
GAELS Progress

Wei Song

13/03/2013

Content

• Tool flow

• Progress

– Signal-level DFG

– Register Relation Graph (RRG)

– FSM detection

• Future works

• Conclusion

13/03/2013 Advanced Processor Technologies Group

The School of Computer Science

2

Tool flow

13/03/2013 Advanced Processor Technologies Group

The School of Computer Science

RTL Verilog HDL Cell Library VCD waveform

AVerilog
synthesiser

Timing info

Pipeline usage

Multiple smaller
RTL Verilog HDL

designs

Async interfaces

Commercial
tools

blackboxes
dont_touch

3

Flow inside Synthesizer

13/03/2013 Advanced Processor Technologies Group

The School of Computer Science

RTL Verilog

RTL Verilog

RTL Verilog

Cell library

Verilog
Parser

Elaborator SDFG & RRG
Generation

GALS
Partition

Async
Pipeline

Insertion

Netlist
Writer

Automatic
Constraint
Generation

RTL Verilog

Async Gate-
Level Verilog

Syn, P&R
constraints

Simulation Waveform

Frequency Constraints

Area, Power constraints

Asynchronous
Component Library

4

Hypotheses in Partition Detection

13/03/2013 Advanced Processor Technologies Group

The School of Computer Science

5

FSM FSM FSM

FSM

Mem

BUS

FSM

0

1
3

2

5 4

Send data

Boundaries are the

synchronous buses with

variable data rates

controlled by FSMs.

Progress from Last Meeting

• Signal-level Data Flow Graph (DFG)

– Parse Verilog to AST

– AST to DFG conversion

– Arc type detection

• Register Relation Graph

• Automatic FSM detection

– Detect all FSMs, counters and flags with finite

state spaces

13/03/2013 Advanced Processor Technologies Group

The School of Computer Science

6

Signal-level DFG

13/03/2013 Advanced Processor Technologies Group

The School of Computer Science

7

always @(posedge clk or negedge rstn)
 if(~rstn)
 state <= R;
 else
 state <= state_nxt;

always @(state or cnt) // next state
 if(cnt == 0)
 case(state)
 R: state_nxt = YR;
 YR: state_nxt = G;
 G: state_nxt = YG;
 default: state_nxt = R;
 endcase // case (state)
 else
 state_nxt = state;

always @(posedge clk or negedge rstn)
 if(~rstn)
 cnt <= 0;
 else if(cnt == 0)
 case(state)
 R: cnt <= 2;
 YR: cnt <= 49;
 G: cnt <= 4;
 default: cnt <= 49;
 endcase // case (state)
 else
 cnt <= cnt - 1;

assign red = state == R ? 1 : 0;
assign green = state == G ? 1 : 0;
assign yellow =
 (state == YR || state == YG) ? 1 : 0;

I I

FF

FF

O O O

state
cnt

state_nxt

yellowgreenred

rstn clk

I

FF

O

i_port

o_port

combi_block

seq_block

reset

clock

control

data

Signal-level DFG

13/03/2013 Advanced Processor Technologies Group

The School of Computer Science

8

always @(posedge clk or negedge rstn)
 if(~rstn)
 state <= R;
 else
 state <= state_nxt;

always @(state or cnt) // next state
 if(cnt == 0)
 case(state)
 R: state_nxt = YR;
 YR: state_nxt = G;
 G: state_nxt = YG;
 default: state_nxt = R;
 endcase // case (state)
 else
 state_nxt = state;

always @(posedge clk or negedge rstn)
 if(~rstn)
 cnt <= 0;
 else if(cnt == 0)
 case(state)
 R: cnt <= 2;
 YR: cnt <= 49;
 G: cnt <= 4;
 default: cnt <= 49;
 endcase // case (state)
 else
 cnt <= cnt - 1;

assign red = state == R ? 1 : 0;
assign green = state == G ? 1 : 0;
assign yellow =
 (state == YR || state == YG) ? 1 : 0;

I I

FF

FF

O O O

state
cnt

state_nxt

yellowgreenred

rstn clk

I

FF

O

i_port

o_port

combi_block

seq_block

reset

clock

control

data

Arc types are extracted from the use of

signals in statements.

Signal-level DFG

13/03/2013 Advanced Processor Technologies Group

The School of Computer Science

9

Register Relation Graph

13/03/2013 Advanced Processor Technologies Group

The School of Computer Science

10

I I

FF

FF

O O O

state
cnt

state_nxt

yellowgreenred

rstn clk

I I

FF

FF

O O O

state

cnt

yellowgreenred

rstn

Iterate all paths between two registers and reduce

them to one or two arcs in RRG. (dynamic

programming is used)

FSM detection

• At least one of an FSM’s output

paths is a self-loop path.

• At least one of an FSM’s output

paths is a control path towards

another register.

• All input data of an FSM comes

from self-loop paths or constant

numbers.

13/03/2013 Advanced Processor Technologies Group

The School of Computer Science

11

I I

FF

FF

O O O

state

cnt

yellowgreenred

rstn

Test Cases

13/03/2013 Advanced Processor Technologies Group

The School of Computer Science

12

OR1200: micro processor, combinational loop, program counter.

RS decoder: ad hoc coding style, multiple signals in one always block,

use range as control

H.264: large design with large fanouts (a global counter with 400

fanouts, 280K unfolded output paths).

False negative error: not found

False positive error: around 10%

Causes of error: combinational loop, range expression, sequential

assigns.

Compare with Others

• Coding style

– Synthesis tools like DC

– Only recognise FSMs written in standard one

or two always blocks

• Pattern recognition

– [Liu2000] recognise FSMs described in an

always block (block level granularity).

– No support for explicit type detection.

13/03/2013 Advanced Processor Technologies Group

The School of Computer Science

13

Future works

• Boundary detection

– Pattern of the buses with variable data rate

– Pattern of on-chip buses

– Pattern of FIFOs

– Relations between controllers

13/03/2013 Advanced Processor Technologies Group

The School of Computer Science

14

Conclusions

• Large scale Verilog designs have been

parsed and converted into signal level

DFGs

• FSMs and controlling counters have been

automatically detected

• Need a method to detect available system

boundaries

13/03/2013 Advanced Processor Technologies Group

The School of Computer Science

15

