
GAELS Progress

Wei Song

31/08/2012

Content

• Tool flow

• Progress

– Verilog Parser

– Tcl user interface

– Petri-Net graphic library

• Future works

• Issues

• Conclusion

31/08/2012 Advanced Processor Technologies Group

The School of Computer Science

2

Tool flow

31/08/2012 Advanced Processor Technologies Group

The School of Computer Science

RTL Verilog HDL Cell Library VCD waveform

AVerilog
synthesiser

Timing info

Pipeline usage

Multiple smaller
RTL Verilog HDL

designs

Async interfaces

Sync elastic
pipelines

Commercial
tools

blackboxes
dont_touch

3

Flow inside Synthesizer

31/08/2012 Advanced Processor Technologies Group

The School of Computer Science

RTL Verilog

RTL Verilog

RTL Verilog

Cell library

Verilog
Parser

Elaborator

Timed Colored
Petri-Net
(TCPN)

Extraction

TCPN
Simplification

GALS
Partition

Async
Pipeline

Insertion

Netlist
Writer

Automatic
Constraint
Generation

RTL Verilog

Async Gate-
Level Verilog

Syn, P&R
constraints

Simulation Waveform

Frequency Constraints

Area, Power constraints

Asynchronous
Component Library

4

Progress from Last Meeting

• Verilog Parser

– More supported features

• User Interface

– A fully embedded Tcl interpreter (v8.5)

• Petri-Net (PN) Library

– Support hierarchical TCPN (expected)

– PNML standard (and dot, GML, SVG)

– Automatic layout for GUI

31/08/2012 Advanced Processor Technologies Group

The School of Computer Science

5

Verilog Parser

• Preprocessor (Macro support)
– VPreProcessor from Perl-Verilog tool suite

– https://github.com/wsong83/vpreproc

– Full language features (SystemVerilog)

• Parser
– Understand all synthesizable Verilog

• Semantic (Paring tree)
– Parameter, module, input/output port,

reg/wire/integer, always, <=, =, if/else, case

– Features not supported yet:
• Inout port, for loop, generation block, library gates

31/08/2012 Advanced Processor Technologies Group

The School of Computer Science

6

https://github.com/wsong83/vpreproc

Verilog Parser

• Elaboration

– Automatic parameter expansion

– Module renaming (parameter suffix)

– Hierarchical module linkage

– Port direction check

– Multi-driver, no-driver and no-load check

– Conservative simplification (preserving logic

rationales between signals and always

blocks)

31/08/2012 Advanced Processor Technologies Group

The School of Computer Science

7

Verilog Parser

• Verification (no error coverage)

– Read in OpenRISC 1200 processor

– One line change in the source code:

 wire flag = 1’b1;

Change to

 wire flag;

 assign flag = 1’b1;

• Small demo later (with Tcl UI)

31/08/2012 Advanced Processor Technologies Group

The School of Computer Science

8

User Interface

• Reasoning for CMD env.
– Large scale designs (no schematic design view)

– Command line environment is efficient and has a
low memory footage

– Synchronous users are familiar with it

– GUI may not be useful when designs are large

• Solution
– Full embedded Tcl interpreter

– Extra tool related Tcl commands and global
variables

– Special support to display TCPNs

31/08/2012 Advanced Processor Technologies Group

The School of Computer Science

9

C++/Tcl

• C++/Tcl

– A C++ / Tcl interface library

– https://github.com/wsong83/cpptcl

– Design by Maciej Sobczak (2004-2006)

• Features:

– C++ wrapper for Tcl C APIs

– Easy command expansion (my addition)

– Read/Write Tcl variables

– Tracing Tcl variables (my addition)

31/08/2012 Advanced Processor Technologies Group

The School of Computer Science

10

https://github.com/wsong83/cpptcl

Demo

• Parsing and elaboration of OR1200

./bin/avs_shell

> source ../test/avs_test.tcl

> elaborate or1200_top

> write -hierarchy

> exit

31/08/2012 Advanced Processor Technologies Group

The School of Computer Science

11

Petri-Net Library

• CppPNML library

– https://github.com/wsong83/cppPNML

– C++ PN Graphic library

• Wrapper C++ classes to hide internals

• Boost Graphic Library to store diagrams

• Multi-maps/sets (associated containers) to store

indices and identifiers

• Open Graphic Design Framework (OGDF) for

automatic layout

31/08/2012 Advanced Processor Technologies Group

The School of Computer Science

12

https://github.com/wsong83/cppPNML

Example: a simple PT-net

31/08/2012 Advanced Processor Technologies Group

The School of Computer Science

13

pnPlace pstart("p1", "start");

g.add(pstart);

pstart.setInitMarking(1);

g.add(pnTran("t1", "transition"));

g.add(pnPlace("p2"));

g.add(pnPlace("p3", "arbiter"));

g.get<pnPlace>("p3").setInitMarking(2);

g.addF(pnTran("t2", "choice1")).add(pnTran("t3", "choice2"));

g.add(pnPlace("p4"));

g.add(pnTran("t4", "finish"));

g.add(pnPlace("p5", "finish"));

g.addF(pnArc("a1", "p1", "t1")).add(pnArc("a2", "t1", "p2"));

g.add(pnArc("", "p2", "t2", "choose 1"));

g.add(pnArc("", "p2", "t3", "choose 2"));

g.addF(pnArc("", "p3", "t2")).add(pnArc("", "p3", "t3"));

g.addF(pnArc("", "t2", "p4")).add(pnArc("", "t3", "p4"));

g.addF(pnArc("", "t2", "p3")).add(pnArc("", "t3", "p3"));

g.add(pnArc("", "p4", "t4"));

g.add(pnArc("", "t4", "p5"));

Dot vs OGDF

OGDF:Sugiyama Layout

GraphViz: Dot

31/08/2012 Advanced Processor Technologies Group

The School of Computer Science

14

MNMA allocator

31/08/2012 Advanced Processor Technologies Group

The School of Computer Science

15

MNMA: OGDF

31/08/2012 Advanced Processor Technologies Group

The School of Computer Science

16

MNMA: Dot

31/08/2012 Advanced Processor Technologies Group

The School of Computer Science

17

Format supported

• Output formats

– PNML (place, initial marking, transition, arc)
(color, set, guard, read arc)

– GraphViz: Dot

– GML and SVG (no token)

• Input formats

– PNML (pugixml XML parser)

– GML (internal use)

• pnml2pdf (Qt 4.7)

31/08/2012 Advanced Processor Technologies Group

The School of Computer Science

18

Tool summary

• AVS(Asynchronous Verilog Synthesiser)
– https://github.com/wsong83/Asynchronous-Verilog-

Synthesiser

– Third party tools / libraries used:
• GNU C++ / C++0x / Boost

• Bison / Flex

• GNU MP Lib

• Tcl/Tk 8.5

• C++/Tcl

• VPreProcessor (embedded)

• OGDF 2012.07

• Pugixml (embedded)

• Qt 4.7

31/08/2012 Advanced Processor Technologies Group

The School of Computer Science

19

https://github.com/wsong83/Asynchronous-Verilog-Synthesiser
https://github.com/wsong83/Asynchronous-Verilog-Synthesiser
https://github.com/wsong83/Asynchronous-Verilog-Synthesiser
https://github.com/wsong83/Asynchronous-Verilog-Synthesiser
https://github.com/wsong83/Asynchronous-Verilog-Synthesiser

Future works

• cppPNML library

– couple of months

– Reference node, color, set, guard, time, arcs

• TCPN extraction

– Starting from September

– Hopefully some results in next meeting

31/08/2012 Advanced Processor Technologies Group

The School of Computer Science

20

Issues: why TCPN?

• Place Transition (PN) net is difficult to

represent conditions.

always @(posedge clock)

 if(a)

 b <= c;

 else

 b <= d;

31/08/2012 Advanced Processor Technologies Group

The School of Computer Science

21

d

c

a b

Conditions using PN-Net

31/08/2012 Advanced Processor Technologies Group

The School of Computer Science

22

always @(posedge clock)

 if(a)

 b <= c;

 else

 b <= d;

d

c

a b

Conditions using PN-Net

31/08/2012 Advanced Processor Technologies Group

The School of Computer Science

23

always @(posedge clock)

 if(a)

 b <= c;

 else

 b <= d;

d

c

a b

Conditions using PN-Net

31/08/2012 Advanced Processor Technologies Group

The School of Computer Science

24

always @(posedge clock)

 if(a)

 b <= c;

 else

 b <= d;

d

c

a b

Conditions using PN-Net

31/08/2012 Advanced Processor Technologies Group

The School of Computer Science

25

always @(posedge clock)

 if(a)

 b <= c;

 else

 b <= d;

d

c

a b

Well, this works.

What is the practical meaning of sinks?

Anyway to simplify it?

Conditions using PN-Net

31/08/2012 Advanced Processor Technologies Group

The School of Computer Science

26

always @(posedge clock)

 if(a)

 b <= c;

 else

 b <= d;

1

1

1`byte(c)

1`byte(d)

1
1`bool(a) if(a) then c

else d

c

d

a

The CPN also clearly shows a, c, d

are related. Or, they can be bundled

together.

1

1`{bool(a),byte(c), byte(d)}

Issues: why TCPN?

• How to represent clock and flip-flops?

– Does clock matter? YES

31/08/2012 Advanced Processor Technologies Group

The School of Computer Science

27

== 10?

1

n

n+1

If(n==5) then token
Else empty

Issues: why TCPN?

31/08/2012 Advanced Processor Technologies Group

The School of Computer Science

28

n

n+1

If(n==5) then token
Else empty

n

n+1

If(n==5) then token
Else empty

@+1

@+5

Simplification using TCPN

31/08/2012 Advanced Processor Technologies Group

The School of Computer Science

29

+

*

+
@+1

@+1

@+1

@+2

Problem with PNML

• Petri-Nets described by PNML are uniquified!

– Hierarchy is supported by page and refnode.

– Refnode in PNML must reference to a unique
node

 <referencePlace id=“ref_id” ref=“org_id”>

– Every module represented by a page in PNML
can have only one entity (uniquified).

– Modular PNML
• Ekkart Kindler, Laure Petrucci. “Towards a Standard for

Modular Petri Nets: A Formalisation.” In proc. of Petri
Net 2009.

31/08/2012 Advanced Processor Technologies Group

The School of Computer Science

30

Conclusions

• Still working on tool preparation

– Parser, UI and Graphic Library

• Try to extract Timed Colored PN from RTL

designs.

– Simple nets

– Simplification

31/08/2012 Advanced Processor Technologies Group

The School of Computer Science

31

