

Utilizing signal-level data flow graph in analysing large-scale RTL circuits

Supported by the GAELS project: Globally Asynchronous Elastic Logic Synthesis

Wei Song

13/05/2014

Advanced Processor Technologies Group The School of Computer Science

The University of Manchester

SDFG

SDFG --- Signal-level Data Flow Graph

Advanced Processor Technologies Group School of Computer Science

Index

- The University of Manchester **Extracting SDFG from Verilog RTL designs**
 - Definitions of SDFG
 - Type estimation
 - Automatic detection of controllers
 - Type calculation
 - Register Relation Graph (RRG)
 - Controller recognition
 - Automatic data-path extraction
 - Trimming of control related nodes and arcs

A Traffic Light Controller

always @ (posedge clk or negedge rstn) **if**(~rstn) state $\leq R$; else state <= state_nxt;</pre> always @(state or cnt) // next state **if**(cnt == 0) case (state) R: state_nxt = YR; YR: state nxt = G; G: state_nxt = YG; default: $state_nxt = R;$ endcase // case (state) else state_nxt = state; always @(posedge clk or negedge rstn) if(~rstn) cnt ≤ 0 ; else if(cnt == 0) case (state) R: cnt <= 2; YR: cnt <= 49; G: cnt <= 4; default: cnt <= 49; endcase // case (state) else cnt <= cnt - 1;**assign** red = state == R ? 1 : 0; assign green = state == G ? 1 : 0;

assign yellow =
 (state == YR || state == YG) ? 1 : 0;

Advanced Processor Technologies Group School of Computer Science

R: 50 sec state GY: 5 RY: cnt ω Se S ወ Ô Ô cnt == o G: 50 sec RY || GY G R red green yellow

Signal-Level Data Flow Graph

Advanced Processor Technologies Grov School of Computer Science

The University of Mancheste

Tool Flow

- Convert a multi-file Verilog RTL to abstract syntax trees (ASTs) using a Verilog Parser (Bison + Flex).
- For each Module, generate an SDFG graph with all signals drawn as nodes with types (FF, combi, port, module).
- Connect nodes by estimating the relations between signals (arc type estimation).

Node Insertion

Advanced Processor Technologies Group School of Computer Science

Abstract Syntax Tree (AST)

The University of Manchester

Arc Type Estimation

Available Types

DATA

The University of Manchester

- DDP: self loop
 - state = state;
- CAL: calculation
 - sum = **a** + **b**;
- ASS: assign
 - dout = **din**;
- DAT: other
 - dout = din & enable;

- CONTROL
 - CMP: comparison
 - If(a > b)
 - EQU: equal
 - If(state == S_BEGIN)
 - LOG: logic calculation
 - If(valid && en)
 - ADR: address
 - dout = mem[adr]
 - CTL: other
 - If(a & b)

Case 1: Controller Extraction

- The University of Manchester Traditional: Synopsys Design Compiler
 - Coding style, only FSM
 - SDFG:
 - Pattern matching in SDFG and RRG (register relation graph)
 - FSM, counter, flag
 - Wei Song and Jim Garside. Automatic controller detection for large ٠ scale RTL designs. In Proc. of EUROMICRO Conference on Digital System Design (DSD), Santander, Spain, pp. 884-851, September 2013

Define a Controller

- The University of Manchester **Controller: Finite State Machine**
 - A register which stores states
 - Control the behaviour of other signals
 - A finite state space

Counter can be a controller

The University of Manchester

Pattern Criteria

Definition 1

- A controller is a register which has at least one selfloop not going through higher hierarchy. (A register which stores states)
- Definition 2
 - A controller is a register which has at least one controlling output path. (A controlling register)

Definition 3

- The inputs for a controller must be constant or from itself.
 - (Finite state space)

Register Relation Graph (RRG)

RRG is a simplified and flattened form of SDFG.

It has only registers and ports.

The pattern criteria can be directly applied on RRG.

Advanced Processor Technologies Group School of Computer Science

Tool Flow

Multi-file Verilog RTL designs

Hierarchical internal abstract sematic tree

Hierarchical signal-level data flow graphs (Connections between **regs** and **wires**)

Register relation graph (Connections between **regs**)

Controller detection and report

Advanced Processor Technologies Group School of Computer Science

Reduction of Combi. Nodes

Path Type Calculation

Type reduction

Advanced Processor Technologies Group School of Computer Science

The University of Manchester

Path Exploration

Full unfolding

 Time consuming
 >30 mins

Advanced Processor Technologies Group School of Computer Science

13/05/2014

FF

comF

outD

regB

regC

regB

regC

regB

regC

regB

regC

regC

0

FF

FF

FF

FF

FF

FF

FF

FF

FF

comJ

comJ

comJ

comJ

comH

coml

data

data

data

control

control

control

control

data

data

data

The University of Manchester

Software Cache (Dyn. Prog.)

Advanced Processor Technologies Group School of Computer Science

22

Results

Iniversity	nchester
The L	of Ma

Design Name	Description	Reason to choose	No. of Regs	
OR1200	A 32-bit 5-stage OpenRISC microprocessor	Data path controlled PC Scan chain Combinational forward loop	124	
Reed- Solomon	A claimed industrial standard Reed- Solomon decoder IP	A not so well-written design Single block FSMs with irrelevant signal assignments	325	
H.264/AVC	A 196K gate H.264/AVC baseline decoder	A well-written and large- scale design	855	

Results

Jnive anche			
fMa	Name	Time	R
ΗO	OR1200	15	

Name	Time	Reported	Verified	FSM	Counter	Flag	Error	Rate
OR1200	1S	19	17	7	5	5	2	89%
Reed- Solomon	2 . 05	56	54	6	36	12	2	96%
H.264/AVC	7 . 15	55	49	13	30	6	6	89%

Environment: Intel Core[™] 2 Duo 3.00 GHz PC with 2GB memory

All FSMs are detected with a small number of false errors.

Limitations: Combinational loops, separated assignment (a[0]=b; a[1]=c;), Rom-style tables, etc.

MANCHESTER 1824

The University of Manchester

Computer Generated SDFG

Computer Generated Report

> report_fsm
SUMMARY:

MANCHESTER

In this extraction, 2074 nodes has been scanned, in which 120 nodes are registers.

In total 30 FSM controllers has been found in 101 potential FSM registers.

The extracted FSMs are listed below:

```
[10] or1200_cpu/or1200_except/except_type FSM|ADR
[11] or1200_cpu/or1200_except/extend_flush FSM|FLAG
[12] or1200_cpu/or1200_except/state FSM|FLAG
[13] or1200_cpu/or1200_if/saved FLAG
[14] or1200_cpu/or1200_mult_mac/div_free FLAG
```

.

Case 2: Data-path Extraction

- Traditional
 - State space analysis
 - Only feasible for small designs
- SDFG
 - Trimming control related nodes
 - Fast even for large scale designs
- Wei Song, Jim Garside and Doug Edwards. Automatic data path extraction in large-scale register-transfer level designs. In Proc. of IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, Australia, June 2014

Tool Flow

Multi-file Verilog RTL designs

Hierarchical internal abstract sematic tree

Hierarchical signal-level data flow graphs (Connections between **regs** and **wires**)

Remove control arcs

Remove dangling nodes

Report data path in a reduced SDFG

RTL RTL RTL Parser Abstract Syntax Tree Signal-Level DFG **Remove Control** Arcs extraction Data path Graph Trimming Data Paths

The University of Manchester

> Advanced Processor Technologies Group School of Computer Science

Greatest Common Divisor

The University of Mancheste

```
module GCD (Clock, Reset, Load, A, B, Done, Y);
   input Clock, Reset, Load;
   input [7:0] A,B;
   output Done;
   output [7:0] Y;
   reg A_lessthan_B,Done;
   reg [7:0] A_New, A_Hold, B_Hold, Y;
   always @ (posedge Clock)
     if(Reset) begin
        A Hold = 0;
        B Hold = 0;
     end else if(Load) begin
        A Hold = A;
        B Hold = B;
     end else if(A_lessthan_B) begin
        A = Hold = B = Hold;
        B Hold = A New;
     end else
        A_Hold = A_New;
   always @(A_Hold or B_Hold)
     if(A_Hold >= B_Hold) begin
        A_lessthan_B = 0;
        A_New = A_Hold - B_Hold;
     end else begin
        A lessthan B = 1;
        A_New = A_Hold;
     end
   always @(A_Hold or B_Hold)
     if(B_Hold == 0) begin
        Done = 1;
        Y = A_Hold;
     end else begin
        Done = 0; Y = 0;
     end
endmodule
```

Advanced Processor Technologies Group

School of Computer Science

The University of Manchester

Remove Control Arcs

Trim the SDFG

The University of Mancheste

Permutation Module (SHA-3)

Advanced Processor Technologies Group School of Computer Science

Performance

Design Signal-lev		ignal-level	el DFG		Extracted data path			Running
0	I/O	Module	Signal	-	I/O	Module	Signal	time (s)
OR1200	52	37	2074		40	33	1142	1
RSD	7	24	1063		3	23	659	<1
NOVA	19	140	7043		9	103	4279	10

Async Verilog Synthesisor (AVS) The University of Mancheste

- AVS
 - A C/C++ analysis shell system
 - <u>https://github.com/wsong83/Asynchronous-Verilog-</u> **Synthesiser**
- Libraries
 - Parser: Bison, Flex, Boost::Spirit
 - Function: C++0x, GNU Boost, GNU MP Bignum lib
 - Shell: cppTcl, Tcl/Tk, rlwrap
 - Graphic: Qt, OGDF
 - File format: pugixml

The University of Manchester Async Verilog Synthesisor (AVS)

Shell commands

analyze

MANCHESTER

1824

- annotate_saif
- current_design
- elaborate
- extract_datapath
- extract_rrg
- extract_sdfg
- partition
- read_saif
- report_fsm
- report_partition
- write_sdfg

read in the Verilog HDL design files. annotate a saif file for a design. set or show the current target design. build up a design from a Verilog module. extract the datapaths from an SDFG. extract a register relation graph (RRG) from. extract the SDFG of a module. partition the current design. read a saif file for a design. report the FSMs in a design. report possible partitions of the current design. write out the SDFG graph (SDFG/RRG/DataPath).

Summary

of Manchester SDLC

- A new diagram which represents the relations between the signals in a large scale Verilog RTL design.
- Automatic Controller Extraction
 - Extracting all controllers using pattern matching
- Data-path extraction
 - Brutal but effective
- Future work
 - Port type estimation
 - Data rate estimation / data-flow extraction
 - System partition

Advanced Processor Technologies Group School of Computer Science

THANK YOU!