
Asynchronous Verilog
interface between behavioural and pipeline

synthesis

Wei Song

24/10/2011

Asynchronous Verilog

• A super set of Verilog (may or may not

include some SystemVerilog features)

• A way to describe asynchronous pipelines

(similar as RTL for sync circuits)

• Describe both sync and async in the same

language

• Synthesisable using asynchronous

synthesiser (into gate-level)

2011/10/24 Advanced Processor Technologies Group

The School of Computer Science

2

Motivations

• Proposal, layered design flow
– Behavioural synthesis (high-level synthesiser)

• Automatic async/sync partition

• Petri-net, token flow synthesis

• Pipeline style and interface definition

• Fast architecture builder and behavioural simulation
(SystemC based?)

– Pipeline level synthesis (RTL) (DC-like synthesiser)
• Power/speed/area optimisation

• STG -> control circuits

• Gate-level circuits generation

• Detailed pipeline optimisation

• Circuit-level simulation (compatible with Verilog ?)

2011/10/24 Advanced Processor Technologies Group

The School of Computer Science

3

Motivations

• Friendly to sync RTL designers

– The handshake languages (Balsa) are not

easy to understand by sync designers.

– No clear clue where is pipeline stages.

– No obvious DFT solution?

– Lack of low-level speed analysis

– Syntax-based direct map instead of logical

synthesis

2011/10/24 Advanced Processor Technologies Group

The School of Computer Science

4

Motivation

• Asynchronous Verilog

– A language to describe pipeline stages using

always blocks

– Using STG to describe pipeline control

– Clear pipeline stage definition

– Possible to analyse critical paths

– Speed/area/power analysis

– Real cell library

– Constraint based synthesis (like DC)

2011/10/24 Advanced Processor Technologies Group

The School of Computer Science

5

Expected features

• Pipeline description
always @(posack acko) begin // define ack

 if (b > 5)

 a <= b - c; // general description of comb.

 else

 a <= b + c;

 acki <- a; // infer completion detection

end

2011/10/24 Advanced Processor Technologies Group

The School of Computer Science

6

L

>
b

c

acko

a

acki

Expected features

• Pipeline style (attribute)

always @(posack acko) begin

 (* pipe_style = 4p1o4 *) // pipeline style

 a <= b - c;

 acki <- a;

end

2011/10/24 Advanced Processor Technologies Group

The School of Computer Science

7

Expected features

• Control circuits (using STGs as functions)
STG pipe_ctl // define the STG as a function block
input ai, bi, ci;
output eo, fo;
begin
 ai+ eo+
 eo+ bi-
 …
end

always @(ai or bi or ci) // utilise the STG
 pipe_ctl (ai, bi, ci, eo, fo);

2011/10/24 Advanced Processor Technologies Group

The School of Computer Science

8

Features of Asynchronous Verilog

• Recognise all Verilog RTL level features

– May support gate-level description

– May support truth table or specify blocks

– May support some synthesisable

SystemVerilog

• Describe asynchronous circuits

– always @(pos/negack ack) for pipeline stages

– STG for control circuits

2011/10/24 Advanced Processor Technologies Group

The School of Computer Science

9

Design flow

• Behavioural level description

– SystemC or ??

– Galaxy like GUI for async/sync partition?

– New fetures for token, petri-net?

– SystemC simulation

• Behavioural synthesise

– Asynchronous Verilog: both RTL and async pipes

– Constraints: sync constraints, async pipe style,
speed, skew margin, fork margin (automatic early
evaluation infer?)

2011/10/24 Advanced Processor Technologies Group

The School of Computer Science

10

Design flow

• Asynchronous synthesis

– Read in Async Verilog, constraints, cell lib

– Generate RTL verilog including all sync

circuits (asynchronous circuits defined as

black boxes)

– Generate constraints for sync circuits

– Generate async gate-level netlist and

constraints for P&R

2011/10/24 Advanced Processor Technologies Group

The School of Computer Science

11

Design flow

• RTL synthesis

– DC for sync RTL netlists

• P&R

– Sync netlist + constraints (DC)

– Async netlist + constraints (Async Syn)

– Generate GDSII

2011/10/24 Advanced Processor Technologies Group

The School of Computer Science

12

Remaining problems

• Boundary discovery

– Identify signals as boundary (attributes)

– Don’t touch blocks as sync blocks

– Black box as sync blocks

– Automatic infer

• Signals from always @(posedge clk) are sync

• All sync FFs to async pipes are async

• All async pipes to FFs are sync

2011/10/24 Advanced Processor Technologies Group

The School of Computer Science

13

Remaining problems

• Manual designs (DLL, delay line, special)

– dont_touch in constraint file

– Balck box

– DesignWare library (not at the first stage)

• Multi-pipeline stage control (difficult for
timing analysis)

– Use single pipeline stage control instead
• Behavioural synthesis must divide complex STG

into small ones

• Use state machine instead of STG

2011/10/24 Advanced Processor Technologies Group

The School of Computer Science

14

Remaining problems

• Simulation

– Before synthesis

• Translate Async Verilog to System Verilog

– Use equivalent tasks and functions to describe pipes and

STGs

– System Verilog is difficult to parse and synthesis yet

– Post synthesis

• Normal Verilog simulation

2011/10/24 Advanced Processor Technologies Group

The School of Computer Science

15

2011/10/24 Advanced Processor Technologies Group

The School of Computer Science

16

Asynchronous Synthesiser

• Read in cell library

– Speed/area/power analysis and optimisation

– First stage: read in logic and area info

• Read in async verilog

– Specify async features

– Parse RTL and async Verilog

– Transfer async Verilog to internal data (block

level graphs in bus, operation and state

machines)

2011/10/24 Advanced Processor Technologies Group

The School of Computer Science

17

Asynchronous Synthesiser

• Parse constraints

• Parse user scripts (similar to DC)

• Automatic boundary discovery

• Logic synthesis

– First stage, direct translation

• Optimization (none at first)

• Constraint generation

• GUI (like design vision, but ps files first, Balsa)

2011/10/24 Advanced Processor Technologies Group

The School of Computer Science

18

Asynchronous Synthesiser

• Possible features:

– Automatic critical path calculation

– Automatic equivalent logic replacement

– Automatic pipeline style swaping

– Automatic early ack evaluation

– Power report by parse VCD/saif files

– Automatic retiming (move pipeline stage

forwards/backwards), pipeline duplication,

bubble insertion

 2011/10/24 Advanced Processor Technologies Group

The School of Computer Science

19

Summary

• Two-level design flow

– Behavioural level:

• S/A paritition and async pipeline generation

– Pipeline level

• Logical synthesis

• A new Async Verilog language

– Describe both sync and async

– Unified design environment

2011/10/24 Advanced Processor Technologies Group

The School of Computer Science

20

Questions?

2011/10/24 Advanced Processor Technologies Group

The School of Computer Science

21

