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Tool flow 
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Flow inside Synthesizer 
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Progress from Last Meeting 

• Verilog Parser 

– More supported features 

• User Interface 

– A fully embedded Tcl interpreter (v8.5) 

• Petri-Net (PN) Library 

– Support hierarchical TCPN (expected) 

– PNML standard (and dot, GML, SVG) 

– Automatic layout for GUI 
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Verilog Parser 

• Preprocessor (Macro support) 
– VPreProcessor from Perl-Verilog tool suite 

– https://github.com/wsong83/vpreproc 

– Full language features (SystemVerilog) 

• Parser 
– Understand all synthesizable Verilog 

• Semantic (Paring tree) 
– Parameter, module, input/output port, 

reg/wire/integer, always, <=, =, if/else, case 

– Features not supported yet: 
• Inout port, for loop, generation block, library gates 
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Verilog Parser 

• Elaboration 

– Automatic parameter expansion 

– Module renaming (parameter suffix) 

– Hierarchical module linkage 

– Port direction check 

– Multi-driver, no-driver and no-load check 

– Conservative simplification (preserving logic 

rationales between signals and always 

blocks) 
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Verilog Parser 

• Verification (no error coverage) 

– Read in OpenRISC 1200 processor 

– One line change in the source code: 

   wire flag = 1’b1; 

Change to 

   wire flag; 

   assign flag = 1’b1;  

• Small demo later (with Tcl UI) 
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User Interface 

• Reasoning for CMD env. 
– Large scale designs (no schematic design view) 

– Command line environment is efficient and has a 
low memory footage 

– Synchronous users are familiar with it 

– GUI may not be useful when designs are large 

• Solution 
– Full embedded Tcl interpreter 

– Extra tool related Tcl commands and global 
variables 

– Special support to display TCPNs 
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C++/Tcl 

• C++/Tcl 

– A C++ / Tcl interface library 

– https://github.com/wsong83/cpptcl 

– Design by Maciej Sobczak (2004-2006) 

• Features: 

– C++ wrapper for Tcl C APIs 

– Easy command expansion (my addition) 

– Read/Write Tcl variables 

– Tracing Tcl variables (my addition) 
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Demo 

• Parsing and elaboration of OR1200 

./bin/avs_shell 

> source ../test/avs_test.tcl 

> elaborate or1200_top 

> write -hierarchy 

> exit 
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Petri-Net Library 

• CppPNML library 

– https://github.com/wsong83/cppPNML 

– C++ PN Graphic library 

• Wrapper C++ classes to hide internals 

• Boost Graphic Library to store diagrams 

• Multi-maps/sets (associated containers) to store 

indices and identifiers 

• Open Graphic Design Framework (OGDF) for 

automatic layout 
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Example: a simple PT-net 
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pnPlace pstart("p1", "start"); 

g.add(pstart); 

pstart.setInitMarking(1); 

g.add(pnTran("t1", "transition")); 

g.add(pnPlace("p2")); 

g.add(pnPlace("p3", "arbiter")); 

g.get<pnPlace>("p3").setInitMarking(2); 

g.addF(pnTran("t2", "choice1")).add(pnTran("t3", "choice2")); 

g.add(pnPlace("p4")); 

g.add(pnTran("t4", "finish")); 

g.add(pnPlace("p5", "finish")); 

g.addF(pnArc("a1", "p1", "t1")).add(pnArc("a2", "t1", "p2")); 

g.add(pnArc("", "p2", "t2", "choose 1")); 

g.add(pnArc("", "p2", "t3", "choose 2")); 

g.addF(pnArc("", "p3", "t2")).add(pnArc("", "p3", "t3")); 

g.addF(pnArc("",  "t2", "p4")).add(pnArc("",  "t3", "p4")); 

g.addF(pnArc("",  "t2", "p3")).add(pnArc("", "t3", "p3")); 

g.add(pnArc("", "p4", "t4")); 

g.add(pnArc("", "t4", "p5")); 



Dot vs OGDF 

OGDF:Sugiyama Layout 

GraphViz: Dot 
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MNMA allocator 
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MNMA: OGDF 
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MNMA: Dot 
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Format supported 

• Output formats 

– PNML (place, initial marking, transition, arc) 
(color, set, guard, read arc) 

– GraphViz: Dot 

– GML and SVG (no token) 

• Input formats 

– PNML (pugixml XML parser) 

– GML (internal use) 

• pnml2pdf (Qt 4.7) 
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Tool summary 

• AVS(Asynchronous Verilog Synthesiser) 
– https://github.com/wsong83/Asynchronous-Verilog-

Synthesiser 

– Third party tools / libraries used: 
• GNU C++ / C++0x / Boost 

• Bison / Flex 

• GNU MP Lib 

• Tcl/Tk 8.5 

• C++/Tcl 

• VPreProcessor (embedded) 

• OGDF 2012.07 

• Pugixml (embedded) 

• Qt 4.7 
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Future works 

• cppPNML library 

–  couple of months 

– Reference node, color, set, guard, time, arcs 

• TCPN extraction 

– Starting from September 

– Hopefully some results in next meeting 
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Issues: why TCPN? 

• Place Transition (PN) net is difficult to 

represent conditions. 
 

 

always @(posedge clock) 

  if(a) 

    b <= c; 

  else  

    b <= d; 
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Conditions using PN-Net 
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always @(posedge clock) 

  if(a) 

    b <= c; 

  else  

    b <= d; 

d

c

a b

Well, this works. 

What is the practical meaning of sinks? 

Anyway to simplify it? 



Conditions using PN-Net 
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always @(posedge clock) 

  if(a) 

    b <= c; 

  else  

    b <= d; 

1

1

1`byte(c)

1`byte(d)

1
1`bool(a) if(a) then c

else d

c

d

a

The CPN also clearly shows a, c, d  

are related. Or, they can be bundled 

together. 

1

1`{bool(a),byte(c), byte(d)}



Issues: why TCPN? 

• How to represent clock and flip-flops? 

– Does clock matter? YES 
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== 10?

1

n

n+1

If(n==5) then token
Else empty



Issues: why TCPN? 
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n

n+1

If(n==5) then token
Else empty

n

n+1

If(n==5) then token
Else empty

@+1

@+5



Simplification using TCPN 
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Problem with PNML 

• Petri-Nets described by PNML are uniquified! 

– Hierarchy is supported by page and refnode. 

– Refnode in PNML must reference to a unique 
node 

 <referencePlace id=“ref_id” ref=“org_id”>  

– Every module represented by a page in PNML 
can have only one entity (uniquified). 

– Modular PNML 
• Ekkart Kindler, Laure Petrucci. “Towards a Standard for 

Modular Petri Nets: A Formalisation.” In proc. of Petri 
Net 2009.  
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Conclusions 

• Still working on tool preparation 

– Parser, UI and Graphic Library 

• Try to extract Timed Colored PN from RTL 

designs. 

– Simple nets 

– Simplification 
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