Defeating the Recent AnC Attack by Simply Hashing the Cache Indexes
--- Implemented in a BOOM SoC

Wei Song, Rui Hou, Dan Meng
Institute of Information Engineering, Chinese Academy of Sciences
89A Minzhuang Road, Haidian District, Beijing, China 100093
{songwei, hourui, mengdan}@iie.ac.cn

The AnC Attack

The AnC attack[1] is a principled way to bypass the address space layout randomization (ASLR) defense in all major browsers by utilizing existing side-channels on memory management unit (MMU) and caches.

Attack Scenario:
The attacker is a JITed thread running in a browser sandbox protected by ASLR.
- The attacker can access a large amount of virtual memory (data/code).
- The attacker runs in the same process with the browser (same ASID).
- The attacker runs on the same core with the browser (share L1/LLC).
- The attacker does NOT know the virtual address of her data/code.
- All virtual pages are randomized by the ASLR defense.

Attack Target:
Infer the virtual address (VA) of a target variable belonging to the attacker (bypassing ASLR).

Attack Procedure:
For a target variable \(v \), infer all PT (page table) offsets using cache side-channel attacks on the 4 cache PTEs (page table entries).

Step 1: Construct an eviction buffer.
Step 2: Scan all cache sets to identify the 4 cached PTEs related to \(v \).
Step 3: Use the sliding technique to map PTEs to PT levels.
Step 4: Use the sliding technique to recover the PTE offsets inside cache lines.

Key Insights:
- Caching PTEs with data is a security vulnerability.
- Existing cache partitioning does not protect PTEs from side-channels.
- Knowing the cache set index is able to decipher page offsets.
- The direct mapping between VA and cache indexes is a prerequisite for the attack.

Solution

Break the direct mapping between VA and cache indexes using a simple hash.

The original cache index:
\[CI = VA[s+5:6] \]
The hashed cache index:
\[CI = VA[s+5:6] \oplus PA[2s+5:s+6] \]
CI: cache set index, \(2^s \): number of sets

Defense Methodology:
- Cache should be transparent to software; therefore, software should not infer or rely on the direct mapping.
- Without the direct mapping, it is difficult to construct an eviction buffer.
- Without knowing the PA, it is difficult to infer VA from cache set index.
- Cache lines with the same page offset are likely mapped to different sets.
- PA is normally unknown to user mode programs.

Prerequisites:
- PA is not exposed to user mode programs.
- OS constantly allocates random physical pages to consecutive virtual pages.
- OS disable the huge page support.

Implementation:
The proposed scheme is implemented in a BOOM SoC[2]. Both the L1 and L2 (LLC) caches are modified with the hash scheme.

Performance overhead:
Running the SPECInt 2006 benchmark on FPGA.
- Averge 1.0% increase in execution time.
- Marginal increases in the cache miss rates (L1 < 4%, L2 < 0.5%).
- Marginal increases in cache area (<0.1%).

References: