over the
temporal buffer. The spatial sorter, very natural to express in
any HDL, is not well suited for C-based HLS. We found that
the multi-threaded nature of the algorithm, where independent
sorting units exchange data, is very difficult to express in
C. The implementation of the median operator was more
straightforward. Storing only the median value (the average
of the two middle values of the sorted set) allows the LegUp
compiler to optimize away the extra computation and the
LLVM compiler to trim the unused data paths.

We saw that hash probe is a very suitable algorithm
to be expressed in C-based HLS, yielding the best overall
performance results for LegUp, as shown in the next section.

D. Chisel

The programming model of Chisel is very similar to RTL
languages. Hardware units are defined and interconnected in
an imperative way. However, for evaluating the code, all the
high-level constructs of the Scala language are available. In
Figure 3d we show an example code snippet of our bitonic
implementation in Chisel.

As in the case of BSV, almost all the examples were very
easy to express as parameterizable implementations, and the
high-level constructs produced very succinct code. One special
case was the Chisel implementation of hash probe, which was
easier than BSV (as we did not run into control flow issues) and
Verilog (as we were able to use higher level constructs). Being
a subset of Scala, Chisel is a good language for developers
with some background on Java. It supports advanced features
like polymorphism and parametrized modules. However, we
believe that some features would improve productivity even
further. For instance, BSV-like implicit condition handling
would simplify the control logic of designs.

V. EMPIRICAL EVALUATION AND COMPARISON

In this section, we compare the empirical results against
analytical models and hand-written Verilog models. We tar-
geted the implemented algorithms to an Altera Stratix V
5SGXA7 FPGA, with the same synthesis options. We used the
Quartus “Early Timing and Area Estimates” flow to compile
the designs.

The performance of an HLS can be seen as the combination
of the algorithmic performance of the hardware designed
and the I/O performance. In this paper, we concentrate on
algorithmic performance, however the I/O performance also
has to be taken into account when choosing an HLS. The
biggest advantage of using Altera OpenCL is its ability to
automatically generate I/O interfaces with the host. Bluespec
provides libraries for interfaces such as Ethernet or PCIe.
LegUp allows interfacing a soft CPU core (hybrid flow) and
Chisel does not have support for I/O interfacing yet.

A. Analytical Analysis

To have a concrete baseline for comparison, we first per-
formed an analytical analysis of the expected FPGA resource
utilization for determining the number of registers and LUTs
needed to implement our algorithms.

In an efficient implementation, the manually-optimized
Verilog model should directly match the analytical model. The
resource usage of the BSV and Chisel designs is also expected



TABLE II: Evaluation of the four algorithms on different programming environments.

Registers Logic Memory Fmax Throughput
Implementation FF % incr. LUT % incr. ALM* (Kbits) (MHz) MB/s % LoC

bitonic analytical 10,240 0.00% 2,560 0.00%
bitonic Verilog 10,250 0.10% 2,640 3.13% 7,210.8 0.00 311.43 38,016.36 100.00% 134
bitonic BSV 10,250 0.10% 2,640 3.13% 6,997.5 0.00 313.97 38,326.42 100.82% 57
bitonic Chisel 10,272 0.31% 2,649 3.48% 5,571.0 0.00 314.96 38,447.27 101.13% 114
bitonic LegUp 4,210 5,180 3,973.4 0.00 211.86 1,034.47 2.72% 101
bitonic OpenCL 38,455 5,221 15,842.6 361.38 307.12 1,317.21 3.46% 140

STL sort C++ (host CPU) 2,300.00 570.42 1.50% 3

spatial analytical 2,048 0.00% 640 0.00%
spatial Verilog 2,081 1.61% 641 0.16% 1,359.5 0.00 341.30 1,301.96 100.00% 98
spatial BSV 2,112 3.13% 1701 165.75% 1,081.0 0.00 343.52 1,310.42 100.65% 181
spatial Chisel 2,112 3.13% 720 12.50% 1,053.0 0.00 345.30 1,317.21 101.17% 87
spatial LegUp 1,115 823 612.5 0.50 309.12 3.13 0.24% 28
spatial OpenCL 26,059 14,667 15,072.3 877.84 236.85 660.53 50.73% 66

median analytical 4,544 0.00% 2,240 0.00%
median Verilog 4,555 0.24% 2,352 5.00% 4,009.5 0.00 302.76 1,154.94 100.00% 159
median BSV 4,554 0.22% 6,168 175.36% 3,359.5 0.00 334.67 1,276.66 110.54% 70
median Chisel 4,577 0.73% 2,351 4.96% 3,321.5 0.00 338.98 1,293.11 111.96% 132
median LegUp 10,449 5,262 3,781.4 0.47 174.98 34.25 2.97% 97
median OpenCL 19,366 7,590 9,309.5 190.06 312.10 920.60 79.71% 84

median C++ (host CPU) 2,300.00 836.10 72.39% 6

hash probe Verilog 995 174 327.5 3,136.00 174.06 995.98 100.00% 66
hash probe BSV 1,150 166 365.5 3,136.00 181.46 1,038.32 104.25% 124
hash probe Chisel 1,020 179 333.5 4,096.00 171.59 981.85 98.58% 83
hash probe LegUp 345 397 262.5 4,096.00 302.85 61.90 6.22% 50
hash probe OpenCL 35,536 21,854 19,175.6 3,876.08 270.19 2.14 0.21% 59

hash probe C++ (host CPU) 2,300.00 433.32 43.51% 18

*ALM (Adaptive Logic Module): Altera’s basic cell blocks, with an 8-input fracturable LUT and four 1-bit registers.

to be very close to the Verilog and analytical baselines. The
LegUp and the AOCL models follow a different computational
paradigm that would be very difficult to model, so we will
not compare them against the analytical models. Similarly, no
analytical model was devised for the resource usage of the
hash probe design, which is mostly made up of control logic.

In Table I, we show the number and complexity of the
stages, registers and combinational logic of each algorithm.
The parameter n represents the size of the sorting set. The
parameters k and v represent the key and value sizes in bits
(and w = k + v). It can be seen that the Bitonic sorter
needs O

(
nw log2 n

)
registers and O

(
nw log2 n

)
combina-

tional LUTs (for the comparators). In the case of the median
operator, the costs are O

(
nk log2 n

)
because only the keys are

sorted, and only the middle numbers of the sorting are used,
allowing to optimize away some registers and comparators, as
shown in Figure 1c. The spatial sorter requires 2 registers in
each sorting unit: one for the current value and one to store the
outgoing one. The hardware model requires O

(
nw
)

registers
and O

(
nw
)

combinational LUTs.

B. Experimental Results

In Table II we show the empirical results for all the
languages and tools evaluated. For each algorithm, we show
the resource usage, maximum frequency, estimated through-
put (MB/s) and lines of code needed (LoC)1. The LegUp
resource usage was obtained by stripping out the additional

1Although we consider that LoC cannot be used as the primary criteria, and
more advanced metrics should be used such as function points. The creation
of a hardware description sizing metric adapted to HDLs and HLS is one of
the possible future research directions.

infrastructure generated by the tools, and only leaving out the
algorithmic kernel. In the AOCL implementations complex I/O
optimizations are implemented, like input and output buffering,
resulting in an intensive resource usage. Additionally, RAM
blocks were extensively used by the OpenCL implementations,
and minimally used by LegUp, as well. The block memory
usage for hash probe shows that for some implementations it
was possible to optimize away the unused bits (only 49 bits
of the 64-bit hash table buckets were used).

In terms of performance, our results demonstrate that HLS
tools are indeed able to offer competitive performance to fine-
tuned Verilog/VHDL, effectively accelerating database opera-
tions. We also implemented these algorithms in software, using
the efficient Standard Template Library (STL) implementations
of C++, running on a host machine with Intel Xeon E5-2630
CPU at 2.3 GHz. We made sure that the benchmarks used
already-cached data, attempting to mimic ideal conditions in
software. The results show that the computational power of
most of the HLS implementations is significantly higher than
a software version. Furthermore, we used 16-input designs
in this work, while FPGAs allow bigger circuits to be im-
plemented, and higher performance gains can be expected
(along with considerable power savings compared to a high-
performance CPU).

The throughput results can be thought of as being inter-
faced through BRAMs. For AOCL, we derived the uncon-
strained throughput using the de-rate factor that the compiler
applies when the maximum bandwidth is exceeded. The high
bandwidth achieved by bitonic could be provided by DRAM,
as available in the Maxeler MAX3 platform (38.4GB/sec [27]).
For other I/O interfaces that provide less throughput, some



options are: (i) to generate a smaller/slower circuit that requires
less bandwidth and saves unused computational power, (ii) to
employ caching structures similar to ROCCC’s smart buffers
[14], or (iii) to use another algorithm, such as the spatial sorter
instead of bitonic.

The bitonic sorter is easy to express in all languages, and
delivers a speedup between 1.81x and 67.4x over the software
version. The C-based HLS tools exhibit diverse behaviors.
AOCL outperforms the software in most of the cases and
achieves competitive results in the spatial sorter and the median
operator (> 50% of the hand-coded Verilog throughput). In
addition, AOCL can automatically replicate the computation
units, resulting in linear speedup in our experiments, at the
cost of more resource and bandwidth (in Table II we only
used 1 computational unit). LegUp has moderate throughput
results, but requires very few resources.

For the database algorithms that we have studied, BSV
and Chisel produced code that is on par with hand-optimized
Verilog, yielding the best throughput-per-area ratios. Curiously,
the compiler might even be able to use some extra logic and
to optimize further in certain cases, as in the median operator
implementations in BSV and Chisel. In the case of BSV, the
high LUT usage for the spatial sorter and the median operator
(caused by the rule-based programming model) is absorbed by
the ALMs and doesn’t result in a higher area requirement. The
register usage increase for Verilog, BSV and Chisel over the
analytical models were mostly caused by control logic.

C. Discussion

With our experience and experiments, we can conclude
that there is no obvious election when choosing an HLS,
but an orthogonal set of characteristics that must be con-
sidered. Bluespec SystemVerilog has a steep learning curve,
but provided good performance results in our experiments.
Among other benefits, it guarantees tight control over the cycle
accurate model and automatic flow control validation, and
supports high-level, parameterizable constructs. It is a good
choice to implement system-level HW models, especially for
designers with a background in RTL design or in Haskell.

The Altera’s OpenCL framework required succinct imple-
mentations while delivering good throughput rates on some
algorithms, and was easy to use because the OpenCL standard
is based on C. However, we found it difficult to parameterize
the designs and the resource footprint was the highest (as a
result of including a complex I/O infrastructure automatically).
It is a natural choice for data-flow algorithms, especially when
accelerating already-existing C kernels, but some expertise in
OpenCL is required.

The LegUp HLS tool accepts generic C code. We consider
it the easiest to learn and to use. Its performance results were
lower than the other tools considered (which may improve
in future versions). Thus, it can be considered for designers
from any field with little experience using HDLs, and it
allows to easily implement algorithms with lower bandwidth
requirements, predominance of flow control structures, or to
accelerate already-existing C code.

Finally, Chisel delivered good performance results from
relatively succinct implementations. As in BSV, it retains

cycle accuracy and the high-level Scala constructs allow to
parameterize the code. However, it lacks a proper standard type
library, and the hardware scheduling/interconnection must be
done manually as in RTL-like languages. It is a good choice
for designers with a strong RTL background (and some Scala
knowledge), enabling them to implement system-level designs.

VI. RELATED WORK

An exhaustive survey of HLS tools has been published
recently by Daoud et al. [7], describing a plethora of HLS tools
from the last 30 years, but it does not provide any empirical
evaluation or comparison between them. Bacon et al. ’s clas-
sification of HLS frameworks [6] is also very rich in technical
details, but no direct comparison is made between different
implementations. Cong et al. [8] provide a comparison of
development time and resource usage in Autopilot against
hand-written RTL with two examples, on an optical flow
algorithm and a wireless application.

Many studies focus on a single language in order to evalu-
ate its benefits compared to RTL. Bachrach et al. [12] present
Chisel and compare it against Verilog to demonstrate that better
performance with less lines of code can be obtained when
implementing a RISC CPU. Cornu et al. [5] compare a genetic
sequence algorithm on Impulse C and RTL implementations.
They show a 4.2× speedup over hand-written RTL code, and
state that HLS may provide higher performance than RTL
because higher amounts of optimization can be obtained from
high-level design, while low-level optimization is less efficient
for the designer.Agarwal et al. [28] compare BSV against a
C-based HLS tool, implementing a complex Reed-Solomon
decoder. They show that the latter could have limited perfor-
mance and high resource usage, while BSV can obtain better
performance, requiring similar resources as a commercial IP.
Meeus et al. [29] provide an overview of many HLS tools
(mostly C, Matlab and BSV), and a qualitative comparison
of the Sobel edge detector image processing algorithm. They
mainly focus on tool comparison, on metrics like area, learning
curve, and the ease of implementation, but not on performance.

Hammami et al. [30] present a comparison of 4 bench-
mark designs (two filters, FFT and ray casting), which are
implemented on 3 C-based HLS (ImpulseC, Handel-C and
SystemC). The paper which does a detailed comparison of
area, throughput and tool variation, also looks into how the
tools deal with concurrency and pipeline extraction. Virginia
et al. [31] include three different C-to-VHDL compilers
(ROCCC, SPARK and their DWARV proposal) and compare a
large subset of kernels using metrics such as throughput-per-
slice, as well as readability, writing effort, supported ANSI-
C subset, testability and hardware knowledge required. They
conclude that the restrictions on the supported C subset directly
influence the rewriting effort that is needed to make certain
kernels compatible with the compilers.

Hara et al. [32] propose a complete benchmark suite for
HLS, with complex and diverse applications. However, it is
specific to C-based languages. Database acceleration using
FPGAs has been studied extensively before. Mueller et al. [3]
presented sorting networks and the same median operator with
sliding window that we use in this work. Halstead et al. [4]
accelerate join operations using an FPGA, where columns with



identical values are chained together in an address table and the
hash probe is done in parallel. Istvan et al. present an FPGA-
based hash table design with chaining and parallel lookups
for a memcached server [33]. Dennl et al. [2] accelerate SQL
projections (SELECT) and restrictions (WHERE) using dynamic
reconfiguration. Finally, Koch et al. [1] implement a space-
efficient merge sort and make use of partial reconfiguration to
outperform GPUs and the Cell processor.

VII. CONCLUSIONS

Database management systems present many opportunities
for hardware acceleration, especially under very large work-
loads. In this paper, we have presented an empirical evaluation
of four HLS frameworks (Bluespec SystemVerilog, Altera
OpenCL, LegUp and Chisel), while implementing four algo-
rithms relevant to database acceleration. We have justified the
representativity of these languages and tools among the HLS
diversity. We also described our experience as programmers
using these different HLS languages and tools.

Choosing the most appropriate HLS framework depends on
a set of requirements including performance and resource foot-
print, as well as a number of contextual conditions such as the
programmer’s background. We found out that there is no single
obvious election. Therefore, we provide a detailed discussion
that highlights which of these orthogonal goals each HLS tool
is the most appropriate for. The shortage of similar studies
makes further research necessary. We encourage other re-
searchers to download the source code of our experiments from
https://github.com/bsc-uniman/fpl14-hls-eval to
investigate more efficient implementations, or to extend them
with new languages and tools. We believe that “hardware
description sizing” metrics and HLS benchmark suites (beyond
C-based languages) are first-priority research directions.
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