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Abstract—Sorting has tremendous usage in the applications
that handle massive amount of data. Existing techniques accel-
erate sorting using multiprocessors or GPGPUs where a data set
is partitioned into disjunctive subsets to allow multiple sorting
threads working in parallel. Hardware sorters implemented in
FPGAs have the potential of providing high-speed and low-
energy solutions but the partition algorithms used in software
systems are so data dependent that they cannot be easily adopted.
The speed of most current sequential sorters still hangs around
1 number/cycle. Recently a new hardware merge sorter broke
this speed limit by merging a large number of sorted sequences
at a speed proportional to the number of sequences. This paper
significantly improves its area and speed scalability by allowing
stalls and variable sorting rate. A 32-port parallel merge-tree
that merges 32 sequences is implemented in a Virtex-7 FPGA.
It merges sequences at an average rate of 31.05 number/cycle
and reduces the total sorting time by 160 times compared with
traditional sequential sorters.
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I. INTRODUCTION

As a key part in numerous computer algorithms, sorting
has tremendous usage in many applications. It is an im-
portant step of the reduce function used in the MapReduce
programming model [1], which is the de facto distributed
model for processing massive data sets on server clusters.
For relational databases, join is one of the fundamental query
operations. As one of the most utilized join implementation,
sort-merge join [2] combines two tables by firstly sorting their
keys. Low latency sorting is also required in some scientific
computing [3]. In fact, sorting is so important that various
sorting benchmarks [4] have been defined to regularly rank
the top sorters ever built.

The methods of accelerating sorters have been researched
for several decades using various devices, such as paral-
lel computers [5], dedicated application specific integrated
circuits (ASICs) [6]–[8], field programmable gate arrays
(FPGAs) [9]–[12], multiprocessors [13]–[15] and recently
general-purpose graphic processing units (GPGPUs) [16],
[17]. Sorting becomes increasingly important these days due to
the fast growing amount of data in certain applications, where
database is one of the most active areas [11], [12].

The state-of-the-art research on sorter accelerating con-
centrates on software sorting algorithms [4]. A large data
set can be divided into disjunctive subsets [15]; therefore,
subsets can be sorted by multiple threads in parallel. Since
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this partition procedure is highly data dependent, it is not
directly applicable for hardware sorters, although hardware
sorters have the potential of providing high-speed and low-
energy sorting solutions. Up to now, there is no easy way of
making hardware sorters run in parallel.

Existing hardware sorters are either parallel or sequential
sorters. Parallel sorters, such as sorting networks [18], can
sort up to only hundreds of numbers [8] due to the limited
number of I/O ports. As an alternative, sequential sorters [19]
can sort a large data set but at a low sorting rate of usually
1 number/cycle. Such low speed significantly limits the benefit
of using FPGAs as sorting accelerators. Without a method to
sort a large data set in parallel, hardware sorters are actually
slower than software sorters running on processors considering
the gap in clock frequencies.

This paper proposes a parallel merge-tree which merges
multiple sorted data sequences at a speed proportional to
the number of sequences. It has three major advantages over
sequential sorters:

• The sorting rate is significantly increased from 1 num-
ber/cycle up to 1 number/cycle/sequence.

• Merging more than 2 sequences significantly reduces the
number of passes (runs) to sort a large data set.

• The parallel merge-tree merges data in a streamed fash-
ion. The size of the sorted data is not constrained by
the available on-FPGA memory, which is used only as
communication buffers for the main memory.

A 32-port parallel merge-tree is implemented in a Xilinx
Virtex-7 XC7VX485T FPGA [20]. It merges 32 sequences at
a rate up to 32 number/cycle. When sorting a large data set,
using this 32-port parallel merge-tree reduces the total sorting
time by nearly 160 times compared with sequential sorters.

II. EXISTING SORTERS

The proposed parallel merge-tree is developed from existing
sorters and can be used along with other designs to form large
sorting systems. The related hardware and software sorters are
briefly reviewed to provide a limited background introduction.
As a sorter can sort numbers in either descending or ascending
order, all sorters described in this paper use the descending
order to avoid ambiguity.

A large scale sorting system is normally composed of tens to
thousands of server nodes [4]. The input data are divided into
disjunctive subsets using foreknown statistics or an initial sam-
pling [21]–[23]. These subsets are sorted by parallel servers
simultaneously and then merged into a final sorted sequence.



Subset partition and workload balancing among servers are
fulfilled by software [21], [23] due to their data dependence
and irregular control patterns. The actual sorting acceleration
happens in the individual sorting server which sorts a subset or
merges the final sequence. Current servers use off-the-shelf so-
lutions such as high performance multiprocessors [21]–[23] or
GPGPUs [16], [17]. The proposed parallel merge-tree can be
dynamically reconfigured to an FPGA as a sorting accelerator
cooperating with a server, which is potentially more energy
and cost efficient than sorting in processors. Although this
configuration is rarely used in present datacenters, it is likely
to become popular with the availability of high-performance
embedded cores in future large capacity FPGAs (e.g. Xilinx
UltraScale+ or Altera Stratix 10).

Servers choose different sorting algorithms according to
statistics and available resources. To reduce sorting time, it
is important to sort in parallel but not all sorting algorithms
can be parallelized easily. Merge sort and radix sort are two
extensively utilized algorithms which are both parallelizable
but with very different nature. Merge sort is a comparison
sorting algorithm which merges normally two sorted sequences
into one. An unsorted data set can be sorted by recursively
applying merge sort in multiple passes (also called runs in
related literature). The single-thread time complexity of sorting
N numbers is O(N logN). Radix sort is a distribution sorting
algorithm which sorts numbers by processing individual digits.
The sorting time is therefore proportional to the bit-width
of numbers. The single-thread time complexity of sorting N
numbers of k bits is O(N ·k). Generally speaking, merge sort
is faster than radix sort when sorting a bounded size of wide
numbers (k > logN ), which could be the case for a server
that sorts only a subset of the whole data. Merge sort is the
target sorting algorithm researched in this paper.

Merge sort can be parallelized for running on multi-thread
processors [15], [17]. The two input sequences are partitioned
into an arbitrary number of disjunctive and equal-sized seg-
ments in linear time [15]. Then each segment is merged on
a different thread. For a server with p hardware threads, the
time complexity of a parallel merger is O(N/p · logN+log p ·
logN) [15], providing a speed up slightly less than p.

Hardware sorters are circuit implementations of certain
sorting algorithms using ASICs or FPGAs. Most hardware
sorters can be classified into either parallel sorters or sequential
sorters. The most used parallel sorters are Bitonic and odd-
even sorting networks [18]. Both of them sort N numbers in
O(log2N) cycles. However, the size of a sortable sequence
is constricted by the number of I/O ports, which is limited to
hundreds [8] in current VLSI technology. Sequential sorters
are the actual sorters able to sort large scale data sets.

Most sequential sorters implement single-thread sorting al-
gorithms in hardware and run in a streamed fashion. The sorted
data is normally produced at a constant rate of 1 number/cycle,
such as the parallel shift sort (insertion sort) [6], the up/down
sorter (heap sort) [24] and the FPGAsort (merge sort) [10].
In all sequential sorters, FPGAsort is currently the most area
efficient sorter thanks to its smart use of on-chip memory.

The size of a sortable sequence is usually constricted by the
accessible storage space (on-chip and off-chip), which can
be huge. Compared with hardware parallel sorters, sequential
sorters can sort a large scale data set but at a very low speed.

Numerous attempts have been made to parallelize sequential
sorters. For hardware merge sorters, both the early parallel
merge module [25] and the recent high bandwidth sort merge
unit [12] use a tree of merge units to merge more than 2 input
sequences simultaneously. However, both sorters choose to
enforce non-stall flow control for a constant sorting rate. As a
result, all merge units in the tree must run at the maximum rate,
which significantly increases area and the required memory
bandwidth. Such sorters are not very scalable. The more recent
high bandwidth sort merge unit is able to merge up to 8
sequences but requires a staggering memory bandwidth of
more than 6 times of the sorting rate [12].

The parallel merge-tree proposed in this paper also uses a
tree of merge units. The decisive difference with the afore-
mentioned two is to allow stalls and variable sorting rate in
order to pursue a high accumulated sorting speed. In this
way, non-root merge units run at lower sorting rates than
the root one and consume less area. More importantly, the
required memory bandwidth is reduced to just the maximum
sorting rate. Compared with the software parallel merger [15],
merging more than 2 sequences in each pass provides extra
speed up due to the reduced number of passes.

III. MULTIRATE MERGING

A traditional hardware merge sorter, such as the FPGA-
sort [10], produces sorted data at a speed of 1 number/cycle. A
multirate merger (MM) is able to merge two sorted sequences
at a speed much faster than 1 number/cycle.

A. Comparator units

Various comparator units [8] perform the basic comparing
and exchanging operations needed by the sorters in this paper.
A full compare-and-exchange (CAE) unit compares 2 input
numbers and outputs both of them in order. Fig. 1a depicts the
implementation (left) of a CAE unit and its symbol (right).
When only 1 output is needed (assuming the larger one), a
CAE unit is reduced to a compare-and-select (CAS) unit [8]
as shown in Fig. 1b. For some sorters, the selection result of
a CAS unit is used by further circuitry. Such a CAS unit with
a selection feedback signal s is depicted in Fig. 1c.

B. Parallelization

The structure of a FIFO merge sorter (unoptimized FPGA-
Sort) [10], [26] is illustrated in Fig. 2. It comprises three parts:
two FIFOs to store the input sequences and a CAS unit to
output the largest number remaining in the two FIFOs.

A multirate merger is an expanded FIFO merge sorter which
shares the same overall structure but with more complicated
components in each part. An abstract view of a multirate
merger which provides P sorted number per cycle, MM(P ), is
depicted in Fig. 3. It also needs two FIFOs to store the input
sequences but the CAS unit is replaced with a parallel sorter
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Fig. 1. Implementations and symbols of comparator units: (a) Compare-and-
exchange (CAE), (b) compare-and-select (CAS), and (c) CAS with a selection
feedback.
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Fig. 2. A FIFO merge sorter.

which extracts and sorts the largest P numbers remaining in
the two FIFOs. Since these numbers may come from the same
FIFO due to imbalanced distribution, the parallel sorter needs
to pick them from a total of 2P numbers.

For the multirate merger to work, two issues must be
resolved:

• The unchosen numbers must be retained in FIFOs for
the next cycle. Therefore, the selection of the largest P
numbers must be finished in one cycle to avoid extra
feedback delay.

• The FIFOs have a variable data rate between 0 to P num-
ber/cycle, which is not directly supported by normal FIFO
designs.

C. Single-cycle selection

The solution for the single cycle selection is to use a Bitonic
partial merger, which is a part of a Bitonic sorting network
and has been analysed recently by Farmahini-Farahani [8].

An 8-to-4 Bitonic partial merger is shown in Fig. 4. It reads
numbers from two sorted sequences [I3 · · · I0] and [I7 · · · I4],
picks the largest 4 numbers, and shuffles them into a sorted
sequence [O3 · · ·O0]. The merger is fully pipelined into 3
stages and the selection process occurs on the first stage.

For an MM(P ), a 2P -to-P Bitonic partial merger is used to
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Fig. 3. MM(P ), a P -port multirate merger (abstract view).
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choose the largest P numbers remaining in the two FIFOs and
sort them in a pipelined way. The selection result is available
from the first pipeline stage; therefore, it can be used to retain
the unselected data in the same cycle. Furthermore, Bitonic
sorting networks are known to be area efficient. Since the
Bitonic partial merger is a part of the sorting network, it is
also area efficient and scalable.

D. Area-efficient FIFO implementation

The FIFOs are shallow but have a variable output rate from
0 to P number/cycle depending on the selection result. It is not
easy to use dual-port memory blocks due to this variable rate
and a full register-based design is area consuming. The most
area-efficient solution so far is to divide a wide FIFO into
P parallel narrow FIFOs, each of which is only 1 number
wide. Since now the output rate of each narrow FIFO is 0
or 1 number/cycle, it can be implemented in special shift
register look-up tables (SRLs) which are abundant in Virtex
FPGAs [27]. Every SRL can be used as a 16-bit shift register.

The detailed implementation is demonstrated in Fig. 5. It
has P narrow FIFOs implemented in SRLs. Two crossbars
connect FIFOs to the input sequence (I) and the Bitonic partial
merger (D). The selection result, denoted as s, is fed back to
individual FIFOs to identify whether there is shift occurring
in the current cycle. Also under the control of the selection
result, the output crossbar ensures the FIFO that has the largest
remaining number is always connected to D0.

The output crossbar is implemented as an array of barrel
shifters [28] controlled by signal offset. Depending on the
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Fig. 6. A rate converter for MM(4).

value of offset:

[DP−1 · · ·D0] = [Foffset−1 · · ·F0, FP−1 · · ·Foffset] (1)

The input sequence is sorted in descending order. Initially, the
largest number is stored in F0 and connected to D0 (offset =
0). To ensure that D0 always has the largest number and D is
in descending order, offset tracks the selection result closely:

offset’ = offset + rate (2)

where offset’ is the next cycle’s value of offset and rate is the
amount of numbers shifted in the current cycle, accumulated
from the selection result s:

rate =

P−1∑
i=0

si (3)

Fortunately the conversion from s to rate does not really
need an accumulator since D is sorted. For any Di ∈ D, if
Di is selected, [si · · · s0] must be all ones because any number
in [Di−1 · · ·D0] is larger than Di and must be selected as well.
As a result, the conversion from s to rate can be summarized in
Table I. The corresponding implementation of a rate converter
is depicted in Fig. 6. The first column of AND/INV gates
translate s into m which is the one-hot format of rate. Then
a one-hot to binary (OH2Int) circuit provides the rate.

The FIFO inputs work in a similar way with outputs. The
data rate of the input sequence is P/2 number/cycle. The input
crossbar (another array of barrel shifters)1 ensures the input
sequence is stored in the correct narrow FIFOs in a round-
robin style. The offset signal for the input crossbar is controlled
by the full signal of the FIFO inputs.

E. Multirate merger

Putting all components together, Fig. 7 reveals the imple-
mentation of an MM(P ). Two sorted input sequences (I0 and
I1) are stored in two parallel FIFOs. The outputs of FIFOs,
denoting the largest P numbers of each FIFO, are fed to
a 2P -to-P Bitonic partial merger, which selects the largest

1A crossbar is needed when the length of input sequences is not always
times of P/2; otherwise a de-multiplexer is enough.
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Fig. 7. MM(P ), a P -port multirate merger (implementation).

half and sorts them into the output sequence O at a rate of
P number/cycle.

The selection result (s) is fed to the two FIFOs slightly
differently. For FIFO0, the selection result is inverted:

sFIFO0
(i) = s̄i (4)

When si is 0, D0(i) is selected rather than D1(P−i), therefore
sFIFO0

(i) should be 1. As for FIFO1, the selection result is
flipped due to the flipped connection to the Bitonic merger:

sFIFO1
(i) = sP−i (5)

When sP−i is 1, D1(i) is selected rather than D0(P − i),
therefore sFIFO1

(i) should be 1.
The critical path of a multirate merger starts from the FIFO

outputs, traverses through the first stage of the Bitonic merger,
the selection feedback and finally to the full signal of the FIFO
outputs. Since both the FIFO and the Bitonic merger is fully
parallelized, the output crossbar is the only component affected
by the number of ports2. Normally the latency of a crossbar is
roughly linear with logP . The speed scalability of multirate
mergers is expected to be logP as well.

The area of a multirate merger is dominated by the narrow
FIFOs and the Bitonic partial merger. The area of FIFOs is
proportional to P while the area of the Bitonic partial merger
is linear with P logP [8]. As a result, the area complexity of
an MM(P ) is O(P logP ).

F. Rate mismatch

The FIFO input data rate is set to P/2 number/cycle for
an MM(P ). When numbers are perfectly balanced between
sequences, the output rate is P number/cycle. The P/2 num-
ber/cycle input rate is enough to maintain the output rate.
When numbers are not balanced, the Bitonic partial merger
may consecutively choose numbers from one sequence at a rate
larger than P/2 number/cycle, which causes rate mismatch in
both FIFOs. If one FIFO is eventually empty, the multirate
merger is stalled waiting the empty FIFO to be refilled.

2For simplicity, we ignore the timing effect caused by increased area for
this analysis.



There are two ways to handle this issue: One is to increase
the input rate to P number/cycle in order to avoid stalls, the
other one is to accept stalls with flexible control logic. Rather
than increasing the input rate as the high bandwidth sort merge
unit [12] does, the multirate merger adopts the latter solution
because the accummulated input rate of the former solution is
unsustainable when merging mutiple sequences. More insights
will be provided in Section IV-B where the parallel merge-tree
has been introduced.

G. Optimization for skewed data

When a data set is skewed, the probability of duplicated
numbers increases. Since CAS units (shown in Fig. 1) choose
a fixed input when the two inputs are equal, duplicated
numbers cause stalls in a way similar to the imbalanced data
distribution.

An easy way to resolve this issue is to ask the CAS units in
the first stage of the Bitonic partial merger to choose different
inputs. The rule is simple: For CASi that compares D0(i) and
D1(P − i), when the two numbers are equal, CASi chooses
D0(i) if i < P/2, otherwise D1(P − i). As a result, instead
of causing rate mismatch between FIFOs, duplicated numbers
provide opportunities to re-balance FIFOs. Extremely skewed
data actually results in lower stall rates than randomly and
uniformly distributed data, as shown in Section V-B.

IV. PARALLEL MERGE-TREE

Using multiple levels of multirate mergers, a parallel merge-
tree (PMT) is able to merge multiple sorted sequences simul-
taneously.

A. Merging multiple sequences

An 8-port parallel merge-tree is shown in Fig. 8. When the
number of levels L = logP , P input sequences are merged,
the input rate for each input sequence is only 1 number/cycle,
and the output rate is up to P number/cycle.

Since the area complexity of MM(P ) is P logP , the area
complexity of a PMT(P):

logP∑
i=1

(O(2i · log 2i) · P/2i) =

logP∑
i=1

iP = O(P log2 P ) (6)

Two important observations are revealed here: The accumu-
lated input rate (requirement for memory bandwidth) is equal
with the maximum output rate; and the area of parallel merge-
trees is scalable to O(P log2 P ).

B. Revisiting rate mismatch

Similar to multirate mergers, a parallel merge-tree has the
rate mismatch issue. When numbers are perfectly balanced in
all input sequences, the output rate is stable at P number/cycle.
However, when numbers are distributed unevenly, the output
rate is reduced due to stalls. In the worst case, when numbers
are forced to be read sequentially from one sequence to
another, the average output rate is dropped to 1 number/cycle.
The proposed parallel merge-tree is only suitable for evenly
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Fig. 8. PMT(8), an 8-port parallel merge-tree.

or randomly distributed data sets. A pre-sorted data set needs
to be randomly reshuffled before sent to a parallel merge-tree.

For randomly distributed data sets, results in Section V-A
will demonstrate that the stall rate can be reduced to a
negligible level by moderately increasing the depth of FIFOs.

As discussed in Section III-F, a solution to avoid stalls is to
increase the input rate of multirate mergers, which is used in
the high bandwidth sort merge unit [12]. In this case, all the
multirate mergers in Fig. 8 are replaced with MM(8)s. This
solution has two outstanding drawbacks.

One is the increased area. For a P -port merge-tree, the
number of mergers needed is P − 1. Therefore, the area
complexity increases to:

O(P logP ) · (P − 1) = O(P 2 logP ) (7)

Compared with Equation 6, the area is increased by P/ logP
times.

The other drawback, which is even worse, is the signif-
icantly increased input data rate. Since the data rate of all
input sequences is increased to the maximum output rate, the
accumulated input rates of a P -port tree is increased to P 2

number/cycle, P times of the output rate. As reported in the
high bandwidth sort merge unit [12], to merge 8 sequences
using a 2-level tree, the accumulated memory bandwidth is 6
times of the sorting rate. Clearly this method is not scalable.

We believe allowing mergers to stall is the right choice. The
results in this paper demonstrate that the achievable stall rate
for most data sets is very small. The benefits of reduced area
and memory bandwidth outweigh the slightly reduced sorting
rate, and the achievable sorting rate is significantly higher than
using the high bandwidth sort merge units.

V. PERFORMANCE EVALUATION

Several parallel merge-trees have been implemented on a
Virtex-7 XC7VX485T FPGA [20]. Rather than sorting num-
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Fig. 9. (a) Stall rate and (b) area with different FIFO depths (a PMT(16)
merging 16 sequences of 8K records each).

bers, practical sorting systems sort records. A record comprises
of a key field and an information field. The key field is used
in sorting the records while the attached information to each
key represents the real data stored in the record. In this paper,
all implementations sort records of 64 bits, where both the
key field and the information field are 32 bits wide. The stall
rate evaluation is based on cycle accurate simulation while the
scalability analysis reports post-route results and experiments
running on the FPGA. In order to evaluate the pure sorting
hardware, we used test pattern generators and a result checker
instead of an I/O system.

A. Stall rate evaluation

A multirate merger stalls when one of its FIFOs becomes
empty due to imbalanced data distribution. Increasing the
depth of FIFOs reduces the probability of stalls. To examine
this stall reduction, a PMT(16) is used to merge 16 randomly
and uniformly distributed sequences, each of which is 8K
records long. The depth of FIFOs is increased from 4 to 16.
The average stall rate is defined as the number of stalled
cycles divided by the total number of cycles. All test cases
are run 10 times for averaging the result. As shown in Fig. 9a,
the average stall rate drops significantly at start with shallow
FIFOs. Such benefit becomes diminishing with longer FIFOs.
Overall, the stall rate is reduced to a negligible level of 0.03
with a moderate depth of 16.

There is no observable area cost of increasing the FIFO
depth up to 16 thanks to the implementation described in
Section III-D. Fig. 9b reveals the utilization of FPGA re-
sources, including look-up tables (LUTs), registers, and SRLs.
Although there is some variation on the total number of
LUTs, the utilization of registers and SRLs is constant. To
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take full advantage of the reduced stall rate, all the remaining
implementations use FIFOs of 16 records deep.

The estimation of stall rate (data rate) is affected by the
length of sequences. Fig. 10 shows the normalized data rate
(average rate divided by the maximum rate) of merging 16
sequences of different lengths. The estimation error decreases
with the increasing sequence length. Interestingly, merging
longer sequences results in slightly smaller data rate (higher
stall rate). We believe this is due to the higher probability of
longer imbalanced segments.

According to the result, sequences of 8K records are chosen
for other test cases because they produce relatively accurate
data rate estimation and are not too time-consuming to simu-
late (RTL simulation).

B. Sorting skewed data

Practical data sets are usually skewed. It is important for
a sorter to handle skewed data efficiently. An optimization
was described in Section III-G, which makes CAS units
choosing different inputs to avoid the stalls caused by dupli-
cated numbers. Two PMT(16)s, an unoptimized one (original)
and an optimized one, are injected with synthetic data sets
generated [29] using 4 skewed distributions: Exponential,
Poisson, Pareto and Zipfian. The results are shown in Fig. 11.
The optimized parallel merge-tree shows strong tolerance to
skewed data while the original parallel merge-tree suffers
seriously. Interestingly, when the data is extremely skewed,
such as λ ≥ 10 for the exponential distribution and α ≥ 10
for the Pareto distribution, the optimized parallel merge-tree
appears to achieve the maximum rate. We believe FIFOs are
easily balanced when most of the numbers are equal.

C. Scalability analysis

It is important for a sorter to be scalable. In the case
of parallel merge-trees, the area and the clock period are
reasonably scalable with the number of ports (sequences).
Table II shows the area and speed performance of various
parallel merge-trees. All results are collected post routing.

The utilization of FPGA resource of different parallel
merge-trees is depicted in Fig. 12a. The utilization grows
slightly more than linear with the number of ports, which
complies with the estimation provided in Equation 6.

The maximal clock frequency at which a parallel merge-
tree can run is limited by the minimal clock period, which



TABLE II
HARDWARE PERFORMANCE OF PARALLEL MERGE-TREES (FIFO DEPTH = 16)

Ports Period Frequency Register LUT SRL Stall Rate Data Rate Data Rate
(ns) (MHz) (Number/cycle) (Gb/s)

2 4.02 248.5 328 (0.05%) 853 (0.28%) 132 1.75% 1.97 31.3
4 4.69 213.1 1534 (0.25%) 4278 (1.41%) 528 2.16% 3.91 53.4
8 6.12 163.3 5287 (0.87%) 16016 (5.28%) 1608 2.56% 7.80 81.5

16 7.50 133.4 16299 (2.68%) 47001 (15.48%) 4238 2.74% 15.56 132.9
32 10.08 99.2 45445 (7.48%) 142179 (46.83%) 11379 2.98% 31.05 197.1
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Fig. 11. Normalized data rate of merging data sets with different distributions:
(a) Exponential, (b) Poisson, (c) Pareto, and (d) Zipfian.

is constrained by the critical path of the root (the largest)
multirate merger in the design. Fig. 12b reveals the increasing
clock period along with the number of ports. The increasing
is slightly slower than linear, which roughly complies with the
discussion in Section III-E. In practical implementations, the
crossbars in the FIFOs of MM(32) cause routing congestion.
To alleviate this issue, the high-radix crossbars are replaced
with multi-stage switching networks, which leads to extra
levels of logic on the critical path. As a result, the clock period
appears linear between 8 to 32 ports.

The achievable data rate (number/cycle) is proportional to
the number of ports thanks to the low stall rate. A maximal
of 32 sequences can be merged in an FPGA using a PMT(32)
at a rate of 31.05 number/cycle or 197.1 Gb/s if considering
merging 64-bit records.

D. Reducing the total sorting time

A large data set can be sorted by a merge sorter through
multiple passes. Fig. 13 reveals the sorting time of using
various parallel merge-trees or a FIFO merge sorter to sort
data sets up to 4M records. In all cases, PMT(32) reduces the
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Fig. 12. (a) Area and (b) the minimal clock period of parallel merge-trees
with different number of ports (FIFO depth = 16).
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sorting time by around 160 times compared with the FIFO
merge sorter when assuming the same clock frequency. Even
if considering merging multiple sequences reduces the clock
frequency, the overall execution is always significantly faster
than the baseline FIFO merge sorter.

A rough estimation of the sorting time can be calculated
as the cycles required in each pass timed by the number of
passes. For a FIFO merge sorter, the sorting time is:

tFIFOMerge ∼ N logN (8)

as each pass needs N cycles (data rate of 1 number/cycle) and



a total of logN passes are required.
For a PMT(P) which merges P sequences simultaneously

in each pass, the sorting time can be estimated as:

tPMT(P) ∼ (1− r̄stall) ·
N

P
logP N (9)

=
(1− r̄stall)

P logP
·N logN (10)

where r̄stall is the average stall rate, (1−r̄stall)·NP is the number
of cycles used in each pass, and logP N is the number of
passes needed. When the stall rate is low, the speed up of using
a PMT(P) approaches P logP , which is 160 for a PMT(32).

A significant observation here is the speed up achieved
by a PMT(P) is not P but P logP because merging P
sequences simultaneously reduces the number of passes by
logP times. This is an important advantage. The software
parallel merge sorter [15] achieves p times of speed up by
using p hardware threads. The performance of a PMT(32) is
comparable to a software parallel merge sorter running on 160
threads. Considering software sorters need multiple cycles to
accomplish each sort operation, hardware sorter may deliver
better speed up in the near future.

Another benefit of the reduced number of passes is the save
of energy on data transmission. For large scale data sets, the
subset sorted in each sorting server is larger than the last-
level cache (for multiprocessor/GPGPU) or on-board memory
(FPGA). The whole data set is thus read and written from/to
the main memory or even solid state disk at least once in each
pass. Reducing the number of passes also reduces the number
of transmissions between memory and caches, which is a big
energy saving.

VI. CONCLUSION

A scalable parallel merge-tree is proposed in this paper.
Different from the state-of-the-art parallel mergers which
enforce constant sorting rate, the proposed parallel merge-tree
allows stalls and variable sorting rate. This change eliminates
the aggressive requirement of memory bandwidth and the
unscalable area consumption of the latest parallel mergers. The
optimized parallel merge-tree demonstrates strong tolerance to
skewed data and provides nearly perfect sorting rate for all
random data sets. A 32-port parallel merge-tree, PMT(32),
is implemented in a Xilinx Virtex-7 FPGA. It merges 32
sorted sequences simultaneously achieving a data rate of
31.05 number/cycle or 197.1 Gb/s if considering sorting 64-
bit records. Compared with traditional FIFO merge sorters, the
PMT(32) provides a speed up approaching 160 times.
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