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Tool flow 
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Flow inside Synthesizer 
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Hypotheses in Partition Detection 
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controlled by FSMs.  



Progress from Last Meeting 

• Signal-level Data Flow Graph (DFG) 

– Parse Verilog to AST 

– AST to DFG conversion 

– Arc type detection 

• Register Relation Graph 

• Automatic FSM detection 

– Detect all FSMs, counters and flags with finite 

state spaces 
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Signal-level DFG 
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always @(posedge clk or negedge rstn) 
  if(~rstn) 
    state <= R; 
  else        
    state <= state_nxt;    
 
always @(state or cnt) // next state   
  if(cnt == 0)  
    case(state) 
    R:  state_nxt = YR; 
    YR: state_nxt = G;  
    G:  state_nxt = YG; 
    default: state_nxt = R; 
    endcase // case (state)  
  else  
    state_nxt = state;  
 
always @(posedge clk or negedge rstn) 
  if(~rstn) 
    cnt <= 0;  
  else if(cnt == 0)  
    case(state)  
    R:  cnt <= 2;  
    YR: cnt <= 49; 
    G:  cnt <= 4; 
    default: cnt <= 49;  
    endcase // case (state)  
  else  
    cnt <= cnt - 1;  
 
assign red = state == R ? 1 : 0;    
assign green = state == G ? 1 : 0;    
assign yellow =  
  (state == YR || state == YG) ? 1 : 0; 
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Signal-level DFG 
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Arc types are extracted from the use of 

signals in statements. 



Signal-level DFG 
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Register Relation Graph 
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Iterate all paths between two registers and reduce 

them to one or two arcs in RRG. (dynamic 

programming is used) 



FSM detection 

• At least one of an FSM’s output 

paths is a self-loop path. 

 

• At least one of an FSM’s output 

paths is a control path towards 

another register. 

 

• All input data of an FSM comes 

from self-loop paths or constant 

numbers. 
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Test Cases 
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OR1200: micro processor, combinational loop, program counter. 

RS decoder: ad hoc coding style, multiple signals in one always block, 

use range as control 

H.264: large design with large fanouts (a global counter with 400 

fanouts, 280K unfolded output paths). 

 

False negative error: not found 

False positive error:  around 10% 

 

Causes of error: combinational loop, range expression, sequential 

assigns. 



Compare with Others 

• Coding style 

– Synthesis tools like DC 

– Only recognise FSMs written in standard one 

or two always blocks 

• Pattern recognition 

– [Liu2000] recognise FSMs described in an 

always block (block level granularity).  

– No support for explicit type detection. 
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Future works 

• Boundary detection 

– Pattern of the buses with variable data rate 

– Pattern of on-chip buses 

– Pattern of FIFOs 

– Relations between controllers 
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Conclusions 

• Large scale Verilog designs have been 

parsed and converted into signal level 

DFGs 

• FSMs and controlling counters have been 

automatically detected 

• Need a method to detect available system 

boundaries 
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